References
- [1] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fogcomputing for the internet of things: A survey,” ACM Transactions on Internet Technology (TOIT), vol. 19, no. 2, pp. 1–41, Apr. 2019. https://doi.org/10.1145/330144310.1145/3301443
- [2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet of things,” in Proceedings of the first edition of the MCC workshop on Mobile cloud computing, Aug. 2012, pp. 13–16. https://doi.org/10.1145/2342509.234251310.1145/2342509.2342513
- [3] R. Mahmud, R. Kotagiri, R.Buyya. “Fog computing: A taxonomy, survey and future directions”. in Internet of everything, Springer; 2018. p. 103–130.10.1007/978-981-10-5861-5_5
- [4] M. Aazam, M. St-Hilaire, CH. Lung, I. Lambadaris, EN Huh.” IoT resource estimation challenges and modeling in fog”, in Fog Computing in the Internet of Things. Springer; 2018. p. 17–31.10.1007/978-3-319-57639-8_2
- [5] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos, “A comprehensive survey on fog computing: Stateof-theart and research challenges,” IEEE communications surveys & tutorials, vol. 20, no. 1, pp. 416–464, 2017. https://doi.org/10.1109/COMST.2017.277115310.1109/COMST.2017.2771153
- [6] C. C. Byers, “Architectural imperatives for fog computing: Use cases, requirements, and architectural techniques for fog-enabled IoT networks,” IEEE Communications Magazine, vol. 55, no. 8, pp. 14–20, Aug. 2017. https://doi.org/10.1109/MCOM.2017.160088510.1109/MCOM.2017.1600885
- [7] R. K. Naha, S. Garg, and A. Chan, “Fog computing architecture: Survey and challenges,” arXiv, no.1811.09047, 2018.
- [8] M. Aazam and E.-N. Huh, “Fog computing micro datacenter based dynamic resource estimation and pricing model for IoT,” in 2015 IEEE 29th International Conference on Advanced Information Networking and Applications. Gwangju, Korea (South), Mar. 2015, pp. 687–694. https://doi.org/10.1109/AINA.2015.25410.1109/AINA.2015.254
- [9] H. Wang, T. Liu, B. Kim, C.-W. Lin, S. Shiraishi, J. Xie, and Z. Han, “Architectural design alternatives based on cloud/edge/fog computing for connected vehicles,” IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2349–2377, Sep. 2020. https://doi.org/10.1109/COMST.2020.302085410.1109/COMST.2020.3020854
- [10] A. A. Alli and M. M. Alam, “The fog cloud of things: A survey on concepts, architecture, standards, tools, and applications,” Internet of Things, vol. 9, Art no. 100177, Mar. 2020. https://doi.org/10.1016/j.iot.2020.10017710.1016/j.iot.2020.100177
- [11] H. F. Atlam, R. J. Walters, and G. B. Wills, “Fog computing and the internet of things: A review,” Big Data and Cognitive Computing, vol. 2, no. 2, p. 10, 2018. https://doi.org/10.3390/bdcc202001010.3390/bdcc2020010
- [12] H. Wu, “Multi-objective decision-making for mobile cloud offloading: A survey,” IEEE Access, vol. 6, pp. 3962–3976, Jan. 2018. https://doi.org/10.1109/ACCESS.2018.279150410.1109/ACCESS.2018.2791504
- [13] X. Meng, W. Wang, and Z. Zhang, “Delay -constrained hybrid computation offloading with cloud and fog computing,” IEEE Access, vol. 5, pp. 21355–21367, Sep. 2017. https://doi.org/10.1109/ACCESS.2017.274814010.1109/ACCESS.2017.2748140
- [14] D. Rahbari and M. Nickray, “Task offloading in mobile fog computing by classification and regression tree,” Peer-to-Peer Networking and Applications, vol. 13, pp. 1–19, Feb. 2019. https://doi.org/10.1007/s12083-019-00721-710.1007/s12083-019-00721-7
- [15] C. Fricker, F. Guillemin, P. Robert, and G. Thompson, “Analysis of an offloading scheme for data centers in the framework of fog computing,” ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS), vol. 1, no. 4, Art no. 16, pp. 1–18, Sep. 2016. https://doi.org/10.1145/295004710.1145/2950047
