Have a personal or library account? Click to login
Spatiotemporal Aspects of Big Data Cover
Open Access
|Dec 2018

References

  1. [1] PWC, “Big Data Analytics - UN Data Innovation Lab 4,” University of Nairobi, Nairobi, 2017.
  2. [2] J. Kerber, “Demystifying Big Data: A Practical Guide To Transforming The Business of Government,” pp. 1–40, 2012.
  3. [3] McKinsey & Company, “Big data: The next frontier for innovation, competition, and productivity,” McKinsey Glob. Inst., Report, p. 156, 2011.
  4. [4] CEBR, “Data equity Unlocking the value of big data,” Report for SAS, pp. 1–44, April 2012.
  5. [5] CEBR, “The Value of Big Data and the Internet of Things to the UK Economy,” Rep. SAS by Cent. Econ. reforms, 2016.
  6. [6] B. NT, “10 key things to remember while dealing with big data,” Big Data Made Simple: A Crayon Data Resource, 2014. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://bigdata-madesimple.com/10-key-things-to-remember-while-dealing-with-big-data/">http://bigdata-madesimple.com/10-key-things-to-remember-while-dealing-with-big-data/</ext-link>. [Accessed: 25 Oct. 2017].
  7. [7] “7 Big Data Examples – Application of Big Data in Real Life,” Intellipaat. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://intellipaat.com/blog/7-big-data-examples-application-of-big-data-in-real-life/">https://intellipaat.com/blog/7-big-data-examples-application-of-big-data-in-real-life/</ext-link>. [Accessed: 2 Nov. 2017].
  8. [8] R. H. Güting, and M. Schneider, <em>Moving Objects Databases</em>, 1st ed. Morgan Kaufmann, 2005.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/B978-012088799-6/50002-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/B978-012088799-6/50002-5</a></dgdoi:pub-id>
  9. [9] S. Rathee, and A. Yadav, “Survey on Spatio-Temporal Database and Data Models with relevant Features,” <em>International Journal of Scientific and Research Publications</em>, vol. 3, no. 1, pp. 152–156, 2013.
  10. [10] I. Ali, H. Samoon, and A. Khan, “23 killed as monsoon rains lash Karachi,” Dawn News, 2017. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.dawn.com/news/1355132">https://www.dawn.com/news/1355132</ext-link>. [Accessed: 01-Nov-2017].
  11. [11] “Temporal Database,” Teradata Database, Tools and Utilities Release 16.00. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.info.teradata.com/HTMLPubs/DB_TTU_16_00/index.html#page/SQL_Reference%2FB035-1182-160K%2Fyxa1472240621730.html%23wwID0EX1BI">https://www.info.teradata.com/HTMLPubs/DB_TTU_16_00/index.html#page/SQL_Reference%2FB035-1182-160K%2Fyxa1472240621730.html%23wwID0EX1BI</ext-link>. [Accessed: 03-Nov-2017].
  12. [12] “Temporal Database Management System,” Teradata Database, Tools and Utilities Release 16.00. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.info.teradata.com/HTMLPubs/DB_TTU_16_00/index.html#page/SQL_Reference%2FB035-1182-160K%2Fedi1472240621683.html%23">https://www.info.teradata.com/HTMLPubs/DB_TTU_16_00/index.html#page/SQL_Reference%2FB035-1182-160K%2Fedi1472240621683.html%23</ext-link>. [Accessed: 03-Nov-2017].
  13. [13] T. White, <em>Hadoop: The definitive guide</em>, 4th ed., United States of America: O’Reilly Media, Inc, 2015.
  14. [14] J. Ellingwood, “Hadoop, Storm, Samza, Spark, and Flink: Big Data Frameworks Compared,” <em>Digital Ocean</em>, 2016. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and-flink-big-data-frameworks-compared">https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and-flink-big-data-frameworks-compared</ext-link>. [Accessed: 17-Oct-2017].
  15. [15] “What is batch processing?,” <em>IBM Knowledge Center</em>, 2010. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zconcepts/zconc_whatisbatch.htm">https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zconcepts/zconc_whatisbatch.htm</ext-link>. [Accessed: 25-Nov-2017].
  16. [16] W. Stallings, <em>Operating Systems: Internals and Design Principles</em>, 7th ed. Prentice Hall, 2012.
  17. [17] V. Prajapati, <em>Big Data Analytics with R and Hadoop</em>. Birmingham: Packt Publishing Ltd., 2013.
