References
- [1] J. Serrano-Guerrero, J. A. Olivas, F. P. Romero, and E. Herrera-Viedma, “Sentiment analysis: A review and comparative analysis of web,” Information Sciences, vol. 311, pp. 18–38, Aug. 2015. https://doi.org/10.1016/j.ins.2015.03.040
- [2] L. Zhang, S. Wang, and B. Liu, “Deep learning for sentiment analysis: A survey,” WIRES data mining and knowledge discovery, vol. 8, no. 4, July 2018. https://doi.org/10.1002/widm.1253
- [3] M. Giatsogloua, M. G. Vozalis, K. Diamantaras, A. Vakali, G. Sarigiannidis, and K. C. Chatzisavvas, “Sentiment analysis leveraging emotions and word embeddings,” Expert Systems with Applications, vol. 69, pp. 214–224, Mar. 2017. https://doi.org/10.1016/j.eswa.2016.10.043
- [4] K. K. Mohbey, B. Bakariya, and V. Kalal, “A study and comparison of sentiment analysis techniques using demonetization: Case study,” in Sentiment Analysis and Knowledge Discovery in Contemporary Business, 2018, pp. 1–14. https://doi.org/10.4018/978-1-5225-4999-4.ch001
- [5] C. S. Khoo and S. B. Johnkhan, “Lexicon-based sentiment analysis: Comparative Evaluation of Six Sentiment Lexicons,” Journal of Information Science, vol. 44, no. 4, pp. 491–511, 19 Apr. 2017. https://doi.org/10.1177/0165551517703514
- [6] N. Boudad, R. Faizi, R. O. Haj Thami, and R. Chiheb, “Sentiment analysis in Arabic: A review of the literature,” Ain Shams Engineering Journal, vol. 9, no. 4, pp. 2479–2490, Dec. 2018. https://doi.org/10.1016/j.asej.2017.04.007
- [7] S. Tartir and I. A. Nabi, “Semantic sentiment analysis in Arabic social media,” Journal of King Saud University – Computer and Information Sciences, vol. 29, no. 2, pp. 229–223, Apr. 2017. https://doi.org/10.1016/j.jksuci.2016.11.011
- [8] A. K. Rathore, V. Ilavarasan, and Y. K. Dwivedi, “Social media content and product co-creation: An emerging paradigm,” Journal of Enterprise Information Management, vol. 29, no. 1, pp. 7–18, Feb. 2016. https://doi.org/10.1108/JEIM-06-2015-0047
- [9] J. L. Sheela, “A review of sentiment analysis in Twitter data using Hadoop,” International Journal of Database Theory and Application, vol. 9, no. 1, pp. 77–86, 2016. https://doi.org/10.14257/ijdta.2016.9.1.07
- [10] S. A. Salloum, M. Al-Emran, A. A. Monem, and K. Shaalan, “A survey of text mining in social media: Facebook and Twitter perspectives,” Advances in Science, Technology and Engineering Systems, vol. 2, no. 1, pp. 127–133, 2017. https://doi.org/10.25046/aj020115
- [11] “Twitter launches,” A&E Television Networks, 14 July 2020. [Online]. Available: https://www.history.com/this-day-in-history/twitter-launches. Accessed on: Aug. 2020.
- [12] “Number of monetizable daily active Twitter users (mDAU) worldwide from 1st quarter 2017 to 2nd quarter 2020,” 23 July 2020. [Online]. Available: https://www.statista.com/statistics/970920/monetizable-daily-active-twitter-users-worldwide/. Accessed on: Aug. 2020.
- [13] Y. Lin, “10 Twitter statistics every marketer should know in 2022 [infographic],” 30 July 2019. [Online]. Available: https://www.oberlo.com/blog/twitter-statistics. Accessed on: Oct. 2019.
- [14] D. Hattem and L. Lomicka, “What the Tweets say: A critical analysis of Twitter research in language learning from 2009 to 2016,” E-Learning and Digital Media, vol. 13, pp. 5–23, Oct. 2019. https://doi.org/10.1177/2042753016672350
- [15] Twitter Inc., “Twitter for websites-supported languages,” 2019. [Online]. Available: https://developer.twitter.com/en/docs/twitter-forwebsites/twitter-for-websites-supported-languages/overview. Accessed on: 2019.
- [16] H. B. Zaya, A. A. Raza, and A. Ather, “Urdu word segmentation using conditional random fields (CRFs),” in Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, New Mexico: Association for Computational Linguistics, 2018, pp. 2562–2569.
