Have a personal or library account? Click to login
A Cognitive Rail Track Breakage Detection System Using Artificial Neural Network Cover

A Cognitive Rail Track Breakage Detection System Using Artificial Neural Network

Open Access
|Dec 2021

References

  1. [1] W. L. Bayissa and M. Dhanasekar, “High-Speed Detection of Broken Rails, Rail Cracks, and Surface Faults,” CRC for Rail Innovation, Brisbane, Australia, 2011.
  2. [2] C. K. Viswakarma, A. Jain, and L. S. Nayak, “An Intelligent Design to Detect Broken Track for Indian Railway,” Excel India Publishers, New Delhi, 2014.
  3. [3] N. Bhargav, A. Gupta, M. Khirwar, S. Yadav, and V. Sahu, “Automatic Fault Detection of Railway Track System Based on PLC,” International Journal of Recent Research Aspects, vol. 3, no. 1, pp. 91–94, Mar. 2016.
  4. [4] B. R. Krishna, D. Seshendra, G. Raja, T. Sudharshan, and K. Srikanth, “Railway Track Fault Detection System by Using IR Sensors and Bluetooth Technology,” Asian Journal of Applied Science and Technology, vol. 1, no. 6, pp. 82–84, Jul. 2017.
  5. [5] A. Lakra, V. V. Kumar, V. Dudhani, H. Kabra, and K. M. Vanitha, “Automatic Crack Detection System in Railway Tracks,” Research and Applications: Embedded System, vol. 1, no. 2, 3, pp. 24–27, 2018.
  6. [6] X. Liu, M. R. Saat, and C. P. L. Barkan, “Integrated Risk Reduction Framework to Improve Railway Hazardous Materials Transportation Safety,” Journal of Hazardous Materials, vol. 260, pp. 131–140, Sep. 2013. https://doi.org/10.1016/j.jhazmat.2013.04.05210.1016/j.jhazmat.2013.04.05223747471
  7. [7] K. Schwartz, “Development of an Acoustic Broken Rail Detection System,” Final Report for High-Speed Rail IDEA Project 42, 2004.
  8. [8] Z. Jin, Q. Han, K. Zhang, and Y. Zhang, “An Intelligent Fault Diagnosis Method of Rolling Bearings Based on Welch Power Spectrum Transformation with Radial Basis Function Neural Network,” Journal of Vibration and Control, vol. 26, no. 9–10, pp. 629–642, May 2020. https://doi.org/10.1177%2F107754631988985910.1177/1077546319889859
  9. [9] Y. Min, B. Xiao, J. Dang, B. Yue, and T. Cheng, “Real-Time Detection System for Rail Surface Defects Based on Machine Vision,” EURASIP Journal on Image and Video Processing, vol. 2018, article number 3, Jan. 2018. https://doi.org/10.1186/s13640-017-0241-y10.1186/s13640-017-0241-y
  10. [10] F. Espinosa, A. Hernandez, M. Mazo, J. Urena, M. C. Perez, J. A. Jimenez, I. Fernandez, J. C. Garcia, and J. J. Garcia, “Detector of Electrical Discontinuity of Rails in Double-Track Railway Lines: Electronic System and Measurement Methodology,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 4, pp. 743–755, Apr. 2017. https://doi.org/10.1109/TITS.2016.258653810.1109/TITS.2016.2586538
  11. [11] J. Gan, Q. Li, J. Wang, and H. Yu, “A Hierarchical Extractor-Based Visual Rail Surface Inspection System,” IEEE Sensors Journal, vol. 17, no. 23, pp. 7935–7944, Dec. 2017. https://doi.org/10.1109/JSEN.2017.276185810.1109/JSEN.2017.2761858
  12. [12] C. Tastimur, H. Yetis, M. Karaköse, and E. Akın, “Rail Defect Detection and Classification with Real-Time Image Processing Technique,” International Journal of Computer Science and Software Engineering, vol. 5, no. 12, pp. 283–290, Dec. 2016.
  13. [13] D. Nagdevte, M. Zakir, A. Muley, and A. H. Shelar, “Detection of Crack in Rail Road Using Ultrasonic and PIR Sensor,” International Research Journal of Engineering and Technology, vol. 4, no. 1, pp. 1762–1764, Jan. 2017.
  14. [14] S. Alahakoon, Y. Q. Sun, M. Spiryagin, and C. Cole, “Rail Flaw Detection Technologies for Safer, Reliable Transportation: A Review,” Journal of Dynamic Systems, Measurement, and Control, vol. 140, no. 2, article number 020801, Feb. 2018. https://doi.org/10.1115/1.403729510.1115/1.4037295
  15. [15] F. Espinosa, Á. Hernández, M. Mazo, J. Ureña, M. C. Pérez, J. A. Jiménez, I. Fernández, J. C. García, and J. J. García, “Detector of Electrical Discontinuity in Double-Track Railway Lines: Electronic System and Measurement Methodology,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 4, pp. 743–755, Apr. 2017. https://doi.org/10.1109/TITS.2016.258653810.1109/TITS.2016.2586538
  16. [16] C. Taştimur, M. Karaköse, and E. Akın, “A Vision-Based Condition Monitoring Approach for Rail Switch and Level Crossing Using Hierarchical SVM in Railways,” International Journal of Applied Mathematics, Electronics and Computers, vol. 4, pp. 319–325, Dec. 2016. https://doi.org/10.18100/ijamec.27063410.18100/ijamec.270634
  17. [17] L. Chen, Y. Liang, and K. Wang, “Inspection of Rail Surface Defect Based on Machine Vision System,” in 2nd International Conference on Information Science and Engineering, Dec. 2010, pp. 3793–3796. https://doi.org/10.1109/ICISE.2010.569134810.1109/ICISE.2010.5691348
