Have a personal or library account? Click to login
A Dataset-Independent Model for Estimating Software Development Effort Using Soft Computing Techniques Cover

A Dataset-Independent Model for Estimating Software Development Effort Using Soft Computing Techniques

Open Access
|Feb 2020

References

  1. [1] X.-Y. Jing, F. Qi, F. Wu, and B. Xu, “Missing Data Imputation Based on Low-Rank Recovery and Semi-Supervised Regression for Software Effort Estimation” in Proceedings of the 38th International Conference on Software Engineering (ICSE 2016), 2016, pp. 607–618. https://doi.org/10.1145/2884781.288482710.1145/2884781.2884827
  2. [2] F. Qi, X.-Y. Jing, X. Zhu, X. Xie, B. Xu, and S. Ying, “Software Effort Estimation Based on Open Source Projects: Case Study of Github,” Information and Software Technology, vol. 92, pp. 145–157, Dec. 2017. https://doi.org/10.1016/j.infsof.2017.07.01510.1016/j.infsof.2017.07.015
  3. [3] F. Zare, H. K. Zare, and M. S. Fallahnezhad, “Software Effort Estimation Based on the Optimal Bayesian Belief Network,” Applied Soft Computing, vol. 49, pp. 968–980, Dec. 2016. https://doi.org/10.1016/j.asoc.2016.08.00410.1016/j.asoc.2016.08.004
  4. [4] M. Jørgensen, “The Influence of Selection Bias on Effort Overruns in Software Development Projects,” Information and Software Technology, vol. 55, no. 9, pp. 1640–1650, Sep. 2013. https://doi.org/10.1016/j.infsof.2013.03.00110.1016/j.infsof.2013.03.001
  5. [5] S. Grimstad, M. Jørgensen, and K. Moløkken-Østvold, “Software Effort Estimation Terminology: The Tower of Babel,” Information and Software Technology, vol. 48, no. 4, pp. 302–310, Apr. 2006. https://doi.org/10.1016/j.infsof.2005.04.00410.1016/j.infsof.2005.04.004
  6. [6] B. Kitchenham, S. Lawrence Pfleeger, B. McColl, and S. Eagan, “An Empirical Study of Maintenance and Development Estimation Accuracy,” Journal of Systems and Software, vol. 64, no. 1, pp. 57–77, Oct. 2002. https://doi.org/10.1016/S0164-1212(02)00021-310.1016/S0164-1212(02)00021-3
  7. [7] M. Jorgensen and M. Shepperd, “A Systematic Review of Software Development Cost Estimation Studies,” IEEE Transactions on Software Engineering, vol. 33, no. 1, pp. 33–53, Jan. 2007. https://doi.org/10.1109/TSE.2007.25694310.1109/TSE.2007.256943
  8. [8] A. B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, “Neural Network Models for Software Development Effort Estimation: A Comparative Study,” Neural Computing and Applications, vol. 27, no. 8, pp. 2369–2381, Nov. 2015. https://doi.org/10.1007/s00521-015-2127-110.1007/s00521-015-2127-1
  9. [9] M. Jørgensen and D. I. Sjøberg, “Impact of Effort Estimates on Software Project Work,” Information and Software Technology, vol. 43, no. 15, pp. 939–948, Dec. 2001. https://doi.org/10.1016/S0950-5849(01)00203-810.1016/S0950-5849(01)00203-8
  10. [10] J. Khan, Z. A. Shaikh, and A. B. Nauman, “Development of Intelligent Effort Estimation Model Based on Fuzzy Logic Using Bayesian Networks” in International Conference on Advanced Software Engineering and Its Applications, Springer, 2011, pp. 74–84. https://doi.org/10.1007/978-3-642-27207-3_910.1007/978-3-642-27207-3_9
  11. [11] R. Fuentetaja, D. Borrajo, C. L. López, and J. Ocón, “Multi-Step Generation of Bayesian Networks Models for Software Projects Estimations,” International Journal of Computational Intelligence Systems, vol. 6, no. 5, pp. 796–821, 2013. https://doi.org/10.1080/18756891.2013.80558310.1080/18756891.2013.805583
  12. [12] D. Eck, et al., Parametric Estimating Handbook, The International Society of Parametric Analysts, 2009.