- [17] V. S. Pagolu, K. N. R. Challa, and G. Panda, “Sentiment analysis of Twitter data for predicting stock market movements,” in International conference on Signal Processing, Communication, Power and Embedded System, Paralakhemundi, India, Oct. 2016, pp. 1345–1350. https://doi.org/10.1109/SCOPES.2016.7955659
- [18] R. P. Schumaker, A. T. Jarmoszko, and J. L. S. Chester, “Predicting wins and spread in the Premier League using a sentiment analysis of twitter,” Decision Support Systems, vol. 88, pp. 76–84, Aug. 2016. https://doi.org/10.1016/j.dss.2016.05.010
- [19] D. Pope and J. Griffith, “An analysis of online Twitter sentiment surrounding the European,” in 8th International Conference on Knowledge Discovery and Information Retrieval, Porto, Portugal, 2016, pp. 299–306. https://doi.org/10.5220/0006051902990306
- [20] A. C. Pandey, D. S. Rajpoot, and M. Saraswat, “Twitter sentiment analysis using hybrid cuckoo search method,” Information Processing & Management, vol. 53, no. 4, pp. 764–779, July 2017. https://doi.org/10.1016/j.ipm.2017.02.004
- [21] H. K. Aldayel and A. M. Azmi, “Arabic tweets sentiment analysis – a hybrid scheme,” Journal of Information Science, vol. 42, no. 6, pp. 782–797, Oct. 2016. https://doi.org/10.1177/0165551515610513
- [22] A. M. Alayba, V. Palade, M. England, and R. Iqbal, “Arabic language sentiment analysis on health services,” in 2017 1st International Workshop on Arabic Script Analysis and Recognition (ASAR), Nancy, France, Apr. 2017, pp. 114–118. https://doi.org/10.1109/ASAR.2017.8067771
- [23] M. Heikal, M. Torki, and N. El-Makky, “Sentiment analysis of Arabic Tweets using deep learning,” Procedia Computer Science, vol. 142, pp. 114–122, 2018. https://doi.org/10.1016/j.procs.2018.10.466
- [24] A. Hassan, S. Moin, A. Karim, and S. Shamshirband, “Machine learning-based sentiment analysis for Twitter accounts,” Mathematical and Computational Applications, vol. 23, no. 1, Feb. 2018. https://doi.org/10.3390/mca23010011
- [25] I. Javed, H. Afzal, A. Majeed, and B. Khan, “Towards creation of linguistic resources for bilingual sentiment analysis of Twitter data,” in International Conference on Applications of Natural Language to Data Bases/Information Systems, Jun. 2018. https://doi.org/10.1007/978-3-319-07983-7_32
- [26] S. Ahmed, S. Hina, and R. Asif, “Detection of sentiment polarity of unstructured multi-language text from social media,” International Journal of Advanced Computer Science and Applications, vol. 9, no. 7, pp. 199–203, 2019. https://doi.org/10.14569/IJACSA.2018.090728
- [27] T. R. Soomro and S. M. Ghulam, “Current status of urdu on Twitter,” Sukkur IBA Journal of Computing and Mathematical Sciences, vol. 3, no. 1, pp. 28–33, 2019. https://doi.org/10.30537/sjcms.v3i1.397
- [28] F. Noor, M. Bakhtyar, and J. Baber, “Sentiment analysis in E-commerce using SVM on Roman Urdu text,” in International Conference for Emerging Technologies in Computing, Jul. 2019. https://doi.org/10.1007/978-3-030-23943-5_16
- [29] H. Ghulam, F. Zeng, W. Li, and Y. Xiao, “Deep learning-based sentiment analysis for Roman Urdu text,” in 2018 International Conference on Identification, Information and Knowledge in the Internet of Things, IIKI 2018, vol. 147, 2018, pp. 131–135. https://www.sciencedirect.com/journal/procedia-computer-science/vol/147/suppl/C10.1016/j.procs.2019.01.202
- [30] Z. Mehmood et al., “Deep sentiments in Roman Urdu text using recurrent convolutional neural network model,” Information Processing and Management, vol. 57, no. 4, Feb. 2020, Art no. 102233. https://doi.org/10.1016/j.ipm.2020.102233
- [31] V. Bonta, N. Kumaresh, and J. N, “A comprehensive study on lexicon based approaches for sentiment analysis,” Asian Journal of Computer Science and Technology, vol. 8, no. S2, pp. 1–6, Mar. 2019. https://doi.org/10.51983/ajcst-2019.8.S2.2037
- [32] S. Sarica and J. Luo, “Stopwords in technical language processing”, PLoS ONE, vol. 16, no. 8, Aug. 2021, Art no. e0254937. https://doi.org/10.1371/journal.pone.0254937834161534351911
- [33] K. S. Dar, A. B. Shafat, and H. U. Muhammad, “An efficient stop word elimination algorithm for Urdu language,” in 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand, Jun. 2017. https://doi.org/10.1109/ECTICon.2017.8096386
- [34] M. Usman, S. Ayub, Z. Shafique, and K. Malik, “Urdu text classification using majority voting,” International Journal of Advanced Computer Science and Applications, vol. 7, no. 8, pp. 265–273, 2016. https://doi.org/10.14569/IJACSA.2016.070836
- [35] K. Riaz and D. Becker, “Stopword identification in an Urdu corpus”.