- [16] F. Chiti, R. Fantacci, and B. Picano, “A matching game for tasks offloading in integrated edge-fog computing systems,” Transactions on Emerging Telecommunications Technologies, vol. 31, no. 2, p. Art no. e3718, Aug. 2020. https://doi.org/10.1002/ett.371810.1002/ett.3718
- [17] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjective optimization for computation offloading in fog computing,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 283–294, Dec. 2017. https://doi.org/10.1109/JIOT.2017.278023610.1109/JIOT.2017.2780236
- [18] M. A. Hassan, M. Xiao, Q. Wei, and S. Chen, “Help your mobile applications with fog computing,” in 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking – Workshop (SECON Workshops). Seattle, WA, USA, June 2015, pp. 1–6. https://doi.org/10.1109/SECONW.2015.732814610.1109/SECONW.2015.7328146
- [19] H. Shah-Mansouri and V. W. Wong, “Hierarchical fog-cloud computing for IoT systems: A computation offloading game,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 3246–3257, Aug. 2018. https://doi.org/10.1109/JIOT.2018.283802210.1109/JIOT.2018.2838022
- [20] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guarantee,” IEEE Transactions on Communications, vol. 66, no. 4, pp. 1594–1608, 2018. https://doi.org/10.1109/TCOMM.2017.278770010.1109/TCOMM.2017.2787700
- [21] F. Jazayeri, A. Shahidinejad, and M. Ghobaei-Arani, “A latency-aware and energy-efficient computation offloading in mobile fog computing: A hidden Markov model-based approach,” The Journal of Supercomputing, vol. 77, no. 5, pp. 4887–4916, 2021. https://doi.org/10.1007/s11227-020-03476-810.1007/s11227-020-03476-8
- [22] F. Jazayeri, A. Shahidinejad, and M. Ghobaei-Arani, “Autonomous computation offloading and auto-scaling the in the mobile fog computing: a deep reinforcement learning-based approach,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, pp. 8265–8284, 2021. https://doi.org/10.1007/s12652-020-02561-310.1007/s12652-020-02561-3
- [23] G. Baranwal and D. P. Vidyarthi, “Computation offloading model for smart factory,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, pp. 8305–8318, 2021. https://doi.org/10.1007/s12652-020-02564-010.1007/s12652-020-02564-0
- [24] X. Li, Z. Zang, F. Shen, and Y. Sun, “Task offloading scheme based on improved contract net protocol and beetle antennae search algorithm in fog computing networks,” Mobile Networks and Applications, vol. 25, no. 6, pp. 2517–2526, 2020. https://doi.org/10.1007/s11036-020-01593-510.1007/s11036-020-01593-5
- [25] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner, “Optimized IoT service placement in the fog,” Service Oriented Computing and Applications, vol. 11, no. 4, pp. 427–443, Oct. 2017. https://doi.org/10.1007/s11761-017-0219-810.1007/s11761-017-0219-8
- [26] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Quality of experience (QoE)-aware placement of applications in fog computing environments,” Journal of Parallel and Distributed Computing, vol. 132, pp. 190–203, Oct. 2019. https://doi.org/10.1016/j.jpdc.2018.03.00410.1016/j.jpdc.2018.03.004
- [27] Y. Xia, X. Etchevers, L. Letondeur, T. Coupaye, and F. Desprez, “Combining hardware nodes and software components ordering-based heuristics for optimizing the placement of distributed IoT applications in the fog,” in Proceedings of the 33rd Annual ACM Symposium on Applied Computing, Apr. 2018, pp. 751–760. https://doi.org/10.1145/3167132.316721510.1145/3167132.3167215
- [28] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-aware application module management for fog computing environments,” ACM Transactions on Internet Technology (TOIT), vol. 19, no. 1, Art no. 9, pp. 1–21, Mar. 2018. https://doi.org/10.1145/318659210.1145/3186592