  18. [18] “Welcome to ApacheTM Hadoop®!,” Apache Software Foundation., 2014. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://hadoop.apache.org/">http://hadoop.apache.org/</ext-link>. [Accessed: 05-Dec-2017].
  19. [19] S. Kamburugamuve, and G. Fox, “Survey of Distributed Stream Processing,” Indiana University, Bloomington, 2013.
  20. [20] “Apache Storm,” Apache Software Foundation, 2015. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://storm.apache.org/">http://storm.apache.org/</ext-link>. [Accessed: 04-Dec-2017].
  21. [21] M. H. Iqbal, and T. R. Soomro, “Big Data Analysis: Apache Storm Perspective,” <em>Int. J. Comput. Trends Technol.</em>, vol. 19, no. 1, pp. 9–14, 2015. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.14445/22312803/IJCTT-V19P103" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.14445/22312803/IJCTT-V19P103</a>">https://doi.org/10.14445/22312803/IJCTT-V19P103</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.14445/22312803/IJCTT-V19P103" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.14445/22312803/IJCTT-V19P103</a></dgdoi:pub-id>
  22. [22] “What is Samza?,” Apache Software Foundation. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://samza.apache.org/">http://samza.apache.org/</ext-link>. [Accessed: 04-Dec-2017].
  23. [23] P. Sams, <em>Selenium Essentials</em>. Packt Publishing Limited, 2015.
  24. [24] “Apache SparkTM - Unified Analytics Engine for Big Data,” Apache Software Foundation. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://spark.apache.org/">http://spark.apache.org/</ext-link>. [Accessed: 04-Dec-2017].
  25. [25] A. G. Shoro, and S. &amp; T. R. Soomro, “Big Data Analysis: Ap Spark Perspective,” <em>Glob. J. Comput. Sci. Technol.</em>, vol. 15, no. 1, 2015.
  26. [26] “Apache Flink: Stateful Computations over Data Streams,” Apache Software Foundation, 2017. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://flink.apache.org/">http://flink.apache.org/</ext-link>. [Accessed: 04-Dec-2017].
  27. [27] U. Sivarajah, M. M. Kamal, Z. Irani, and V. Weerakkody, “Critical analysis of Big Data challenges and analytical methods,” <em>J. Bus. Res.</em>, vol. 70, pp. 263–286, Jan. 2017. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jbusres.2016.08.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jbusres.2016.08.001</a>">https://doi.org/10.1016/j.jbusres.2016.08.001</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.jbusres.2016.08.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jbusres.2016.08.001</a></dgdoi:pub-id>
  28. [28] D. Boyd, and K. Crawford, “Critical Questions for Big Data,” <em>Information, Commun. Soc.</em>, vol. 15, no. 5, pp. 662–679, Jun. 2012. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/1369118X.2012.678878" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/1369118X.2012.678878</a>">https://doi.org/10.1080/1369118X.2012.678878</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/1369118X.2012.678878" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/1369118X.2012.678878</a></dgdoi:pub-id>
  29. [29] Y. Chen, M. Guizani, Y. Zhang, L. Wang, N. Crespi, and G. M. Lee, “When Traffic Flow Prediction Meets Wireless Big Data Analytics,” CoRR abs/1709.08024, 2017.
  30. [30] F. Zhang <em>et al.</em>, “Real-Time Spatial Queries for Moving Objects Using Storm Topology,” <em>ISPRS Int. J. Geo-Information</em>, vol. 5, no. 10, p. 178, 2016. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijgi5100178" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijgi5100178</a>">https://doi.org/10.3390/ijgi5100178</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.3390/ijgi5100178" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/ijgi5100178</a></dgdoi:pub-id>
  31. [31] R. Ravanelli <em>et al.</em>, “Monitoring the Impact of Land Cover Change on Surface Urban Heat Island through Google Earth Engine: Proposal of a Global Methodology, First Applications and Problems,” <em>Remote Sens.</em>, vol. 10, no. 9, p. 1488, Sep. 2018. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/rs10091488" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/rs10091488</a>">https://doi.org/10.3390/rs10091488</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.3390/rs10091488" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/rs10091488</a></dgdoi:pub-id>
  32. [32] C. R. Lakshmi, K. RammohanRao, and R. RajeswaraRao, “Exploring Big Data Analytics for Satellite Imagery Data Using Hadoop Technique,” <em>Int. J. Eng. Res. Comput. Sci. Eng.</em>, vol. 4, no. 8, 2017.
