Have a personal or library account? Click to login

Real-Time Turkish Sign Language Recognition Using Cascade Voting Approach with Handcrafted Features

Open Access
|Jun 2021

References

  1. [1] B. Unutmaz, A. C. Karaca, and M. K. Gullu, “Turkish Sign Language Recognition Using Kinect Skeleton and Convolutional Neural Network,” in 2019 27th Signal Processing and Comm. Appl. Conference (SIU), Apr. 2019, pp. 1–4. https://doi.org/10.1109/siu.2019.880638010.1109/SIU.2019.8806380
  2. [2] P. Kumar, P. P. Roy, and D. P. Dogra, “Independent Bayesian Classifier Combination Based Sign Language Recognition Using Facial Expression,” Information Sciences, vol. 428, pp. 30–48, Feb. 2018. https://doi.org/10.1016/j.ins.2017.10.04610.1016/j.ins.2017.10.046
  3. [3] H. Haberdar and S. Albayrak, “Real Time Isolated Turkish Sign Language Recognition from Video Using Hidden Markov Models with Global Features,” Lecture Notes in Computer Science, pp. 677–687, 2005. https://doi.org/10.1007/11569596_7010.1007/11569596_70
  4. [4] T. Kapuściński and D. Warchoł, “Hand Posture Recognition Using Skeletal Data and Distance Descriptor,” Applied Sciences, vol. 10, no. 6, p. 2132, Mar. 2020. https://doi.org/10.3390/app1006213210.3390/app10062132
  5. [5] P. Kumar, H. Gauba, P. Pratim Roy, and D. Prosad Dogra, “A Multimodal Framework for Sensor Based Sign Language Recognition,” Neurocomputing, vol. 259, pp. 21–38, Oct. 2017. https://doi.org/10.1016/j.neucom.2016.08.13210.1016/j.neucom.2016.08.132
  6. [6] B. Oktekin, “İşitme ve Konuşma Engelli Bireyler için İşaret Tanıma Sistemi Geliştirme,” Uluslararasi Kibris Universitesi Fen-Edebiyat Fakultesi, vol. 25, no. 97-1, pp. 593–609, Jan. 2019. https://doi.org/10.22559/folklor.96910.22559/folklor.969
  7. [7] Y. Mori and M. Toyonaga, “Data-Glove for Japanese Sign Language Training System with Gyro-Sensor,” in 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS), Dec. 2018, pp. 1354–1357. https://doi.org/10.1109/scis-isis.2018.0021110.1109/SCIS-ISIS.2018.00211
  8. [8] B. Demircioǧlu, G. Bülbül, and H. Köse, “Turkish Sign Language Recognition with Leap Motion [Leap Motion ile Türk Işaret Dili Tanima],” in 2016 24th Signal Processing and Communication Application Conference (SIU), May 2016. https://doi.org/10.1109/siu.2016.749580910.1109/SIU.2016.7495809
  9. [9] K. Kakayev and S. Albayrak, “Turkish Sign Language Recognition Using Hidden Markov Model,” in Computer Science & Information Technology (CS & IT), Jun. 2016, pp. 11–18. https://doi.org/10.5121/csit.2016.6080210.5121/csit.2016.60802
  10. [10] A. Memiş and S. Albayrak, “A Kinect Based Sign Language Recognition System Using Spatio-Temporal Features,” in Sixth International Conference on Machine Vision (ICMV 2013), Dec. 2013. https://doi.org/10.1117/12.205101810.1117/12.2051018
  11. [11] O. Yalcinkaya, A. Atvar, and P. Duygulu, “Turkish Sign Language Recognition Application Using Motion History Image,” in 2016 24th Signal Processing and Communication Application Conference (SIU), May 2016, pp. 801–804. https://doi.org/10.1109/siu.2016.749586110.1109/SIU.2016.7495861
  12. [12] E. Ezel, O. Baykan, “Vision-Based Turkish Sign Language Recognition Using Convolutional Neural Networks,” in International Conference on Theoretical and Applied Computer Science and Engineering (ICTACSE, 2017), Nov. 2017, p. 14.
  13. [13] M. Aktas, B. Gokberk, and L. Akarun, “Recognizing Non-Manual Signs in Turkish Sign Language,” in 2019 Ninth International Conference on Image Processing Theory, Tools and Applications (IPTA), Nov. 2019, pp. 1–6. https://doi.org/10.1109/ipta.2019.893608110.1109/IPTA.2019.8936081
  14. [14] S. G. Moreira Almeida, F. G. Guimarães, and J. Arturo Ramírez, “Feature Extraction in Brazilian Sign Language Recognition Based on Phonological Structure and Using RGB-D Sensors,” Expert Systems with Applications, vol. 41, no. 16, pp. 7259–7271, Nov. 2014. https://doi.org/10.1016/j.eswa.2014.05.02410.1016/j.eswa.2014.05.024