- [29] C. Guerrero, I. Lera, and C. Juiz, “A lightweight decentralized service placement policy for performance optimization in fog computing,” Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 6, pp. 2435–2452, 2019. https://doi.org/10.1007/s12652-018-0914-010.1007/s12652-018-0914-0
- [30] M. Taneja and A. Davy, “Resource aware placement of IoT application modules in fog-cloud computing paradigm,” in 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Lisbon, Portugal, Vfy 2017, pp. 1222–1228. https://doi.org/10.23919/INM.2017.798746410.23919/INM.2017.7987464
- [31] C. Mouradian, S. Kianpisheh, M. Abu-Lebdeh, F. Ebrahimnezhad, N. T. Jahromi, and R. H. Glitho, “Application component placement in NFV- based hybrid cloud/fog systems with mobile fog nodes,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 5, pp. 1130–1143, May 2019. https://doi.org/10.1109/JSAC.2019.290679010.1109/JSAC.2019.2906790
- [32] S. Venticinque and A. Amato, “A methodology for deployment of IoT application in fog,” Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 5, pp. 1955–1976, 2019. https://doi.org/10.1007/s12652-018-0785-410.1007/s12652-018-0785-4
- [33] M. A. Al-Tarawneh, “Bi-objective optimization of application placement in fog computing environments,” Journal of Ambient Intelligence and Humanized Computing, pp. 1–24, Feb. 2021. https://doi.org/10.1007/s12652-021-02910-w10.1007/s12652-021-02910-w
- [34] H. Nashaat, E. Ahmed, and R. Rizk, “IoT application placement algorithm based on multi-dimensional QoE prioritization model in fog computing environment,” IEEE Access, vol. 8, pp. 111 253–111 264, June 2020. https://doi.org/10.1109/ACCESS.2020.300324910.1109/ACCESS.2020.3003249
- [35] F. Faticanti, F. De Pellegrini, D. Siracusa, D. Santoro, and S. Cretti, “Throughput-aware partitioning and placement of applications in fog computing,” IEEE Transactions on Network and Service Management, vol. 17, no. 4, pp. 2436–2450, Dec. 2020. https://doi.org/10.1109/TNSM.2020.302301110.1109/TNSM.2020.3023011
- [36] T. Djemai, P. Stolf, T. Monteil, and J.-M. Pierson, “Mobility support for energy and QoS aware IoT services placement in the fog,” in 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, Sep. 2020, pp. 1–7. https://doi.org/10.23919/SoftCOM50211.2020.923823610.23919/SoftCOM50211.2020.9238236
- [37] G. Baranwal, R. Yadav, and D. P. Vidyarthi, “QoE aware IoT application placement in fog computing using modified-TOPSIS,” Mobile Networks and Applications, vol. 25, no. 5, pp. 1816–1832, Oct. 2020. https://doi.org/10.1007/s11036-020-01563-x10.1007/s11036-020-01563-x
- [38] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, “Computing resource allocation in three-tier IoT fog networks: A joint optimization approach combining stackelberg game and matching,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1204–1215, Oct. 2017. https://doi.org/10.1109/JIOT.2017.268892510.1109/JIOT.2017.2688925
- [39] Y. Jiao, P. Wang, D. Niyato, and K. Suankaewmanee, “Auction mechanisms in cloud/fog computing resource allocation for public blockchain networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 9, pp. 1975–1989, Sep. 2019. https://doi.org/10.1109/TPDS.2019.290023810.1109/TPDS.2019.2900238
- [40] Y. Gu, Z. Chang, M. Pan, L. Song, and Z. Han, “Joint radio and computational resource allocation in IoT fog computing,” IEEE Transactions on Vehicular Technology, vol. 67, no. 8, pp. 7475–7484, Aug. 2018. https://doi.org/10.1109/TVT.2018.282083810.1109/TVT.2018.2820838