  33. [33] R. Kachelriess, “Managing spatiotemporal big data stores,” ArcGIS Enterprise. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://enterprise.arcgis.com/en/geoevent/latest/administer/managing-big-data-stores.htm">http://enterprise.arcgis.com/en/geoevent/latest/administer/managing-big-data-stores.htm</ext-link>. [Accessed: 10-Nov-2018].
  34. [34] J. F. Roddick, M. J. Egenhofer, E. Hoel, D. Papadias, and B. Salzberg, “Spatial, temporal and spatio-temporal databases - hot issues and directions for phd research,” Newsletter ACM SIGMOD record, vol. 33, no. 2, 2014. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1145/1024694.1024724" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1145/1024694.1024724</a>">https://doi.org/10.1145/1024694.1024724</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1145/1024694.1024724" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/1024694.1024724</a></dgdoi:pub-id>
  35. [35] S. Shekhar, V. Gunturi, M. R. Evans, and K. Yang, “Spatial big-data challenges intersecting mobility and cloud computing,” <em>Proc. Elev. ACM Int. Work. Data Eng. Wirel. Mob. Access - MobiDE ‘12</em>, New York, pp. 1–6, 2012. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1145/2258056.2258058" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1145/2258056.2258058</a>">https://doi.org/10.1145/2258056.2258058</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1145/2258056.2258058" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/2258056.2258058</a></dgdoi:pub-id>
  36. [36] R. R. Vatsavai, A. Ganguly, V. Chandola, A. Stefanidis, S. Klasky, and S. Shekhar, “Spatiotemporal Data Mining in the Era of Big Spatial Data: Algorithms and Applications,” in <em>Proceedings of the 1st ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data</em>, 2012. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1145/2447481.2447482" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1145/2447481.2447482</a>">https://doi.org/10.1145/2447481.2447482</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1145/2447481.2447482" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/2447481.2447482</a></dgdoi:pub-id>
  37. [37] R. R. Vatsavai and B. Bhaduri, “Geospatial Analytics for Big Spatiotemporal Data: Algorithms, Applications, and Challenges,” <em>NSF Work. Big Data Extrem. Comput.</em>, 2013.
  38. [38] D. Cugler, D. Oliver, and M. Evans, “Spatial Big Data: Platforms, Analytics, and Science,” <em>Spatial.Cs.Umn.Edu</em>, 2013.
  39. [39] X. Chen, H. Vo, A. Aji, and F. Wang, “High performance integrated spatial big data analytics,” in <em>Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data - BigSpatial ‘14</em>, Nov. 4, 2014. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1145/2676536.2676538" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1145/2676536.2676538</a>">https://doi.org/10.1145/2676536.2676538</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1145/2676536.2676538" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/2676536.2676538</a></dgdoi:pub-id>
  40. [40] M.-H. Tsou, “Big data: techniques and technologies in geoinformatics,” <em>Ann. GIS</em>, vol. 20, no. 4, pp. 295–296, 2014.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/19475683.2014.944934" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/19475683.2014.944934</a></dgdoi:pub-id>
  41. [41] M. R. Evans, D. Oliver, K. Yang, X. Zhou, R.Y. Ali, and S. Shekhar, “Enabling Spatial Big Data via CyberGIS: Challenges and Opportunities,” GeoJournal Library, pp. 143–170, Jun. 2018. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/978-94-024-1531-5_8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-94-024-1531-5_8</a>">https://doi.org/10.1007/978-94-024-1531-5_8</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-94-024-1531-5_8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-94-024-1531-5_8</a></dgdoi:pub-id>
  42. [42] M.-H. Tsou, “Research challenges and opportunities in mapping social media and Big Data,” <em>Cartogr. Geogr. Inf. Sci.</em>, vol. 42, no. sup.1, pp. 70–74, 2015. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/15230406.2015.1059251" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15230406.2015.1059251</a>">https://doi.org/10.1080/15230406.2015.1059251</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/15230406.2015.1059251" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/15230406.2015.1059251</a></dgdoi:pub-id>
  43. [43] B. Sadiq <em>et al.</em>, “A spatio-temporal multimedia big data framework for a large crowd,” in <em>Proc. 2015 IEEE International Conference on Big Data,</em> Nov. 2015. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/BigData.2015.7364075" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/BigData.2015.7364075</a>">https://doi.org/10.1109/BigData.2015.7364075</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/BigData.2015.7364075" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/BigData.2015.7364075</a></dgdoi:pub-id>
