References
- [1] A. Til, “Yeni Koranavirüs hastalığı hakkında bilinmesi gerekenler”, in 2020 Göller Bölgesi Aylık Ekonomi ve Kültür Dergisi, 2020, pp. 53–57.
- [2] D. M. Ali, L. G. Zake, & N. K. El Kady, “Role of chest computed tomography versus real time reverse transcription polymerase chain reaction for diagnosis of COVID-19: A systematic review and meta-analysis”, Interdisciplinary Perspectives on Infectious Diseases, vol. 2021, Jun. 2021, Art no. 8798575. https://doi.org/10.1155/2021/8798575818432234194491
- [3] U. Bilge, “Tıpta yapay zekâ ve uzman sistemler”, Türkiye Bilişim Derneği Kongresi, 2007, pp. 113–118.
- [4] L. Li et al., “Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT”, Radiology, vol. 296, no. 2, Mar. 2020, Art no. 200905. https://doi.org/10.1148/radiol.2020200905723347332191588
- [5] F. S. H. De Souza, N. S. Hojo-Souza, E. B. Dos Santos, C. M. Da Silva, & D. L. Guidoni, “Predicting the disease outcome in COVID-19 positive patients through machine learning: A retrospective cohort study with Brazilian data”, Frontiers in Artificial Intelligence, vol. 4, 2021, Art no. 579931. https://doi.org/10.3389/frai.2021.579931842786734514377
- [6] H. Budak, “Özellik seçim yöntemleri ve yeni bir yaklaşım”, Journal of the Institute of Natural and Applied Sciences of Süleyman Demirel University, vol. 22(Private), 21, 2018.10.19113/sdufbed.01653
- [7] M. Karakaş. “Sınıflandırma problemlerinde özellik seçimi için karşıtlık tabanlı gri kurt optimizasyon algoritması”, Master Thesis, Bilecik Şeyh Edebali University, 2020, pp. 80.
- [8] W. Yang, K. Wang, & W. Zuo, “Neighborhood component feature selection for high-dimensional data”, JCP, vol. 7, pp. 161–168, 2012. https://doi.org/10.4304/jcp.7.1.161-168
- [9] Neighborhood component analysis (NCA) feature selection – MATLAB & Simulink. [Online]. Available: https://www.mathworks.com/help/stats/neighborhood-component-analysis.html. Accessed on: November 24, 2021.
- [10] K. Güçkıran, İ. Cantürk, & L. Özyılmaz, “DNA microarray gene expression data classification using SVM, MLP, and RF with feature selection methods relief and LASSO”, Journal of the Institute of Natural and Applied Sciences of Suleyman Demirel University, vol. 23, no. 1, pp. 115–121, Apr. 2019. https://doi.org/10.19113/sdufenbed.453462
- [11] T. Miftahushudur, C. Wael, & T. Praludi, “Infinite latent feature selection technique for hyperspectral image classification”, Jurnal Elektronika dan Telekomunikasi, vol. 19, no. 1, pp. 32–37, 2019. https://doi.org/10.14203/jet.v19.32-37
- [12] F. Haider, S. Pollak, P. Albert, & S. Luz, “Emotion recognition in low-resource settings: An evaluation of automatic feature selection methods”, Computer Speech & Language, vol. 65, Jan. 2021, Art no. 101119. https://doi.org/10.1016/j.csl.2020.101119
- [13] G. Cong, W.-C. Peng, W. E. Zhang, C. Li, & A. Sun, “Advanced data mining and applications”, in 13th International Conference, ADMA 2017, Singapore, November 5–6, 2017. https://doi.org/10.1007/978-3-319-69179-4
- [14] G. Roffo, S. Melzi, U. Castellani, A. Vinciarelli, & M. Cristani, “Infinite feature selection: A graph-based feature filtering approach”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 12, pp. 4396–4410, Dec. 2021. https://doi.org/10.1109/TPAMI.2020.300284332750789
- [15] Infinite Feature Selection – File Exchange – MATLAB Central. [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/54763-infinite-feature-selection. Accessed on: November 24, 2021.
- [16] S. Adams, R. Meekins, & P. A. Beling, “An empirical evaluation of techniques for feature selection with cost”, in 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, USA, 2017, pp.834–841. https://doi.org/10.1109/ICDMW.2017.153
- [17] F. Liu, & X. Liu, “Unsupervised feature selection for multi-cluster data via smooth distributed score”, in Emerging Intelligent Computing Technology and Applications, D.-S. Içinde, P. Huang, P. Gupta, X. Zhang, & P. Premaratne, Eds. Springer, Berlin, Heidelberg, 2012, pp. 74–79. https://doi.org/10.1007/978-3-642-31837-5_11
- [18] R. Duangsoithong, & T. Windeatt, “Correlation-based and causal feature selection analysis for ensemble classifiers”, in Artificial Neural Networks in Pattern Recognition, F. Schwenker, & N. El Gayar, Eds. Springer, Berlin, Heidelberg, 2010, pp. 25–36. https://doi.org/10.1007/978-3-642-12159-3_3
- [19] E. Yakut, B. Elmas, & S. Yavuz, “Yapay sinir ağları ve destek vektör makineleri yöntemleri borsa endeksi tahmini“, Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, vol. 19, pp. 139–157, 2014.
- [20] T. Kavzoğlu, & İ. Colkesen, “Karar ağaçları İle uydu görüntülerinin sınıflandırılması: Kocaeli Örneği“, Harita Teknolojileri Elektronik Dergisi, vol. 2, no. 1, pp. 36–45, 2010.
- [21] M. F. Akca, “Karar Ağaçları (Makine Öğrenmesi Serisi-3)“, Deep Learning Türkiye. [Online]. Available: https://medium.com/deep-learning-turkiye/karar-a%C4%9Fa%C3%A7lar%C4%B1-makine-%C3%B6%C4%9Frenmesi-serisi-3-a03f3ff00ba5. Accessed on: November 23, 2020).
- [22] E. Arslan, “Makine Öğrenmesi – KNN (K-Nearest neighbors) algoritması”, Medium. [Online]. Available: https://medium.com/@arslanev/makine-%C3%B6%C4%9Frenmesiknn-k-nearest-neighbors-algoritmas%C4%B1-bdfb688d7c5f. Accessed on: May 19, 2020.
- [23] E. Çelik, M. Atalay, & H. Bayer, “Yapay sinir ağları ve destek vektör makineleri ile deprem tahminde sismik darbelerin kullanılması”, in 2014 IEEE 22nd Signal Processing and Communications Applications Conference, 2014.