- [36] A. Burney, B. Sami, N. Mahmood, Z. Abbas, and K. Rizwan, “Urdu text summarizer using sentence weight algorithm for word processors,” International Journal of Computer Applications, vol. 46, no. 19, pp. 38–43, May 2012.
- [37] E. D. P. Kaur and E. P. Singh, “A comparative research of rule based classification on dataset using WEKA TOOL,” International Research Journal of Engineering and Technology (IRJET), vol. 6, no. 9, Sep. 2019. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.irjet.net/archives/V6/i9/IRJET-V6I9345.pdf
- [38] R. Ahujaa, A. Chuga, S. Kohlia, S. Guptaa, and P. Ahuja, “The impact of features extraction on the sentiment analysis,” in International Conference on Pervasive Computing Advances and Applications, vol. 152, 2019, pp. 341–348. https://www.sciencedirect.com/journal/procedia-computer-science/vol/152/suppl/C10.1016/j.procs.2019.05.008
- [39] B. Stecanella, “What is TF-IDF?” May 2019. [Online]. Available: https://monkeylearn.com/blog/what-is-tf-idf/. Accessed on: July 2020.
- [40] S. Gnanambal, M. Thangaraj, V. T. Meenatchi, and V. Gayathri, “Classification algorithms with attribute selection: an evaluation study using WEKA,” International Journal of Advanced Networking and Applications, vol. 9, no. 6, pp. 3640–3644, May 2018.
- [41] M. Desai and M. A. Mehta, “Techniques for sentiment analysis of Twitter data: A comprehensive survey,” in International Conference on Computing, Communication and Automation, Greater Noida, India, Apr. 2016, pp. 149–154. https://doi.org/10.1109/CCAA.2016.7813707
- [42] S. Yıldırım, “How to best evaluate a classification model,” 17 March 2020. [Online]. Available: https://towardsdatascience.com/how-to-best-evaluate-a-classification-model-2edb12bcc587.
- [43] P. Subedi, “Machine learning – The different ways to evaluate your classification models and choose the best one!” 18 August 2020. [Online]. Available: https://medium.com/kharpann/machine-learning-the-different-ways-to-evaluate-your-classification-models-and-choose-the-best-1281542432c. Accessed on: July 2020.
- [44] M. Ghosh and G. Sanyal, “An ensemble approach to stabilize the features for multi-domain sentiment analysis using supervised machine learning,” Journal of Big Data, vol. 5, Nov. 2018, Art no. 44. https://doi.org/10.1186/s40537-018-0152-5
- [45] V. Chaurasia and S. Pal, “A novel approach for breast cancer detection using data mining techniques,” International Journal of Innovative Research in Computer and Communication Engineering (An ISO 3297: 2007 Certified Organization), vol. 2, no. 1, pp. 2456–2465, Jul. 2017. https://www.researchgate.net/publication/259979477_A_Novel_Approach_for_Breast_Cancer_Detection_using_Data_Mining_Techniques
- [46] Y. A. Amrani, M. Lazaar, and K. E. E. Kadiri, “Random forest and support vector machine based hybrid approach to sentiment analysis,” in The First International Conference on Intelligent Computing in Data Sciences, vol. 127, 2018, pp. 511–520. https://www.sciencedirect.com/journal/procedia-computer-science/vol/127/suppl/C10.1016/j.procs.2018.01.150
- [47] M. A. Fauzi, “Random forest approach for sentiment analysis in Indonesian language,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 12, no. 1, pp. 46–50, Oct. 2018. https://doi.org/10.11591/ijeecs.v12.i1.pp46-50