  44. [44] K. Liu, Y. Yao, and D. Guo, “On managing geospatial big-data in emergency management,” in <em>Proc. 1st ACM SIGSPATIAL International Workshop on the Use of GIS in Emergency Management - EM-GIS ‘15</em>, 2015. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1145/2835596.2835614" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1145/2835596.2835614</a>">https://doi.org/10.1145/2835596.2835614</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1145/2835596.2835614" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/2835596.2835614</a></dgdoi:pub-id>
  45. [45] B. Y. Chen, H. Yuan, Q. Li, S.-L. Shaw, W. H. K. Lam, and X. Chen, “Spatiotemporal data model for network time geographic analysis in the era of big data,” <em>International Journal of Geographical Information Science</em>, vol. 30, no. 6, pp. 1041–1071, Nov. 2015. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/13658816.2015.1104317" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/13658816.2015.1104317</a>">https://doi.org/10.1080/13658816.2015.1104317</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/13658816.2015.1104317" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/13658816.2015.1104317</a></dgdoi:pub-id>
  46. [46] J. Xing and R. E. Sieber, “A land use/land cover change geospatial cyberinfrastructure to integrate big data and temporal topology,” <em>International Journal of Geographical Information Science</em>, vol. 30, no. 3, pp. 573–593, Nov. 2015. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/13658816.2015.1104534" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/13658816.2015.1104534</a>">https://doi.org/10.1080/13658816.2015.1104534</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/13658816.2015.1104534" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/13658816.2015.1104534</a></dgdoi:pub-id>
  47. [47] L. Zhao, L. Chen, R. Ranjan, K.-K. R. Choo, and J. He, “Geographical information system parallelization for spatial big data processing: a review,” <em>Cluster Comput.</em>, vol. 19, no. 1, pp. 139–152, 2015. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10586-015-0512-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10586-015-0512-2</a>">https://doi.org/10.1007/s10586-015-0512-2</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s10586-015-0512-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10586-015-0512-2</a></dgdoi:pub-id>
  48. [48] C. M. Dalton and J. Thatcher, “Inflated granularity: Spatial ‘Big Data’ and geodemographics,” <em>Big Data Soc.</em>, 2015.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2139/ssrn.2544638" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2139/ssrn.2544638</a></dgdoi:pub-id>
  49. [49] M. Frank and S. Zander, “Smart web services for big spatio-temporal data in geographical information systems,” in <em>CEUR Workshop Proceedings</em>, 2016.
  50. [50] Z. Li, F. Hu, J. L. Schnase, D. Q. Duffy, T. Lee, M. K. Bowen, and C. Yang, “A spatiotemporal indexing approach for efficient processing of big array-based climate data with MapReduce,” <em>International Journal of Geographical Information Science</em>, vol. 31, no. 1, pp. 17–35, Jan. 2016. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/13658816.2015.1131830" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/13658816.2015.1131830</a>">https://doi.org/10.1080/13658816.2015.1131830</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/13658816.2015.1131830" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/13658816.2015.1131830</a></dgdoi:pub-id>
  51. [51] S. Li, X. Ye, J. Lee, J. Gong, and C. Qin, “Spatiotemporal Analysis of Housing Prices in China: A Big Data Perspective,” <em>Applied Spatial Analysis and Policy</em>, vol. 10, no. 3, pp. 421–433, Mar. 2016. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s12061-016-9185-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12061-016-9185-3</a>">https://doi.org/10.1007/s12061-016-9185-3</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s12061-016-9185-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s12061-016-9185-3</a></dgdoi:pub-id>
  52. [52] D. Zhu, “Spatial-temporal difference equations and their application in spatial-temporal data model especially for big data,” <em>Journal of Difference Equations and Applications</em>, vol. 23, no. 1–2, pp. 66–87, Apr. 2016. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/10236198.2016.1167890" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/10236198.2016.1167890</a>">https://doi.org/10.1080/10236198.2016.1167890</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/10236198.2016.1167890" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/10236198.2016.1167890</a></dgdoi:pub-id>
  53. [53] L. Wang, W. Song, and P. Liu, “Link the remote sensing big data to the image features via wavelet transformation,” <em>Cluster Computing</em>, vol. 19, no. 2, pp. 793–810, May 2016. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10586-016-0569-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10586-016-0569-6</a>">https://doi.org/10.1007/s10586-016-0569-6</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s10586-016-0569-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10586-016-0569-6</a></dgdoi:pub-id>