- [41] B. Jia, H. Hu, Y. Zeng, T. Xu, and Y. Yang, “Double-matching resource allocation strategy in fog computing networks based on cost efficiency,” Journal of Communications and Networks, vol. 20, no. 3, pp. 237–246, June 2018. https://doi.org/10.1109/JCN.2018.00003610.1109/JCN.2018.000036
- [42] S. F. Abedin, M. G. R. Alam, S. A. Kazmi, N. H. Tran, D. Niyato, and C. S. Hong, “Resource allocation for ultra-reliable and enhanced mobile broadband IoT applications in fog network,” IEEE Transactions on Communications, vol. 67, no. 1, pp. 489–502, Jan. 2018. https://doi.org/10.1109/TCOMM.2018.287088810.1109/TCOMM.2018.2870888
- [43] L. Yin, J. Luo, and H. Luo, “Tasks scheduling and resource allocation in fog computing based on containers for smart manufacturing,” IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4712–4721, Oct. 2018. https://doi.org/10.1109/TII.2018.285124110.1109/TII.2018.2851241
- [44] C. T. Do, N. H. Tran, C. Pham, M. G. R. Alam, J. H. Son, and C. S. Hong, “A proximal algorithm for joint resource allocation and minimizing carbon footprint in geo-distributed fog computing,” in 2015International Conference on Information Networking (ICOIN), Cambodia, Mar. 2015, pp. 324–329. https://doi.org/10.1109/ICOIN.2015.705790510.1109/ICOIN.2015.7057905
- [45] L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu, “Resource allocation strategy in fog computing based on priced timed petri nets,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1216–1228, Oct. 2017. https://doi.org/10.1109/JIOT.2017.270981410.1109/JIOT.2017.2709814
- [46] N. C. Luong, Y. Jiao, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “A machine-learning-based auction for resource trading in fog computing,” IEEE Communications Magazine, vol. 58, no. 3, pp. 82–88, Mar. 2020. https://doi.org/10.1109/MCOM.001.190013610.1109/MCOM.001.1900136
- [47] X. Peng, K. Ota, and M. Dong, “Multiattribute-based double auction toward resource allocation in vehicular fog computing,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3094–3103, Apr. 2020. https://doi.org/10.1109/JIOT.2020.296500910.1109/JIOT.2020.2965009
- [48] B. Cao, Z. Sun, J. Zhang, and Y. Gu, “Resource allocation in 5G IoV architecture based on SDN and fog-cloud computing,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 6, pp. 3832-3840, June 2021. https://doi.org/10.1109/TITS.2020.304884410.1109/TITS.2020.3048844
- [49] F. M. Talaat, M. S. Saraya, A. I. Saleh, H. A. Ali, and S. H. Ali, “A load balancing and optimization strategy (LBOS) using reinforcement learning in fog computing environment,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, pp. 4951–4966, Nov. 2020. https://doi.org/10.1007/s12652-020-01768-810.1007/s12652-020-01768-8
- [50] R. K. Naha, S. Garg, A. Chan, and S. K. Battula, “Deadline-based dynamic resource allocation and provisioning algorithms in Fog-Cloud environment,” Future Generation Computer Systems, vol. 104, pp. 131–141, Mar. 2020. https://doi.org/10.1016/j.future.2019.10.01810.1016/j.future.2019.10.018
- [51] D. Tychalas and H. Karatza, “A scheduling algorithm for a fog computing system with bag-of-tasks jobs: Simulation and performance evaluation,” Simulation Modelling Practice and Theory, vol. 98, Art no. 101982, Jan. 2020. https://doi.org/10.1016/j.simpat.2019.10198210.1016/j.simpat.2019.101982
- [52] T. Aladwani, “Scheduling IoT healthcare tasks in fog computing based on their importance,” Procedia Computer Science, vol. 163, pp. 560–569, 2019. https://doi.org/10.1016/j.procs.2019.12.13810.1016/j.procs.2019.12.138
- [53] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization of task scheduling and image placement in fog computing supported software defined embedded system,” IEEE Transactions on Computers, vol. 65, no. 12, pp. 3702–3712, Dec. 2016. https://doi.org/10.1109/TC.2016.253601910.1109/TC.2016.2536019
