Have a personal or library account? Click to login
Urdu Sentiment Analysis Cover

References

  1. [1] J. Serrano-Guerrero, J. A. Olivas, F. P. Romero, and E. Herrera-Viedma, “Sentiment analysis: A review and comparative analysis of web,” Information Sciences, vol. 311, pp. 18–38, Aug. 2015. https://doi.org/10.1016/j.ins.2015.03.040
  2. [2] L. Zhang, S. Wang, and B. Liu, “Deep learning for sentiment analysis: A survey,” WIRES data mining and knowledge discovery, vol. 8, no. 4, July 2018. https://doi.org/10.1002/widm.1253
  3. [3] M. Giatsogloua, M. G. Vozalis, K. Diamantaras, A. Vakali, G. Sarigiannidis, and K. C. Chatzisavvas, “Sentiment analysis leveraging emotions and word embeddings,” Expert Systems with Applications, vol. 69, pp. 214–224, Mar. 2017. https://doi.org/10.1016/j.eswa.2016.10.043
  4. [4] K. K. Mohbey, B. Bakariya, and V. Kalal, “A study and comparison of sentiment analysis techniques using demonetization: Case study,” in Sentiment Analysis and Knowledge Discovery in Contemporary Business, 2018, pp. 1–14. https://doi.org/10.4018/978-1-5225-4999-4.ch001
  5. [5] C. S. Khoo and S. B. Johnkhan, “Lexicon-based sentiment analysis: Comparative Evaluation of Six Sentiment Lexicons,” Journal of Information Science, vol. 44, no. 4, pp. 491–511, 19 Apr. 2017. https://doi.org/10.1177/0165551517703514
  6. [6] N. Boudad, R. Faizi, R. O. Haj Thami, and R. Chiheb, “Sentiment analysis in Arabic: A review of the literature,” Ain Shams Engineering Journal, vol. 9, no. 4, pp. 2479–2490, Dec. 2018. https://doi.org/10.1016/j.asej.2017.04.007
  7. [7] S. Tartir and I. A. Nabi, “Semantic sentiment analysis in Arabic social media,” Journal of King Saud University – Computer and Information Sciences, vol. 29, no. 2, pp. 229–223, Apr. 2017. https://doi.org/10.1016/j.jksuci.2016.11.011
  8. [8] A. K. Rathore, V. Ilavarasan, and Y. K. Dwivedi, “Social media content and product co-creation: An emerging paradigm,” Journal of Enterprise Information Management, vol. 29, no. 1, pp. 7–18, Feb. 2016. https://doi.org/10.1108/JEIM-06-2015-0047
  9. [9] J. L. Sheela, “A review of sentiment analysis in Twitter data using Hadoop,” International Journal of Database Theory and Application, vol. 9, no. 1, pp. 77–86, 2016. https://doi.org/10.14257/ijdta.2016.9.1.07
  10. [10] S. A. Salloum, M. Al-Emran, A. A. Monem, and K. Shaalan, “A survey of text mining in social media: Facebook and Twitter perspectives,” Advances in Science, Technology and Engineering Systems, vol. 2, no. 1, pp. 127–133, 2017. https://doi.org/10.25046/aj020115
  11. [11] “Twitter launches,” A&E Television Networks, 14 July 2020. [Online]. Available: https://www.history.com/this-day-in-history/twitter-launches. Accessed on: Aug. 2020.
  12. [12] “Number of monetizable daily active Twitter users (mDAU) worldwide from 1st quarter 2017 to 2nd quarter 2020,” 23 July 2020. [Online]. Available: https://www.statista.com/statistics/970920/monetizable-daily-active-twitter-users-worldwide/. Accessed on: Aug. 2020.
  13. [13] Y. Lin, “10 Twitter statistics every marketer should know in 2022 [infographic],” 30 July 2019. [Online]. Available: https://www.oberlo.com/blog/twitter-statistics. Accessed on: Oct. 2019.
  14. [14] D. Hattem and L. Lomicka, “What the Tweets say: A critical analysis of Twitter research in language learning from 2009 to 2016,” E-Learning and Digital Media, vol. 13, pp. 5–23, Oct. 2019. https://doi.org/10.1177/2042753016672350
  15. [15] Twitter Inc., “Twitter for websites-supported languages,” 2019. [Online]. Available: https://developer.twitter.com/en/docs/twitter-forwebsites/twitter-for-websites-supported-languages/overview. Accessed on: 2019.
  16. [16] H. B. Zaya, A. A. Raza, and A. Ather, “Urdu word segmentation using conditional random fields (CRFs),” in Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, New Mexico: Association for Computational Linguistics, 2018, pp. 2562–2569.