  54. [54] K. Liu, H. Wang, and Y. Yao, “On storing and retrieving geospatial big-data in cloud,” in <em>Proceedings of the Second ACM SIGSPATIAL International Workshop on the Use of GIS in Emergency Management - EM-GIS ‘16</em>, 2016. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1145/3017611.3017627" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1145/3017611.3017627</a>">https://doi.org/10.1145/3017611.3017627</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1145/3017611.3017627" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/3017611.3017627</a></dgdoi:pub-id>
  55. [55] R. F. Dos Santos, A. Boedihardjo, S. Shah, F. Chen, C. T. Lu, and N. Ramakrishnan, “The big data of violent events: algorithms for association analysis using spatio-temporal storytelling,” <em>Geoinformatica</em>, vol. 20, no. 4, pp. 879–921, 2016. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10707-016-0247-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10707-016-0247-0</a>">https://doi.org/10.1007/s10707-016-0247-0</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s10707-016-0247-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10707-016-0247-0</a></dgdoi:pub-id>
  56. [56] M. Kezunovic <em>et al.</em>, “Predicting Spatiotemporal Impacts of Weather on Power Systems Using Big Data Science,” in W. Pedrycz, SM. Chen. Eds. Data Science and Big Data: An Environment of Computational Intelligence. Studies in Big Data, vol 24, Springer, 2017. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/978-3-319-53474-9_12" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-319-53474-9_12</a>">https://doi.org/10.1007/978-3-319-53474-9_12</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-319-53474-9_12" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-53474-9_12</a></dgdoi:pub-id>
  57. [57] S. Hagedorn, P. Götze, K.-U. Sattler, “Big Spatial Data Processing Frameworks: Feature and Performance Evaluation,” in <em>Proc. 20th International Conference on Extending Database Technology (EDBT)</em>, March 21–24, 2017. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5441/002/edbt.2017.52" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5441/002/edbt.2017.52</a>">https://doi.org/10.5441/002/edbt.2017.52</ext-link>
  58. [58] Z. Galić, E. Mešković, and D. Osmanović, “Distributed processing of big mobility data as spatio-temporal data streams,” <em>Geoinformatica</em>, vol. 21, no. 2, pp. 263–291, Apr. 2016. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10707-016-0264-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10707-016-0264-z</a>">https://doi.org/10.1007/s10707-016-0264-z</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s10707-016-0264-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10707-016-0264-z</a></dgdoi:pub-id>
  59. [59] L. Alarabi, M. F. Mokbel, and M. Musleh, “ST-Hadoop: A MapReduce Framework for Spatio-Temporal Data,” Lecture Notes in Computer Science, pp. 84–104, 2017. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/978-3-319-64367-0_5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-319-64367-0_5</a>">https://doi.org/10.1007/978-3-319-64367-0_5</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-319-64367-0_5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-64367-0_5</a></dgdoi:pub-id>
  60. [60] Z. Wang, <em>et. al</em>., 2017, “A large-scale spatio-temporal data analytics system for wildfire risk management,” in <em>Proceedings of the Fourth International ACM Workshop on Managing and Mining Enriched Geo-Spatial Data,</em> Chicago, Illinois, May 14–14, 2017. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1145/3080546.3080549" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1145/3080546.3080549</a>">https://doi.org/10.1145/3080546.3080549</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1145/3080546.3080549" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/3080546.3080549</a></dgdoi:pub-id>
  61. [61] Z. Huang, Y. Chen, L. Wan, and X. Peng, “GeoSpark SQL: An Effective Framework Enabling Spatial Queries on Spark,” <em>ISPRS International Journal of Geo-Information</em>, vol. 6, no. 9, p. 285, Sep. 2017. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijgi6090285" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijgi6090285</a>">https://doi.org/10.3390/ijgi6090285</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.3390/ijgi6090285" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/ijgi6090285</a></dgdoi:pub-id>
  62. [62] W. M. K. Trochim and J. P. Donnelly, “Qualitative Unobtrusive Measures,” in <em>Research methods knowledge base</em>, 3rd ed., Mason, OH : Thomson Custom Pub., 2007, pp. 141–153.
  63. [63] D. De Capite, “Techniques in Processing Data on Hadoop,” <em>Pap. SAS033</em>, SAS Institute Inc., 2014.
