Have a personal or library account? Click to login
Estimating the Efforts of Mobile Application Development in the Planning Phase Using Nonlinear Regression Analysis Cover

Estimating the Efforts of Mobile Application Development in the Planning Phase Using Nonlinear Regression Analysis

Open Access
|Dec 2020

References

  1. [1] M. Rouse, “Mobile application development,” March 2019. [Online]. Available: http://searchmicroservices.techtarget.com/definition/mobileapplication-development [Accessed: Nov. 19, 2020].
  2. [2] T. P. Ryan, Modern regression methods, 2nd ed. New York: John Wiley & Sons, 2008. https://doi.org/10.1002/978047038280610.1002/9780470382806
  3. [3] S. Chatterjee and J. S. Simonoff, Handbook of regression analysis. New York: John Wiley & Sons, 2013. https://doi.org/10.1002/978111853284310.1002/9781118532843
  4. [4] N. R. Drapper and H. Smith, Applied regression analysis, 3rd ed. New York: John Wiley & Sons, 1998. https://doi.org/10.1002/978111862559010.1002/9781118625590
  5. [5] T. Arnuphaptrairong and W. Suksawasd, “An empirical validation of mobile application effort estimation models,” in Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS 2017), 2017, pp. 697–701.
  6. [6] R. Francese, C. Gravino, M. Risi, G. Scanniello and G. Tortora, “On the use of requirements measures to predict software project and product measures in the context of Android mobile apps: A preliminary study,” in Proceedings of the 41st Euromicro Conference on Software Engineering and Advanced Applications (SEAA 2015), 2015, pp. 357–364. https://doi.org/10.1109/SEAA.2015.2210.1109/SEAA.2015.22
  7. [7] S. A. Shahwaiz, A. A. Malik and N. Sabahat, “A parametric effort estimation model for mobile apps,” in Proceedings of the 19th International Multi-Topic Conference (INMIC 2016), 2016, pp. 1–6. https://doi.org/10.1109/INMIC.2016.784011410.1109/INMIC.2016.7840114
  8. [8] S. Prykhodko, N. Prykhodko, K. Knyrik and A. Pukhalevych, “Mathematical modeling of effort of mobile application development in a planning phase,” in Proceedings of the 1st International Workshop on Information-Communication Technologies & Embedded Systems. CEUR Workshop Proceedings, vol. 2516, 2019, pp. 96–105.
  9. [9] S. Prykhodko, N. Prykhodko, L. Makarova and A. Pukhalevych, “Application of the squared Mahalanobis distance for detecting outliers in multivariate non-Gaussian data,” in Proceedings of the 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 2018, pp. 962–965. https://doi.org/10.1109/TCSET.2018.833635310.1109/TCSET.2018.8336353
  10. [10] T. Foss, E. Stensrud, B. Kitchenham and I. Myrtveit, “A simulation study of the model evaluation criterion MMRE,” IEEE Transactions on software engineering, vol. 11, no. 29, pp. 985–995, 2003. https://doi.org/10.1109/TSE.2003.124530010.1109/TSE.2003.1245300
  11. [11] D. Port and M. Korte, “Comparative studies of the model evaluation criterions MMRE and PRED in software cost estimation research,” in Proceedings of the 2nd ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, 2008, pp. 51–60. https://doi.org/10.1145/1414004.141401510.1145/1414004.1414015
  12. [12] G. E. P. Box and D. R. Cox, “An analysis of transformations,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 2, no. 26, pp. 211–252, 1964. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x10.1111/j.2517-6161.1964.tb00553.x
  13. [13] R. A. Johnson and D. W. Wichern, Applied multivariate statistical analysis. 6th ed. Pearson Prentice Hall, 2007.
  14. [14] N. Prykhodko, S. Prykhodko and M. Vorona, “The non-linear regression model to estimate the part of NPLS in the whole loan portfolio of Ukrainian banks,” in 2018 IEEE First International Conference on System Analysis & Intelligent Computing (SAIC), 2018, pp. 261–265. https://doi.org/10.1109/SAIC.2018.851689910.1109/SAIC.2018.8516899
  15. [15] I. Olkin and A. R. Sampson, “Multivariate Analysis: Overview,” in Smelser, N. J., Baltes, P. B. (eds.) International Encyclopedia of Social & Behavioral Sciences. Pergamon, 2001, pp. 10240–10247. https://doi.org/10.1016/B0-08-043076-7/00472-110.1016/B0-08-043076-7/00472-1
  16. [16] K. V. Mardia, “Measures of multivariate skewness and kurtosis with applications,” Biometrika, vol. 57, no. 3, pp. 519–530, 1970. https://doi.org/10.1093/biomet/57.3.51910.1093/biomet/57.3.519
DOI: https://doi.org/10.2478/acss-2020-0019 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 172 - 179
Published on: Dec 28, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Sergiy Prykhodko, Natalia Prykhodko, Kateryna Knyrik, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.