- [54] S. Bitam, S. Zeadally, and A. Mellouk, “Fog computing job scheduling optimization based on bees swarm,” Enterprise Information Systems, vol. 12, no. 4, pp. 373–397, 2018. https://doi.org/10.1080/17517575.2017.130457910.1080/17517575.2017.1304579
- [55] Z. Liu, X. Yang, Y. Yang, K. Wang, and G. Mao, “DATS: Dispersive stable task scheduling in heterogeneous fog networks,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3423–3436, Apr. 2018. https://doi.org/10.1109/JIOT.2018.288472010.1109/JIOT.2018.2884720
- [56] X.-Q. Pham and E.-N. Huh, “Towards task scheduling in a cloud-fog computing system,” in 2016 18th Asia-Pacific network operations and management symposium (APNOMS), Kanazawa, Japan, Nov. 2016, pp. 1–4. https://doi.org/10.1109/APNOMS.2016.773724010.1109/APNOMS.2016.7737240
- [57] T. Choudhari, M. Moh, and T.-S. Moh, “Prioritized task scheduling in fog computing,” in Proceedings of the ACMSE’18 conference, Art no. 22, Mar. 2018, pp. 1–8. https://doi.org/10.1145/3190645.319069910.1145/3190645.3190699
- [58] S. Zhao, Y. Yang, Z. Shao, X. Yang, H. Qian, and C.-X. Wang, “FEMOS: Fog-enabled multitier operations scheduling in dynamic wireless networks,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1169–1183, Apr. 2018. https://doi.org/10.1109/JIOT.2018.280828010.1109/JIOT.2018.2808280
- [59] B. Jamil, M. Shojafar, I. Ahmed, A. Ullah, K. Munir, and H. Ijaz, “A job scheduling algorithm for delay and performance optimization in fog computing,” Concurrency and Computation: Practice and Experience, vol. 32, no. 7, Art no. e5581, Apr. 2020. https://doi.org/10.1002/cpe.558110.1002/cpe.5581
- [60] S. Wang, T. Zhao, and S. Pang, “Task scheduling algorithm based on improved firework algorithm in fog computing,” IEEE Access, vol. 8, pp. 32 385–32 394, Feb. 2020. https://doi.org/10.1109/ACCESS.2020.297375810.1109/ACCESS.2020.2973758
- [61] P. Hosseinioun, M. Kheirabadi, S. R. K. Tabbakh, and R. Ghaemi, “A new energy-aware tasks scheduling approach in fog computing using hybrid meta-heuristic algorithm,” Journal of Parallel and Distributed Computing, vol. 143, pp. 88–96, Sep. 2020. https://doi.org/10.1016/j.jpdc.2020.04.00810.1016/j.jpdc.2020.04.008
- [62] S. Ghanavati, J. Abawajy, and D. Izadi, “Automata-based dynamic fault tolerant task scheduling approach in fog computing,” IEEE Transactions on Emerging Topics in Computing, Oct. 2020. https://doi.org/10.1109/TETC.2020.303367210.1109/TETC.2020.3033672
- [63] M. I. Naas, P. R. Parvedy, J. Boukhobza, and L. Lemarchand, “iFogStor: an IoT data placement strategy for fog infrastructure,” in 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), Madrid, Spain, Aug. 2017, pp. 97–104. https://doi.org/10.1109/ICFEC.2017.1510.1109/ICFEC.2017.15
- [64] M. I. Naas, L. Lemarchand, J. Boukhobza, and P. Raipin, “A graph partitioning-based heuristic for runtime IoT data placement strategies in a fog infrastructure,” in Proceedings of the 33rd Annual ACM Symposium on Applied Computing, Apr. 2018, pp. 767–774. https://doi.org/10.1145/3167132.316721710.1145/3167132.3167217
- [65] T. Huang, W. Lin, Y. Li, L. He, and S. Peng, “A latency-aware multiple data replicas placement strategy for fog computing,” Journal of Signal Processing Systems, vol. 91, no. 10, pp. 1191–1204, Feb. 2019. https://doi.org/10.1007/s11265-019-1444-510.1007/s11265-019-1444-5
- [66] N. Wang and J. Wu, “Latency minimization through optimal data placement in fog networks,” Fog Computing: Theory and Practice, pp. 269–291, Apr. 2020. https://doi.org/10.1002/9781119551713.ch1010.1002/9781119551713.ch10
- [67] J. Wang, “When data cleaning meets crowdsourcing,” AMPlab, UC, Berkeley, 2015.
