Have a personal or library account? Click to login
Time Series Forecasting of Mobile Robot Motion Sensors Using LSTM Networks Cover

Time Series Forecasting of Mobile Robot Motion Sensors Using LSTM Networks

Open Access
|Dec 2021

References

  1. [1] J. G. De Gooijer and R. J. Hyndman, “25 years of time series forecasting,” International Journal of Forecasting, vol. 22, no. 3, pp. 443–473, 2006. https://doi.org/10.1016/j.ijforecast.2006.01.00110.1016/j.ijforecast.2006.01.001
  2. [2] A. Tealab, “Time series forecasting using artificial neural networks methodologies: A systematic review,” Future Computing and Informatics Journal, vol. 3, no. 2, pp. 334–340, Dec. 2018. https://doi.org/10.1016/j.fcij.2018.10.00310.1016/j.fcij.2018.10.003
  3. [3] F. Chenavier and J. L. Crowley, “Position estimation for a mobile robot using vision and odometry,” in IEEE International Conference on Robotics and Automation, Nice, France, May 1992. https://doi.org/10.1109/robot.1992.22005210.1109/ROBOT.1992.220052
  4. [4] F. Azizi and N. Houshangi, “Mobile robot position determination using data from gyro and odometry,” in Canadian Conference on Electrical and Computer Engineering, vol. 2, Niagara Falls, ON, Canada, May 2004, pp. 719–722. https://doi.org/10.1109/CCECE.2004.134521510.1109/CCECE.2004.1345215
  5. [5] R. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, 3rd ed., Melbourne, Australia: OTexts, 2021.
  6. [6] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis: Forecasting and Control, 5th ed. Wiley, 2016.
  7. [7] D. Mwanga, J. Ong’ala, and G. Orwa, “Modeling sugarcane yields in the Kenya sugar industry: A SARIMA model forecasting approach,” International Journal of Statistics and Applications, vol. 7, no. 6, pp. 280–288, 2017.
  8. [8] Z. Wang and Y. Lou, “Hydrological time series forecast model based on wavelet de-noising and ARIMA-LSTM,” in Proceedings of 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference, (ITNEC), Chengdu, China, Mar. 2019, pp. 1697–1701. https://doi.org/10.1109/ITNEC.2019.872944110.1109/ITNEC.2019.8729441
  9. [9] B. Lim and S. Zohren, “Time-series forecasting with deep learning: A survey,” Philosophical Transactions of the Royal Society A, vol. 379, Feb. 2021. https://doi.org/10.1098/rsta.2020.020910.1098/rsta.2020.020933583273
  10. [10] N. K. Ahmed, A. F. Atiya, N. El Gayar, and H. El-Shishiny, “An empirical comparison of machine learning models for time series forecasting,” Econometric Reviews, vol. 29, no. 5, pp. 594–621, Sep. 2010. https://doi.org/10.1080/07474938.2010.48155610.1080/07474938.2010.481556
  11. [11] C. Deb, F. Zhang, J. Yang, S. E. Lee, and K. W. Shah, “A review on time series forecasting techniques for building energy consumption,” Renewable and Sustainable Energy Reviews, vol. 74, pp. 902–924, Jul. 2017. https://doi.org/10.1016/j.rser.2017.02.08510.1016/j.rser.2017.02.085
  12. [12] Z. Duan, H. Liu, X. Lv, Z. Ren, and S. Junginger, “Hybrid position forecasting method for mobile robot transportation in smart indoor environment,” in Proceedings of the 2019 4th International Conference on Big Data and Computing (ICBDC), Association for Computing Machinery, May 2019, pp. 333–338. https://doi.org/10.1145/3335484.333550810.1145/3335484.3335508
  13. [13] S. Gomez-Gonzalez, S. Prokudin, B. Scholkopf, and J. Peters, “Real time trajectory prediction using deep conditional generative models,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 970–976, Apr. 2020. https://doi.org/10.1109/LRA.2020.296639010.1109/LRA.2020.2966390
  14. [14] C. C. Aggarwal, Neural Networks and Deep Learning. Springer, 2018. https://doi.org/10.1007/978-3-319-94463-010.1007/978-3-319-94463-0
  15. [15] Z. Karevan and J. A. K. Suykens, “Spatio-temporal stacked LSTM for temperature prediction in weather forecasting,” ArXiv, no. 1811.06341, Nov. 2018.
  16. [16] D. Neil, M. Pfeiffer, and S.-C. Liu, “Phased LSTM: Accelerating recurrent network training for long or event-based sequences,” ArXiv, no. 1610.09513, Oct. 2016.
  17. [17] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise timing with LSTM recurrent networks,” Journal of Machine Learning Research, vol. 3, pp. 115–143, Aug. 2002.
  18. [18] A. Paszke et al., “PyTorch: An imperative style, high-performance deep learning library,” arXiv, no. 1912.01703, Dec. 2019.
  19. [19] J. Y. Hong, S. H. Park, and J. G. Baek, “Segmented dynamic time warping based signal pattern classification,” in 22nd IEEE International Conference on Computational Science and Engineering and 17th IEEE International Conference on Embedded and Ubiquitous Computing, CSE/EUC 2019, New York, NY, USA, Aug. 2019, pp. 263–265. https://doi.org/10.1109/CSE/EUC.2019.0005810.1109/CSE/EUC.2019.00058
DOI: https://doi.org/10.2478/acss-2021-0018 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 150 - 157
Published on: Dec 30, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2021 Anete Vagale, Luīze Šteina, Valters Vēciņš, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.