[4] C. Villasenor, “Chapter 2 – Hyperellipsoidal Neural Network Trained With Extended Kalman Filter for Forecasting of Time Series,” in Artificial Neural Networks for Engineering Applications, A. Y. Alanis, N. Arana-Daniel, C. Lуpez-Franco, Eds. Academic Press, 2019, pp. 9–19. https://doi.org/10.1016/B978-0-12-818247-5.00011-310.1016/B978-0-12-818247-5.00011-3
[6] M. Fakhfekh and A. Jeribi, “Volatility Dynamics of Crypto-Currencies’ Returns: Evidence from Asymmetric and Long Memory GARCH Models,” Research in International Business and Finance, vol. 51, 101075, 2020. https://doi.org/10.1016/j.ribaf.2019.10107510.1016/j.ribaf.2019.101075
[8] E. Ghysels, D. R. Osborn, and P. M. M. Rodrigues, “Chapter 13 – Forecasting Seasonal Time Series,” in Handbook of Economic Forecasting, vol. 1, G. Elliott, C. W. J. Granger, A. Timmermann, Eds. Elsevier, 2006, pp. 659–711. https://doi.org/10.1016/S1574-0706(05)01013-X10.1016/S1574-0706(05)01013-X
[15] A. Stepchenko, J. Chizhov, L. Aleksejeva, and J. Tolujew, “Nonlinear, Non-Stationary and Seasonal Time Series Forecasting Using Different Methods Coupled with Data Preprocessing,” Procedia Computer Science, vol. 104, pp. 578–585, 2017. https://doi.org/10.1016/j.procs.2017.01.17510.1016/j.procs.2017.01.175