  13. [13] J. Lynch, “Chaos Manifesto,” The Standish Group, 2009.
  14. [14] J. Moeyersoms, E. Junqué de Fortuny, K. Dejaeger, B. Baesens, and D. Martens, “Comprehensible Software Fault and Effort Prediction: A Data Mining Approach,” Journal of Systems and Software, vol. 100, pp. 80–90, Feb. 2015. https://doi.org/10.1016/j.jss.2014.10.03210.1016/j.jss.2014.10.032
  15. [15] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented Design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476–493, Jun. 1994. https://doi.org/10.1109/32.29589510.1109/32.295895
  16. [16] T. Menzies, Z. Chen, J. Hihn, and K. Lum, “Selecting Best Practices for Effort Estimation,” IEEE Transactions on Software Engineering, vol. 32, no. 11, pp. 883–895, Nov. 2006. https://doi.org/10.1109/TSE.2006.11410.1109/TSE.2006.114
  17. [17] C. Lopez-Martin, C. Isaza, and A. Chavoya, “Software Development Effort Prediction of Industrial Projects Applying a General Regression Neural Network,” Empirical Software Engineering, vol. 17, no. 6, pp. 738–756, Dec. 2012. https://doi.org/10.1007/s10664-011-9192-610.1007/s10664-011-9192-6
  18. [18] A. Idri, F. azzahra Amazal, and A. Abran, “Analogy-Based Software Development Effort Estimation: A Systematic Mapping and Review,” Information and Software Technology, vol. 58, pp. 206–230, Feb. 2015. https://doi.org/10.1016/j.infsof.2014.07.01310.1016/j.infsof.2014.07.013
  19. [19] A. Khatibi Bardsiri, S. M. Hashemi, and M. Razzazi, “GVSEE: A New Global Model to Estimate Software Services Development Effort,” Journal of the Chinese Institute of Engineers, vol. 39, no. 6, pp. 765–776, 2016. https://doi.org/10.1080/02533839.2016.117687310.1080/02533839.2016.1176873
  20. [20] J. Keung, E. Kocaguneli, and T. Menzies, “Finding Conclusion Stability for Selecting the Best Effort Predictor in Software Effort Estimation,” Automated Software Engineering, vol. 20, no. 4, pp. 543–567, May 2012. https://doi.org/10.1007/s10515-012-0108-510.1007/s10515-012-0108-5
  21. [21] D. Wu, J. Li, and Y. Liang, “Linear Combination of Multiple Case-Based Reasoning With Optimized Weight for Software Effort Estimation,” The Journal of Supercomputing, vol. 64, no. 3, pp. 898–918, Dec. 2010. https://doi.org/10.1007/s11227-010-0525-910.1007/s11227-010-0525-9
  22. [22] L. A. Zadeh, “Soft Computing and Fuzzy Logic,” in Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh, World Scientific, 1996, pp. 796–804. https://doi.org/10.1142/9789814261302_004210.1142/9789814261302_0042
  23. [23] A. F. Sheta, “Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects,” Journal of Computer Science, vol. 2, no. 2, pp. 118–123, Feb. 2006. https://doi.org/10.3844/jcssp.2006.118.12310.3844/jcssp.2006.118.123
  24. [24] J. J. Dolado and L. Fernandez, “Genetic Programming, Neural Networks and Linear Regression in Software Project Estimation” in Proceedings of International Conference on Software Process Improvement, Research, Education and Training, 1998.