  17. [17] V. S. Pagolu, K. N. R. Challa, and G. Panda, “Sentiment analysis of Twitter data for predicting stock market movements,” in International conference on Signal Processing, Communication, Power and Embedded System, Paralakhemundi, India, Oct. 2016, pp. 1345–1350. https://doi.org/10.1109/SCOPES.2016.7955659
  18. [18] R. P. Schumaker, A. T. Jarmoszko, and J. L. S. Chester, “Predicting wins and spread in the Premier League using a sentiment analysis of twitter,” Decision Support Systems, vol. 88, pp. 76–84, Aug. 2016. https://doi.org/10.1016/j.dss.2016.05.010
  19. [19] D. Pope and J. Griffith, “An analysis of online Twitter sentiment surrounding the European,” in 8th International Conference on Knowledge Discovery and Information Retrieval, Porto, Portugal, 2016, pp. 299–306. https://doi.org/10.5220/0006051902990306
  20. [20] A. C. Pandey, D. S. Rajpoot, and M. Saraswat, “Twitter sentiment analysis using hybrid cuckoo search method,” Information Processing & Management, vol. 53, no. 4, pp. 764–779, July 2017. https://doi.org/10.1016/j.ipm.2017.02.004
  21. [21] H. K. Aldayel and A. M. Azmi, “Arabic tweets sentiment analysis – a hybrid scheme,” Journal of Information Science, vol. 42, no. 6, pp. 782–797, Oct. 2016. https://doi.org/10.1177/0165551515610513
  22. [22] A. M. Alayba, V. Palade, M. England, and R. Iqbal, “Arabic language sentiment analysis on health services,” in 2017 1st International Workshop on Arabic Script Analysis and Recognition (ASAR), Nancy, France, Apr. 2017, pp. 114–118. https://doi.org/10.1109/ASAR.2017.8067771
  23. [23] M. Heikal, M. Torki, and N. El-Makky, “Sentiment analysis of Arabic Tweets using deep learning,” Procedia Computer Science, vol. 142, pp. 114–122, 2018. https://doi.org/10.1016/j.procs.2018.10.466
  24. [24] A. Hassan, S. Moin, A. Karim, and S. Shamshirband, “Machine learning-based sentiment analysis for Twitter accounts,” Mathematical and Computational Applications, vol. 23, no. 1, Feb. 2018. https://doi.org/10.3390/mca23010011
  25. [25] I. Javed, H. Afzal, A. Majeed, and B. Khan, “Towards creation of linguistic resources for bilingual sentiment analysis of Twitter data,” in International Conference on Applications of Natural Language to Data Bases/Information Systems, Jun. 2018. https://doi.org/10.1007/978-3-319-07983-7_32
  26. [26] S. Ahmed, S. Hina, and R. Asif, “Detection of sentiment polarity of unstructured multi-language text from social media,” International Journal of Advanced Computer Science and Applications, vol. 9, no. 7, pp. 199–203, 2019. https://doi.org/10.14569/IJACSA.2018.090728
  27. [27] T. R. Soomro and S. M. Ghulam, “Current status of urdu on Twitter,” Sukkur IBA Journal of Computing and Mathematical Sciences, vol. 3, no. 1, pp. 28–33, 2019. https://doi.org/10.30537/sjcms.v3i1.397
  28. [28] F. Noor, M. Bakhtyar, and J. Baber, “Sentiment analysis in E-commerce using SVM on Roman Urdu text,” in International Conference for Emerging Technologies in Computing, Jul. 2019. https://doi.org/10.1007/978-3-030-23943-5_16
  29. [29] H. Ghulam, F. Zeng, W. Li, and Y. Xiao, “Deep learning-based sentiment analysis for Roman Urdu text,” in 2018 International Conference on Identification, Information and Knowledge in the Internet of Things, IIKI 2018, vol. 147, 2018, pp. 131–135. https://www.sciencedirect.com/journal/procedia-computer-science/vol/147/suppl/C10.1016/j.procs.2019.01.202
  30. [30] Z. Mehmood et al., “Deep sentiments in Roman Urdu text using recurrent convolutional neural network model,” Information Processing and Management, vol. 57, no. 4, Feb. 2020, Art no. 102233. https://doi.org/10.1016/j.ipm.2020.102233
  31. [31] V. Bonta, N. Kumaresh, and J. N, “A comprehensive study on lexicon based approaches for sentiment analysis,” Asian Journal of Computer Science and Technology, vol. 8, no. S2, pp. 1–6, Mar. 2019. https://doi.org/10.51983/ajcst-2019.8.S2.2037
  32. [32] S. Sarica and J. Luo, “Stopwords in technical language processing”, PLoS ONE, vol. 16, no. 8, Aug. 2021, Art no. e0254937. https://doi.org/10.1371/journal.pone.0254937834161534351911
  33. [33] K. S. Dar, A. B. Shafat, and H. U. Muhammad, “An efficient stop word elimination algorithm for Urdu language,” in 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand, Jun. 2017. https://doi.org/10.1109/ECTICon.2017.8096386
  34. [34] M. Usman, S. Ayub, Z. Shafique, and K. Malik, “Urdu text classification using majority voting,” International Journal of Advanced Computer Science and Applications, vol. 7, no. 8, pp. 265–273, 2016. https://doi.org/10.14569/IJACSA.2016.070836
  35. [35] K. Riaz and D. Becker, “Stopword identification in an Urdu corpus”.
