[1] S. M. Salaken, A. Khosravi, T. Nguyen, and S. Nahavandi, “Extreme learning machine based transfer learning algorithms: A survey,” <em>Neurocomputing</em>, vol. 267, pp. 516–524, 2017. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.neucom.2017.06.037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.neucom.2017.06.037</a>">https://doi.org/10.1016/j.neucom.2017.06.037</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.neucom.2017.06.037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.neucom.2017.06.037</a></dgdoi:pub-id>
[2] D. Han, Q. Liu, and W. Fan, “A new image classification method using CNN transfer learning and web data augmentation,” <em>Expert Systems with Applications</em>, vol. 95, pp. 43–56, 2018. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.eswa.2017.11.028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.eswa.2017.11.028</a>">https://doi.org/10.1016/j.eswa.2017.11.028</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.eswa.2017.11.028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.eswa.2017.11.028</a></dgdoi:pub-id>
[5] L. H. S. Vogado, R. M. S. Veras, F. H. D. Araujo, R. R. V. Silva, and K. R. T. Aires, “Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification,” <em>Engineering Applications of Artificial Intelligence</em>, vol. 72, pp. 415–422, 2018. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.engappai.2018.04.024" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.engappai.2018.04.024</a>">https://doi.org/10.1016/j.engappai.2018.04.024</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.engappai.2018.04.024" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.engappai.2018.04.024</a></dgdoi:pub-id>
[6] A. Khatami, M. Babaie, H. R. Tizhoosh, A. Khosravi, T. Nguyen, and S. Nahavandi, “A sequential search-space shrinking using CNN transfer learning and a Radon projection pool for medical image retrieval,” <em>Expert Systems with Applications</em>, vol. 100, pp. 224–233, 2018. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.eswa.2018.01.056" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.eswa.2018.01.056</a>">https://doi.org/10.1016/j.eswa.2018.01.056</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.eswa.2018.01.056" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.eswa.2018.01.056</a></dgdoi:pub-id>
[8] X. Song, S. Jiang, L. Herranz, Y. Kong, and K. Zheng, “Category co-occurrence modeling for large scale scene recognition,” <em>Pattern Recognition</em>, vol. 59, pp. 98–111, 2016. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.patcog.2016.01.019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.patcog.2016.01.019</a>">https://doi.org/10.1016/j.patcog.2016.01.019</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.patcog.2016.01.019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.patcog.2016.01.019</a></dgdoi:pub-id>
[9] S. Gould, R. Fulton, and D. Koller, “Decomposing a scene into geometric and semantically consistent regions,” <em>Proceedings of 2009 IEEE 12th International Conference on Computer Vision</em>, pp. 1–8, 2009. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/iccv.2009.5459211" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/iccv.2009.5459211</a>">https://doi.org/10.1109/iccv.2009.5459211</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICCV.2009.5459211" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICCV.2009.5459211</a></dgdoi:pub-id>
[12] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson, “Factors of transferability for a generic ConvNet representation,” <em>IEEE Transactions on Pattern Analysis and Machine Intelligence</em>, vol. 38, no. 9, pp. 1790–1802, 2016. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/TPAMI.2015.2500224" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/TPAMI.2015.2500224</a>">https://doi.org/10.1109/TPAMI.2015.2500224</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TPAMI.2015.2500224" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TPAMI.2015.2500224</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">26584488</dgpm:pub-id>
[13] S. Bai, and H. Tang, “Softly combining an ensemble of classifiers learned from a single convolutional neural network for scene categorization,” <em>Applied Soft Computing</em>, vol. 67, pp. 183–196, 2018. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.asoc.2018.03.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.asoc.2018.03.007</a>">https://doi.org/10.1016/j.asoc.2018.03.007</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.asoc.2018.03.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.asoc.2018.03.007</a></dgdoi:pub-id>
[14] P. Tang, H. Wang, and S. Kwong, “G-MS2F: GoogLeNet based multi-stage feature fusion of deep CNN for scene recognition,” <em>Neurocomputing</em>, vol. 225, pp. 188–197, 2017. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.neucom.2016.11.023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.neucom.2016.11.023</a>">https://doi.org/10.1016/j.neucom.2016.11.023</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.neucom.2016.11.023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.neucom.2016.11.023</a></dgdoi:pub-id>
[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” <em>Communications of the ACM</em>, vol. 60, no. 2, pp. 84–90, 2017. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1145/3065386" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1145/3065386</a>">https://doi.org/10.1145/3065386</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1145/3065386" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/3065386</a></dgdoi:pub-id>
[17] S. Bai, “Growing random forest on deep convolutional neural networks for scene categorization,” <em>Expert Systems with Applications</em>, vol. 71, pp. 279–287, 2017. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.eswa.2016.10.038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.eswa.2016.10.038</a>">https://doi.org/10.1016/j.eswa.2016.10.038</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.eswa.2016.10.038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.eswa.2016.10.038</a></dgdoi:pub-id>
[19] J.-T. Lee, H.-U. Kim, C. Lee, and C.-S. Kim, “Photographic composition classification and dominant geometric element detection for outdoor scenes,” <em>Journal of Visual Communication and Image Representation</em>, vol. 55, pp. 91–105, 2018. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jvcir.2018.05.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jvcir.2018.05.018</a>">https://doi.org/10.1016/j.jvcir.2018.05.018</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.jvcir.2018.05.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jvcir.2018.05.018</a></dgdoi:pub-id>
[20] B. Liu, S. Gould, and D. Koller, “Single image depth estimation from predicted semantic labels,” <em>Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</em>, pp. 1253–1260, 2010. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/cvpr.2010.5539823" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/cvpr.2010.5539823</a>">https://doi.org/10.1109/cvpr.2010.5539823</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/CVPR.2010.5539823" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/CVPR.2010.5539823</a></dgdoi:pub-id>
[21] V. V. Romanuke, “Appropriate number and allocation of ReLUs in convolutional neural networks,” <em>Research Bulletin of the National Technical University of Ukraine “Kyiv Polytechnic Institute”</em>, no. 1, pp. 69–78, 2017. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.20535/1810-0546.2017.1.88156" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.20535/1810-0546.2017.1.88156</a>">https://doi.org/10.20535/1810-0546.2017.1.88156</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.20535/1810-0546.2017.1.88156" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.20535/1810-0546.2017.1.88156</a></dgdoi:pub-id>
[23] V. V. Romanuke, “Interval uncertainty reduction via division-by-2 dichotomization based on expert estimations for short-termed observations,” <em>Journal of Uncertain Systems</em>, vol. 1, no. 12, pp. 3–21, 2018.
[24] J. Yang, S. Li, and W. Xu, “An iterative transfer learning based classification framework,” <em>Proceedings of 2018 International Joint Conference on Neural Networks (IJCNN)</em>, pp. 1–8, 2018. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/IJCNN.2018.8489471" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/IJCNN.2018.8489471</a>">https://doi.org/10.1109/IJCNN.2018.8489471</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/IJCNN.2018.8489471" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/IJCNN.2018.8489471</a></dgdoi:pub-id>