- [68] J. Ni, K. Zhang, Y. Yu, X. Lin, and X. S. Shen, “Providing task allocation and secure deduplication for mobile crowdsensing via fog computing,” IEEE Transactions on Dependable and Secure Computing, vol. 17, no. 3, pp. 581–594, 2018. https://doi.org/10.1109/TDSC.2018.279143210.1109/TDSC.2018.2791432
- [69] J. Yan, X. Wang, Q. Gan, S. Li, and D. Huang, “Secure and efficient big data deduplication in fog computing,” Soft Computing, vol. 24, pp. 5671–5682, Jul. 2019. https://doi.org/10.1007/s00500-019-04215-910.1007/s00500-019-04215-9
- [70] P. Shynu, R. Nadesh, V. G. Menon, P. Venu, M. Abbasi, and M. R. Khosravi, “A secure data deduplication system for integrated cloud-edge networks,” Journal of Cloud Computing, vol. 9, Art no. 61, pp. 1–12, Nov. 2020. https://doi.org/10.1186/s13677-020-00214-610.1186/s13677-020-00214-6
- [71] R. Vales, J. Moura, and R. Marinheiro, “Energy-aware and adaptive fog storage mechanism with data replication ruled by spatio-temporal content popularity,” Journal of Network and Computer Applications, vol. 135, pp. 84–96, June 2019. https://doi.org/10.1016/j.jnca.2019.03.00110.1016/j.jnca.2019.03.001
- [72] A. Berkennou, G. Belalem, and S. Limam, “A replication and migration strategy on the hierarchical architecture in the fog computing environment,” Multiagent and Grid Systems, vol. 16, no. 3, pp. 291–307, Oct. 2020. https://doi.org/10.3233/MGS-20033310.3233/MGS-200333
- [73] I. Al Ridhawi, N. Mostafa, Y. Kotb, M. Aloqaily, and I. Abualhaol, “Data caching and selection in 5G networks using F2F communication,” in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, Oct. 2017, pp. 1–6. https://doi.org/10.1109/PIMRC.2017.829268110.1109/PIMRC.2017.8292681
- [74] W. Bai, H. Feng, Y. Wang, and X. Han, “Research on data cache algorithm of fog computing node,” in 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, Nov. 2020, pp. 197–200. https://doi.org/10.1109/ICSESS49938.2020.923767010.1109/ICSESS49938.2020.9237670
- [75] Y. Fu, X. Qiu, and J. Wang, “F2MC: Enhancing data storage services with fog-toMultiCloud hybrid computing,” in 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC), London, UK, Oct. 2019, pp. 1–6. https://doi.org/10.1109/IPCCC47392.2019.895874810.1109/IPCCC47392.2019.8958748
- [76] T. Yu, X. Wang, and A. Shami, “A novel fog computing enabled temporal data reduction scheme in IoT systems,” in GLOBECOM 2017-2017 IEEE Global Communications Conference, Singapore, Dec. 2017, pp. 1–5. https://doi.org/10.1109/GLOCOM.2017.825394110.1109/GLOCOM.2017.8253941
- [77] A. Gómez-Cárdenas, X. Masip-Bruin, E. Marín-Tordera, S. Kahvazadeh, and J. Garcia, “A hash-based naming strategy for the fog-to-cloud computing paradigm,” in European Conference on Parallel Processing Workshops. Lecture Notes in Computer Science. vol 10659, Springer, Cham, pp. 316–324, 2017. https://doi.org/10.1007/978-3-319-75178-8_2610.1007/978-3-319-75178-8_26