  25. [25] A. Sheta, D. Rine, and A. Ayesh, “Development of Software Effort and Schedule Estimation Models Using Soft Computing Techniques” in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 1283–1289, Jun. 2008.https://doi.org/10.1109/CEC.2008.463096110.1109/CEC.2008.4630961
  26. [26] N.-H. Chiu and S.-J. Huang, “The Adjusted Analogy-Based Software Effort Estimation Based on Similarity Distances,” Journal of Systems and Software, vol. 80, no. 4, pp. 628–640, Apr. 2007. https://doi.org/10.1016/j.jss.2006.06.00610.1016/j.jss.2006.06.006
  27. [27] S.-J. Huang and N.-H. Chiu, “Optimization of Analogy Weights by Genetic Algorithm for Software Effort Estimation,” Information and Software Technology, vol. 48, no. 11, pp. 1034–1045, Nov. 2006. https://doi.org/10.1016/j.infsof.2005.12.02010.1016/j.infsof.2005.12.020
  28. [28] Q. Song and M. Shepperd, “Predicting Software Project Effort: A Grey Relational Analysis Based Method,” Expert Systems with Applications, vol. 38, no. 6, pp. 7302–7316, Jun. 2011. https://doi.org/10.1016/j.eswa.2010.12.00510.1016/j.eswa.2010.12.005
  29. [29] V. K. Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim, and E. Khatibi, “A PSO-Based Model to Increase the Accuracy of Software Development Effort Estimation,” Software Quality Journal, vol. 21, no. 3, pp. 501–526, Sep. 2012. https://doi.org/10.1007/s11219-012-9183-x10.1007/s11219-012-9183-x
  30. [30] V. K. Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim, and E. Khatibi, “Increasing the Accuracy of Software Development Effort Estimation Using Projects Clustering,” IET software, vol. 6, no. 6, pp. 461–473, Dec. 2012. https://doi.org/10.1049/iet-sen.2011.021010.1049/iet-sen.2011.0210
  31. [31] A. K. Bardsiri, S. M. Hashemi, and M. Razzazi, “Statistical analysis of the most popular software service effort estimation datasets,” Journal of Telecommunication, Electronic and Computer Engineering, vol. 7, no. 1, pp. 87–96, 2015.
  32. [32] D. E. Goldberg and J. Richardson, “Genetic Algorithms With Sharing for Multimodal Function Optimization” in Proceedings of the Second International Conference on Genetic Algorithms, Lawrence Erlbaum, 1987.
  33. [33] D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 1, no. 2, pp. 224–227, Apr. 1979. https://doi.org/10.1109/TPAMI.1979.476690910.1109/TPAMI.1979.4766909
  34. [34] C.-H. Chou, M.-C. Su, and E. Lai, “A New Cluster Validity Measure and Its Application to Image Compression,” Pattern Analysis and Applications, vol. 7, no. 2, pp. 205–220, Jun. 2004. https://doi.org/10.1007/s10044-004-0218-110.1007/s10044-004-0218-1
  35. [35] E. Atashpaz-Gargari and C. Lucas, “Imperialist Competitive Algorithm: An Algorithm for Optimization Inspired by Imperialistic Competition” in 2007 IEEE Congress on Evolutionary Computation, IEEE, 2007, pp. 4661–4667. https://doi.org/10.1109/CEC.2007.442508310.1109/CEC.2007.4425083
  36. [36] B. W. Boehm, “Software Engineering Economics,” IEEE Transactions on Software Engineering, vol. 10, no. 1, pp. 4–21, Jan. 1984. https://doi.org/10.1109/TSE.1984.501019310.1109/TSE.1984.5010193
  37. [37] A. J. Albrecht and J. E. Gaffney, “Software Function, Source Lines of Code, and Development Effort Prediction: A Software Science Validation,” IEEE Transactions on Software Engineering, vol. 9, no. 6, pp. 639–648, Nov. 1983. https://doi.org/10.1109/TSE.1983.23527110.1109/TSE.1983.235271
  38. [38] J. M. Desharnais, “Analyse statistique de la productivitie des projets informatique a partie de la technique des point des fonction,” Master’s Thesis, University of Montreal, 1989.
  39. [39] K. D. Maxwell, Applied Statistics for Software Managers, Prentice Hall, 2002.
  40. [40] International Software Benchmarking Standards Group. [Online]. Available: https://www.isbsg.org/
DOI: https://doi.org/10.2478/acss-2019-0011 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 82 - 93
Published on: Feb 20, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Mahdi Khazaiepoor, Amid Khatibi Bardsiri, Farshid Keynia, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.