  64. [64] P. Zapletal, “Comparison of Apache Stream Processing Frameworks: Part 1,” [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-processing-frameworks-part-1">https://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-processing-frameworks-part-1</ext-link>. [Accessed: 05-Dec-2017].<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/COMAPP.2017.8079733" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/COMAPP.2017.8079733</a></dgdoi:pub-id>
  65. [65] I. Mushketyk, “Apache Flink vs. Apache Spark - DZone Big Data,” 2017. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://dzone.com/articles/apache-flink-vs-apache-spark-brewing-codes">https://dzone.com/articles/apache-flink-vs-apache-spark-brewing-codes</ext-link>. [Accessed: 11-Dec-2017].
  66. [66] “Apache Spark,” <em>GitHub Inc</em>, 2017. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://github.com/apache/spark">https://github.com/apache/spark</ext-link>. [Accessed: 11-Dec-2017].
  67. [67] “Apache Flink,” <em>GitHub, Inc</em>, 2017. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://github.com/apache/flink">https://github.com/apache/flink</ext-link>. [Accessed: 12-Dec-2017].
  68. [68] “Hadoop &amp; Big Data,” <em>MapR Technologies, Inc</em>, 2016. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://mapr.com/products/apache-hadoop/">https://mapr.com/products/apache-hadoop/</ext-link>. [Accessed: 13-Dec-2017].
  69. [69] R. Paulls, “Apache Hadoop: A Big Data Solution in a Single Unit | Prowess Consulting,” <em>Data Center</em>, 2014. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.prowesscorp.com/apache-hadoop-a-big-data-solution-in-a-single-unit/">http://www.prowesscorp.com/apache-hadoop-a-big-data-solution-in-a-single-unit/</ext-link>. [Accessed: 13-Dec-2017].
  70. [70] S. P. Bappalige, “An introduction to Apache Hadoop | Opensource.com,” <em>Red Hat, Inc</em>, 2014. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://opensource.com/life/14/8/intro-apache-hadoop-big-data">https://opensource.com/life/14/8/intro-apache-hadoop-big-data</ext-link>. [Accessed: 13-Dec-2017].
  71. [71] Vardhan, “Apache Spark vs Hadoop: Which is the Best Big Data Framework?,” <em>Brain4ce Education Solutions Pvt</em>, 2015. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.edureka.co/blog/apache-spark-vs-hadoop-mapreduce">https://www.edureka.co/blog/apache-spark-vs-hadoop-mapreduce</ext-link>. [Accessed: 14-Dec-2017].
  72. [72] F. H. MD, “The Apache Software Foundation Announces Apache® SamzaTM v0.13 : The Apache Software Foundation Blog,” 2017. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://blogs.apache.org/foundation/entry/the-apache-software-foundation-announces11">https://blogs.apache.org/foundation/entry/the-apache-software-foundation-announces11</ext-link>. [Accessed: 14-Dec-2017].
  73. [73] D. García-Gil, S. Ramírez-Gallego, S. García, and F. Herrera, “A comparison on scalability for batch big data processing on Apache Spark and Apache Flink,” <em>Big Data Anal.</em>, vol. 2, no. 1, p. 1, Dec. 2017. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/s41044-016-0020-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s41044-016-0020-2</a>">https://doi.org/10.1186/s41044-016-0020-2</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1186/s41044-016-0020-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s41044-016-0020-2</a></dgdoi:pub-id>
  74. [74] “Samza - State Management,” <em>The Apache System Foundation.Inc</em>, 2014. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://samza.apache.org/learn/documentation/0.8/container/state-management.html">http://samza.apache.org/learn/documentation/0.8/container/state-management.html</ext-link>. [Accessed: 14-Dec-2017].
  75. [75] M. Pathirage, <em>et. al.</em>, “SamzaSQL: Scalable fast data management with streaming SQL,” IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), May 23–27, 2016. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/IPDPSW.2016.141" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/IPDPSW.2016.141</a>">https://doi.org/10.1109/IPDPSW.2016.141</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/IPDPSW.2016.141" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/IPDPSW.2016.141</a></dgdoi:pub-id>
  76. [76] “Samza - Concepts.” [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://samza.apache.org/learn/documentation/latest/introduction/concepts.html">https://samza.apache.org/learn/documentation/latest/introduction/concepts.html</ext-link>. [Accessed: 19-Dec-2017].
  77. [77] “Announcing the release of Apache Samza 0.13.0,” <em>Apache Software Foundation</em>, 2017. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://blogs.apache.org/samza/">https://blogs.apache.org/samza/</ext-link>. [Accessed: 19-Dec-2017].