  18. [18] V. R. Vijaykumar and S. Sangamithirai, “Rail Defect Detection Using Gabor Filters with Texture Analysis,” in 3rd International Conference on Signal Processing, Communication and Networking, Mar. 2015. https://doi.org/10.1109/ICSCN.2015.721983810.1109/ICSCN.2015.7219838
  19. [19] H. Trinh, N. Haas, Y. Li, C. Otto, and S. Pankanti, “Enhanced Rail Component Detection and Consolidation for Rail Track Inspection,” in 2012 IEEE Workshop on the Applications of Computer Vision, Jan. 2012, pp. 289–295. https://doi.org/10.1109/WACV.2012.616302110.1109/WACV.2012.6163021
  20. [20] P. Duda, M. Jaworski, A. Cader, and L. Wang, “On Training Deep Neural Networks Using a Streaming Approach,” Journal of Artificial Intelligence and Soft Computing Research, vol. 10, no. 1, pp. 15–26, Jan. 2020. https://doi.org/10.2478/jaiscr-2020-000210.2478/jaiscr-2020-0002
  21. [21] M. H. P. da Cruz, P. T. M. Saito, A. R. Paschoal, and P. H. Bugatti, “Classification of Transposable Elements by Convolutional Neural Networks,” in Artificial Intelligence and Soft Computing. ICAISC 2019, L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz, R. Tadeusiewicz, J. Zurada J., Eds. Lecture Notes in Computer Science. Springer, Cham, 2019, vol. 11509, pp. 157–168. https://doi.org/10.1007/978-3-030-20915-5_1510.1007/978-3-030-20915-5_15
  22. [22] F. Espinosa, J. J. García, A. Hernández, M. Mazo, J. Ureña, J. A. Jiménez, I. Fernández, C. Pérez, and J. C. García, “Advanced Monitoring of Rail Breakage in Double-Track Railway Lines by Means of PCA Techniques,” Applied Soft Computing, vol. 63, pp. 1–13, Feb. 2018. https://doi.org/10.1016/j.asoc.2017.11.00910.1016/j.asoc.2017.11.009
  23. [23] H. Yuan, H. Chen, S. Liu, J. Lin, and X. Luo, “A Deep Convolutional Neural Network for Detection of Rail Surface Defect,” in 2019 IEEE Vehicle Power and Propulsion Conference, Oct. 2019. https://doi.org/10.1109/VPPC46532.2019.895223610.1109/VPPC46532.2019.8952236
  24. [24] A. K. Singh, A. Swarup, A. Agarwal, and D. Singh, “Vision Based Rail Track Extraction and Monitoring through Drone Imagery,” ICT Express, vol. 5, no. 4, pp. 250–255, Dec. 2019. https://doi.org/10.1016/j.icte.2017.11.01010.1016/j.icte.2017.11.010
  25. [25] L. Shang, Q. Yang, J. Wang, S. Li, and W. Lei, “Detection of Rail Surface Defects Based on CNN Image Recognition and Classification,” in 20th International Conference on Advanced Communication Technology, Mar. 2018, pp. 45–51. https://doi.org/10.23919/ICACT.2018.832364210.23919/ICACT.2018.8323642
  26. [26] E. Resendiz, J. M. Hart, and N. Ahuja, “Automated Visual Inspection of Railroad Tracks,” IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 2, pp. 751–760, Jun. 2013. https://doi.org/10.1109/TITS.2012.223655510.1109/TITS.2012.2236555
  27. [27] A. Malejafarian, E. OBrien, P. Quirke, and C. Bowe, “Railway Track Monitoring Using Train Measurements: An Experimental Case Study,” Applied Sciences, vol. 9, no. 22, article number 4859, Nov. 2019. https://doi.org/10.3390/app922485910.3390/app9224859
  28. [28] M. Pathak, S. Alahakoon, M. Spiryagin, and C. Cole, “Rail Foot Flaw Detection Based on a Laser-Induced Ultrasonic Guided Wave Method,” Measurement, vol. 148, article number 106922, Dec. 2019. https://doi.org/10.1016/j.measurement.2019.10692210.1016/j.measurement.2019.106922
  29. [29] B. Xing, Z. Yu, X. Xu, L. Zhu, and H. Shi, “Research on a Rail Defect Location Method Based on a Single-Mode Extraction Algorithm,” Applied Sciences, vol. 9, no. 6, article number 1107, 2019. https://doi.org/10.3390/app906110710.3390/app9061107
  30. [30] X. Chen, Z. Wang, Z. Zhang, L. Jia, and Y. Qin, “A Semi-Supervised Approach to Bearing Fault Diagnosis under Variable Conditions Towards Imbalanced Unlabeled Data,” Sensors, vol. 18, no. 7, article number 2097, Jul. 2018. https://doi.org/10.3390/s1807209710.3390/s18072097606860829966321
  31. [31] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Medical Image Computing and Computer -Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. Wells, A. Frangi, Eds. Lecture Notes in Computer Science. Springer, Cham, 2015, vol. 9351, pp. 234–241. https://doi.org/10.1007/978-3-319-24574-4_2810.1007/978-3-319-24574-4_28
  32. [32] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv preprint arXiv:1412.6980, 2014. [Online]. Available: https://arxiv.org/abs/1412.6980
DOI: https://doi.org/10.2478/acss-2021-0010 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 80 - 86
Published on: Dec 30, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2021 Olufunke Rebecca Vincent, Yetunde Ebunoluwa Babalola, Adesina Simon Sodiya, Olusola John Adeniran, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.