  15. [15] W. Tao, M. C. Leu, and Z. Yin, “American Sign Language Alphabet Recognition Using Convolutional Neural Networks with Multiview Augmentation and Inference Fusion,” Engineering Applications of Artificial Intelligence, vol. 76, pp. 202–213, Nov. 2018. https://doi.org/10.1016/j.engappai.2018.09.00610.1016/j.engappai.2018.09.006
  16. [16] A. addin I. Sidig, H. Luqman, and S. A. Mahmoud, “Transform-Based Arabic Sign Language Recognition,” Procedia Computer Science, vol. 117, pp. 2–9, 2017. https://doi.org/10.1016/j.procs.2017.10.08710.1016/j.procs.2017.10.087
  17. [17] M. A. Almasre and H. Al-Nuaim, “A Comparison of Arabic Sign Language Dynamic Gesture Recognition Models,” Heliyon, vol. 6, no. 3, p. e03554, Mar. 2020. https://doi.org/10.1016/j.heliyon.2020.e0355410.1016/j.heliyon.2020.e03554707614732195391
  18. [18] M. Mohandes, S. Aliyu, and M. Deriche, “Arabic Sign Language Recognition Using the Leap Motion Controller,” in 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Jun. 2014, pp. 960–965. https://doi.org/10.1109/isie.2014.686474210.1109/ISIE.2014.6864742
  19. [19] A. Karacı, K. Akyol, and Y. Gültepe, “Turkish Sign Language Alphabet Recognition with Leap Motion,” in Proceedings of the International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES’18)’, May 2018, pp. 189–192.
  20. [20] A. Vaitkevičius, M. Taroza, T. Blažauskas, R. Damaševičius, R. Maskeliūnas, and M. Woźniak, “Recognition of American Sign Language Gestures in a Virtual Reality Using Leap Motion,” Applied Sciences, vol. 9, no. 3, pp. 445, Jan. 2019. https://doi.org/10.3390/app903044510.3390/app9030445
  21. [21] B. K. Dedeturk and B. Akay, “Spam Filtering Using a Logistic Regression Model Trained by an Artificial Bee Colony Algorithm,” Applied Soft Computing, vol. 91, p. 106229, Jun. 2020. https://doi.org/10.1016/j.asoc.2020.10622910.1016/j.asoc.2020.106229
  22. [22] O. Sagi and L. Rokach, “Ensemble Learning: A Survey,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 8, no. 4, Feb. 2018. https://doi.org/10.1002/widm.124910.1002/widm.1249
  23. [23] A. Karacı and A. Kemal, “Classification of Alcohols Obtained From QCM Sensors Using Hybrid Ensemble Classifier’, in 2nd International Turkish World Engineering and Science Congress, Nov. 2019, pp. 159–163.
  24. [24] A. Karaci, A. Caglar, B. Aydinli, and S. Pekol, “The Pyrolysis Process Verification of Hydrogen Rich Gas (H–rG) Production by Artificial Neural Network (ANN),” International Journal of Hydrogen Energy, vol. 41, no. 8, pp. 4570–4578, Mar. 2016. https://doi.org/10.1016/j.ijhydene.2016.01.09410.1016/j.ijhydene.2016.01.094
  25. [25] A. Karacı, “Self-Care Problems Classification of Children with Physical and Motor Disability by Deep Neural Networks,” J. Polytech., vol. 23, no. 2, pp. 333–341, 2020.10.2339/politeknik.522641
  26. [26] A. Karaci, “Predicting Breast Cancer with Deep Neural Networks” in Lecture Notes on Data Engineering and Communications Technologies, D. Hemanth, U. Kose, Eds. 2020, pp. 996–1003.10.1007/978-3-030-36178-5_88
  27. [27] S. Ozbay, and M. Safar, “Real-Time Sign Languages Recognition Based on Hausdorff Distance, Hu Invariants and Neural Network,” in 2017 International Conference on Engineering and Technology (ICET), Aug. 2017, pp. 1–8. https://doi.org/10.1109/icengtechnol.2017.830820410.1109/ICEngTechnol.2017.8308204
  28. [28] D. Naglot and M. Kulkarni, “Real Time Sign Language Recognition Using the Leap Motion Controller,” in 2016 International Conference on Inventive Computation Technologies (ICICT), Aug. 2016, pp. 1–5. https://doi.org/10.1109/inventive.2016.783009710.1109/INVENTIVE.2016.7830097
  29. [29] P. Kumar, R. Saini, S. K. Behera, D. P. Dogra, and P. P. Roy, “Real-Time Recognition of Sign Language Gestures and Air-Writing Using Leap Motion,” in 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), May 2017, pp. 157–160. https://doi.org/10.23919/mva.2017.798682510.23919/MVA.2017.7986825
DOI: https://doi.org/10.2478/acss-2021-0002 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 12 - 21
Published on: Jun 4, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Abdulkadir Karacı, Kemal Akyol, Mehmet Ugur Turut, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.