  36. [36] A. Burney, B. Sami, N. Mahmood, Z. Abbas, and K. Rizwan, “Urdu text summarizer using sentence weight algorithm for word processors,” International Journal of Computer Applications, vol. 46, no. 19, pp. 38–43, May 2012.
  37. [37] E. D. P. Kaur and E. P. Singh, “A comparative research of rule based classification on dataset using WEKA TOOL,” International Research Journal of Engineering and Technology (IRJET), vol. 6, no. 9, Sep. 2019. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.irjet.net/archives/V6/i9/IRJET-V6I9345.pdf
  38. [38] R. Ahujaa, A. Chuga, S. Kohlia, S. Guptaa, and P. Ahuja, “The impact of features extraction on the sentiment analysis,” in International Conference on Pervasive Computing Advances and Applications, vol. 152, 2019, pp. 341–348. https://www.sciencedirect.com/journal/procedia-computer-science/vol/152/suppl/C10.1016/j.procs.2019.05.008
  39. [39] B. Stecanella, “What is TF-IDF?” May 2019. [Online]. Available: https://monkeylearn.com/blog/what-is-tf-idf/. Accessed on: July 2020.
  40. [40] S. Gnanambal, M. Thangaraj, V. T. Meenatchi, and V. Gayathri, “Classification algorithms with attribute selection: an evaluation study using WEKA,” International Journal of Advanced Networking and Applications, vol. 9, no. 6, pp. 3640–3644, May 2018.
  41. [41] M. Desai and M. A. Mehta, “Techniques for sentiment analysis of Twitter data: A comprehensive survey,” in International Conference on Computing, Communication and Automation, Greater Noida, India, Apr. 2016, pp. 149–154. https://doi.org/10.1109/CCAA.2016.7813707
  42. [42] S. Yıldırım, “How to best evaluate a classification model,” 17 March 2020. [Online]. Available: https://towardsdatascience.com/how-to-best-evaluate-a-classification-model-2edb12bcc587.
  43. [43] P. Subedi, “Machine learning – The different ways to evaluate your classification models and choose the best one!” 18 August 2020. [Online]. Available: https://medium.com/kharpann/machine-learning-the-different-ways-to-evaluate-your-classification-models-and-choose-the-best-1281542432c. Accessed on: July 2020.
  44. [44] M. Ghosh and G. Sanyal, “An ensemble approach to stabilize the features for multi-domain sentiment analysis using supervised machine learning,” Journal of Big Data, vol. 5, Nov. 2018, Art no. 44. https://doi.org/10.1186/s40537-018-0152-5
  45. [45] V. Chaurasia and S. Pal, “A novel approach for breast cancer detection using data mining techniques,” International Journal of Innovative Research in Computer and Communication Engineering (An ISO 3297: 2007 Certified Organization), vol. 2, no. 1, pp. 2456–2465, Jul. 2017. https://www.researchgate.net/publication/259979477_A_Novel_Approach_for_Breast_Cancer_Detection_using_Data_Mining_Techniques
  46. [46] Y. A. Amrani, M. Lazaar, and K. E. E. Kadiri, “Random forest and support vector machine based hybrid approach to sentiment analysis,” in The First International Conference on Intelligent Computing in Data Sciences, vol. 127, 2018, pp. 511–520. https://www.sciencedirect.com/journal/procedia-computer-science/vol/127/suppl/C10.1016/j.procs.2018.01.150
  47. [47] M. A. Fauzi, “Random forest approach for sentiment analysis in Indonesian language,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 12, no. 1, pp. 46–50, Oct. 2018. https://doi.org/10.11591/ijeecs.v12.i1.pp46-50
DOI: https://doi.org/10.2478/acss-2022-0004 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 30 - 42
Published on: Aug 23, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Iffraah Rehman, Tariq Rahim Soomro, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.