  78. [78] Y. Jimu <em>et al.</em>, “SQLS: A Storm-Based Query Language System for Real-Time Stream Data Analysis,” <em>Chinese J. Electron.</em>, vol. 25, no. 6, pp. 1025–1033, Nov. 2016. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1049/cje.2016.10.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1049/cje.2016.10.003</a>">https://doi.org/10.1049/cje.2016.10.003</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1049/cje.2016.10.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1049/cje.2016.10.003</a></dgdoi:pub-id>
  79. [79] G. Grover, T. Malaska, J. Seidman, and G. Shapira, <em>Hadoop Application Architectures: Designing Real-World Big Data Applications</em>, 1st ed. O’Reilly Media, Inc., 2015.
  80. [80] “SamzaSQL: Fast Data Management with Streaming SQL and Apache Samza,” <em>Online</em>, 2017. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://github.com/milinda/samza-sql">https://github.com/milinda/samza-sql</ext-link>. [Accessed: 10-Dec-2017].
  81. [81] A. Eldawy, L. Alarabi, and M. F. Mokbel, “Spatial Partitioning Techniques in SpatialHadoop,” <em>Pvldb</em>, vol. 8, no. 12, pp. 1602–1605, 2015. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.14778/2824032.2824057" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.14778/2824032.2824057</a>">https://doi.org/10.14778/2824032.2824057</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.14778/2824032.2824057" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.14778/2824032.2824057</a></dgdoi:pub-id>
  82. [82] F. Hueske, “Stream analytics with SQL on Apache Flink,” in <em>Big data conference: Strata Data Conference</em>, 2017.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-319-63962-8_303-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-63962-8_303-1</a></dgdoi:pub-id>
  83. [83] Jekyll and J. Lee, “Tiny Storm SQL: A Real Time Stream Data Analysis Interface for Apache Storm · Json Lee.” [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://lijiansong.github.io/java/2017/06/05/tiny-storm-sql/">https://lijiansong.github.io/java/2017/06/05/tiny-storm-sql/</ext-link>. [Accessed: 18-Dec-2017].
  84. [84] F. Hueske, “[FLINK-1538] GSoC project: Spatial Data Processing Library - ASF JIRA.” [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://issues.apache.org/jira/browse/FLINK-1538?jql=labels%3Dspatial">https://issues.apache.org/jira/browse/FLINK-1538?jql=labels%3Dspatial</ext-link>. [Accessed: 19-Dec-2017].
  85. [85] F. Hueske, S. Wang, and X. Jiang, “Apache Flink: Continuous Queries on Dynamic Tables.” [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://flink.apache.org/news/2017/04/04/dynamic-tables.html">https://flink.apache.org/news/2017/04/04/dynamic-tables.html</ext-link>. [Accessed: 20-Dec-2017].
  86. [86] I.-H. Joo, “Spatial Big Data Query Processing System Supporting SQL-based Query Language in Hadoop,” <em>J. Korea Inst. Information, Electron. Commun. Technol.</em>, vol. 10, no. 1, pp. 1–8, Feb. 2017. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.17661/jkiiect.2017.10.1.1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.17661/jkiiect.2017.10.1.1</a>">https://doi.org/10.17661/jkiiect.2017.10.1.1</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.17661/jkiiect.2017.10.1.1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.17661/jkiiect.2017.10.1.1</a></dgdoi:pub-id>
  87. [87] I. Portugal, P. Alencar, and D. Cowan, “A Preliminary Survey on Domain-Specific Languages for Machine Learning in Big Data,” <em>2016 IEEE International Conference on Software Science, Technology and Engineering (SWSTE),</em> Jun. 2016. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/SWSTE.2016.23" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/SWSTE.2016.23</a>">https://doi.org/10.1109/SWSTE.2016.23</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/SWSTE.2016.23" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/SWSTE.2016.23</a></dgdoi:pub-id>
  88. [88] M. Jadhao, S. Bailmare, and K. Gaikwad, “Searching, Indexing And Sentimental Analysis On Big Data,” <em>Int. J. Scientific Research &amp; Development,</em> vol. 4, no. 2, 2016.