- [78] D. Guibert, J. Wu, S. He, M. Wang, and J. Li, “CC-fog: Toward content-centric fog networks for E-health,” in 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), Dalian, China, Oct. 2017, pp. 1–5. https://doi.org/10.1109/HealthCom.2017.821083010.1109/HealthCom.2017.8210830
- [79] A. J. Kadhim and S. A. H. Seno, “Energy-efficient multicast routing protocol based on SDN and fog computing for vehicular networks,” Ad Hoc Networks, vol. 84, pp. 68–81, Mar. 2019. https://doi.org/10.1016/j.adhoc.2018.09.01810.1016/j.adhoc.2018.09.018
- [80] A. P. Abidoye and B. Kabaso, “Energy-efficient hierarchical routing in wireless sensor networks based on fog computing,” EURASIP Journal on Wireless Communications and Networking, Art no. 8(2021), pp. 1–26, Jan. 2021. https://doi.org/10.1186/s13638-020-01835-w10.1186/s13638-020-01835-w
- [81] N. Noorani and S. A. H. Seno, “SDN and fog computing-based switchable routing using path stability estimation for vehicular ad hoc networks,” Peer-to-Peer Networking and Applications, vol. 13, pp. 948–964, 2020. https://doi.org/10.1007/s12083-019-00859-410.1007/s12083-019-00859-4
- [82] T. Saito, S. Nakamura, T. Enokido, and M. Takizawa, “Epidemic and topic-based data transmission protocol in a mobile fog computing model,” in International Conference on Broadband and Wireless Computing, Communication and Applications. Springer, Oct. 2020, pp. 34–43. https://doi.org/10.1007/978-3-030-61108-8_410.1007/978-3-030-61108-8_4
- [83] P. Hu, H. Ning, T. Qiu, H. Song, Y. Wang, and X. Yao, “Security and privacy preservation scheme of face identification and resolution framework using fog computing in internet of things,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1143–1155, Oct. 2017. https://doi.org/10.1109/JIOT.2017.265978310.1109/JIOT.2017.2659783
- [84] M. Wazid, A. K. Das, N. Kumar, and A. V. Vasilakos, “Design of secure key management and user authentication scheme for fog computing services,” Future Generation Computer Systems, vol. 91, pp. 475–492, Feb. 2019. https://doi.org/10.1016/j.future.2018.09.01710.1016/j.future.2018.09.017
- [85] Z. Ali, S. A. Chaudhry, K. Mahmood, S. Garg, Z. Lv, and Y. B. Zikria, “A clogging resistant secure authentication scheme for fog computing services,” Computer Networks, vol. 185, Art no. 107731, Feb. 2021. https://doi.org/10.1016/j.comnet.2020.10773110.1016/j.comnet.2020.107731
- [86] R. Lu, K. Heung, A. Habibi Lashkari, and A. Ghorbani, “A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT,” IEEE Access, vol. 5, pp. 3302–3312, Mar. 2017. https://doi.org/10.1109/ACCESS.2017.267752010.1109/ACCESS.2017.2677520
- [87] C. Zuo, J. Shao, G. Wei, M. Xie, and M. Ji, “CCA-secure ABE with outsourced decryption for fog computing,” Future Generation Computer Systems, vol. 78, no. 2, pp. 730–738, Jan. 2018. https://doi.org/10.1016/j.future.2016.10.02810.1016/j.future.2016.10.028
- [88] Z. Guan, Y. Zhang, L. Wu, J. Wu, J. Li, Y. Ma, and J. Hu, “APPA: An anonymous and privacy preserving data aggregation scheme for fogenhanced IoT,” Journal of Network and Computer Applications, vol. 125, pp. 82–92, Jan. 2019. https://doi.org/10.1016/j.jnca.2018.09.01910.1016/j.jnca.2018.09.019