  89. [89] “Apache/Hadoop - CheckingTheChanges #41,” <em>GitHub, Inc</em>, 2015. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://github.com/Shubh91/hadoop/blob/c1957fef29b07fea70938e971b30532a1e131fd0/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-common/src/main/java/org/apache/hadoop/yarn/nodelabels/CommonNodeLabelsManager.java">https://github.com/Shubh91/hadoop/blob/c1957fef29b07fea70938e971b30532a1e131fd0/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-common/src/main/java/org/apache/hadoop/yarn/nodelabels/CommonNodeLabelsManager.java</ext-link>. [Accessed: 22-Feb-2018].
  90. [90] M. Bomewar, <em>et. al.,</em> “Searching And Indexing On Big Data,” <em>Int. Journal of Research In Science &amp; Engineering</em>, vol. 2, no. 3, pp. 20–23, 2016.
  91. [91] E. Eldawy, “SpatialHadoop,” <em>Proceedings of the 2014 SIGMOD PhD symposium on - SIGMOD’14 PhD Symposium,</em> 2014. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1145/2602622.2602625" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1145/2602622.2602625</a>">https://doi.org/10.1145/2602622.2602625</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1145/2602622.2602625" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/2602622.2602625</a></dgdoi:pub-id>
  92. [92] A. Eldawy and M. F. Mokbel, “SpatialHadoop: A MapReduce framework for spatial data,” <em>2015 IEEE 31st International Conference on Data Engineering</em>, Apr. 2015. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/ICDE.2015.7113382" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/ICDE.2015.7113382</a>">https://doi.org/10.1109/ICDE.2015.7113382</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICDE.2015.7113382" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICDE.2015.7113382</a></dgdoi:pub-id>
  93. [93] M. Kramer, “Controlling the Processing of Smart City Data in the Cloud with Domain-Specific Languages,” <em>2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing</em>, Dec. 2014. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/UCC.2014.134" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/UCC.2014.134</a>">https://doi.org/10.1109/UCC.2014.134</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/UCC.2014.134" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/UCC.2014.134</a></dgdoi:pub-id>
  94. [94] “Spark SQL Programming Guide - Spark 1.2.0 Documentation.” [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://spark.apache.org/docs/1.2.0/sql-programming-guide.html">https://spark.apache.org/docs/1.2.0/sql-programming-guide.html</ext-link>. [Accessed: 14-Dec-2017].
  95. [95] “Apache Spark Key Terms, Explained.” [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.kdnuggets.com/2016/06/spark-key-terms-explained.html">https://www.kdnuggets.com/2016/06/spark-key-terms-explained.html</ext-link>. [Accessed: 17-Dec-2017].
  96. [96] S. Hagedorn, P. Götze, K.-U. Sattler, “The STARK framework for spatio-temporal data analytics on spark,” Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn, 2017.
  97. [97] “Apache Spark: Introduction, Examples and Use Cases | Toptal.” [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.toptal.com/spark/introduction-to-apache-spark">https://www.toptal.com/spark/introduction-to-apache-spark</ext-link>. [Accessed: 14-Dec-2017].
  98. [98] “GeoSpark,” <em>GitHub, Inc.</em>, 2017. [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://github.com/DataSystemsLab/GeoSpark">https://github.com/DataSystemsLab/GeoSpark</ext-link>. [Accessed: 14-Dec-2017].
  99. [99] J. Yu, J. Wu, and M. Sarwat, “GeoSpark,” <em>Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS ‘15</em>, 2015. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1145/2820783.2820860" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1145/2820783.2820860</a>">https://doi.org/10.1145/2820783.2820860</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1145/2820783.2820860" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/2820783.2820860</a></dgdoi:pub-id>
  100. [100] S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join query processing in Cloud,” in <em>Proc. International Conference on Data Engineering Workshops</em>, pp. 34–41, 2015. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/icdew.2015.7129541" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/icdew.2015.7129541</a>">https://doi.org/10.1109/icdew.2015.7129541</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICDEW.2015.7129541" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICDEW.2015.7129541</a></dgdoi:pub-id>
  101. [101] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba: Efficient In-Memory Spatial Analytics,” <em>SIGMOD Int. Conf. Manag. Data</em>, pp. 1071–1085, 2016. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1145/2882903.2915237" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1145/2882903.2915237</a>">https://doi.org/10.1145/2882903.2915237</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1145/2882903.2915237" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/2882903.2915237</a></dgdoi:pub-id>
DOI: https://doi.org/10.2478/acss-2018-0012 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 90 - 100
Published on: Dec 31, 2018
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2018 Saadia Karim, Tariq Rahim Soomro, S. M. Aqil Burney, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.