- [89] F. Wang, J. Wang, and W. Yang, “Efficient incremental authentication for the updated data in fog computing,” Future Generation Computer Systems, vol. 114, pp. 130–137, Jan. 2021. https://doi.org/10.1016/j.future.2020.07.03910.1016/j.future.2020.07.039
- [90] H. Noura, O. Salman, A. Chehab, and R. Couturier, “Preserving data security in distributed fog computing,” Ad Hoc Networks, vol. 94, Art no. 101937, Nov. 2019. https://doi.org/10.1016/j.adhoc.2019.10193710.1016/j.adhoc.2019.101937
- [91] M. Al-Khafajiy, T. Baker, M. Asim, Z. Guo, R. Ranjan, A. Longo, D. Puthal, and M. Taylor, “COMITMENT: A fog computing trust management approach,” Journal of Parallel and Distributed Computing, vol. 137, pp. 1–16, Mar. 2020. https://doi.org/10.1016/j.jpdc.2019.10.00610.1016/j.jpdc.2019.10.006
- [92] J. Xu, H. Liu, W. Shao, and K. Deng, “Quantitative 3-D shape features based tumor identification in the fog computing architecture,” Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 8, pp. 2987–2997, Feb. 2019. https://doi.org/10.1007/s12652-018-0695-510.1007/s12652-018-0695-5
- [93] J. Wan, B. Chen, S. Wang, M. Xia, D. Li, and C. Liu, “Fog computing for energy-aware load balancing and scheduling in smart factory,” IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4548–4556, Oct. 2018. https://doi.org/10.1109/TII.2018.281893210.1109/TII.2018.2818932
- [94] V. Vijayakumar, D. Malathi, V. Subramaniyaswamy, P. Saravanan, and R. Logesh, “Fog computing-based intelligent healthcare system for the detection and prevention of mosquito-borne diseases,” Computers in Human Behavior, vol. 100, pp. 275–285, Nov. 2019. https://doi.org/10.1016/j.chb.2018.12.00910.1016/j.chb.2018.12.009
- [95] R. Siddharth and G. Aghila, “A light weight background subtraction algorithm for motion detection in fog computing,” IEEE Letters of the Computer Society, vol. 3, no. 1, pp. 17–20, 2020. https://doi.org/10.1109/LOCS.2020.297470310.1109/LOCS.2020.2974703
- [96] J. Xu, K. Ota, and M. Dong, “Fast deployment of emergency fog service for disaster response,” IEEE Network, vol. 34, no. 6, pp. 100–105, 2020. https://doi.org/10.1109/MNET.001.190067110.1109/MNET.001.1900671
- [97] A. Ali, Y. Zhu, and M. Zakarya, “A data aggregation based approach to exploit dynamic spatio-temporal correlations for citywide crowd flows prediction in fog computing,” Multimedia Tools and Applications, vol. 80, pp. 31401–31433, Jan. 2021. https://doi.org/10.1007/s11042-020-10486-410.1007/s11042-020-10486-4
- [98] F. A. Salaht, F. Desprez, and A. Lebre, “An overview of service placement problem in fog and edge computing,” ACM Computing Surveys (CSUR), vol. 53, no. 3, Art no. 65, pp. 1–35, June 2020. https://doi.org/10.1145/339119610.1145/3391196
- [99] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications,” in 2015 Third IEEE workshop on hot topics in web systems and technologies (HotWeb), Washington, DC, USA, Nov. 2015, pp. 73–78. https://doi.org/10.1109/HotWeb.2015.2210.1109/HotWeb.2015.22