Have a personal or library account? Click to login

Sentiment Analysis in Latvian and Russian: A Survey

Open Access
|May 2018

References

  1. [1] K. Ravi and V. Ravi, “A survey on opinion mining and sentiment analysis: Tasks, approaches and applications,” Knowledge-Based Systems, vol. 89, pp. 14–46, 2015. https://doi.org/10.1016/j.knosys.2015.06.01510.1016/j.knosys.2015.06.015
  2. [2] Thomson Reuters, “Thomson Reuters Adds Unique Twitter and News Sentiment Analysis to Thomson Reuters Eikon” [Online]. Available: https://www.thomsonreuters.com/en/press-releases/2014/thomson-reuters-adds-unique-twitter-and-news-sentiment-analysisto-thomson-reuters-eikon.html. [Accessed: Mar.8, 2018].
  3. [3] L. Chen, G. Chen, and F. Wang, “Recommender Systems Based on User Reviews : The State of the Art,” Systematic Reviews 2015, vol. 4, no. 5, 2015.https://doi.org/10.1007/s11257-015-9155-510.1007/s11257-015-9155-5
  4. [4] A. Ceron, “Enlightening the voters: The effectiveness of alternative electoral strategies in the 2013 Italian election monitored through (sentiment) analysis of Twitter posts,” European Consortium for Political Research, pp. 1–25, 2013.
  5. [5] W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis algorithms and applications: A survey,” Ain Shams Engineering Journal, vol. 5, pp. 1093–1113, 2014. https://doi.org/10.1016/j.asej.2014.04.01110.1016/j.asej.2014.04.011
  6. [6] S. Vohra and J. Teraiya, “Applications and Challenges for Sentiment Analysis : A Survey,” International Journal of Engineering Research and Technology, vol. 2, no. 2, pp. 1–6, 2013.
  7. [7] V. A. Kharde and S. S. Sonawane, “Sentiment Analysis of Twitter Data: A Survey of Techniques,” International Journal of Computer Applications, vol. 139, no. 11, pp. 5–15, 2016. https://doi.org/10.5120/ijca201690862510.5120/ijca2016908625
  8. [8] K. Dashtipour, S. Poria, A. Hussain, E. Cambria, A. Y. A. Hawalah, A. Gelbukh, and Q. Zhou, “Multilingual Sentiment Analysis: State of the Art and Independent Comparison of Techniques,” Cognitive Computation, vol. 8, pp. 757–771, 2016. https://doi.org/10.1007/s12559-016-9415-710.1007/s12559-016-9415-7498162927563360
  9. [9] M. Korayem, K. Aljadda, and D. Crandall, “Sentiment/subjectivity analysis survey for languages other than English,” Social network analysis and mining, vol. 6, no. 1, pp. 1–28, 2016. https://doi.org/10.1007/s13278-016-0381-610.1007/s13278-016-0381-6
  10. [10] “Datasets - Linked Data Models for Emotion and Sentiment Analysis Community Group.” [Online]. Available: https://www.w3.org/community/sentiment/wiki/Datasets. [Accessed: Mar. 8, 2018].
  11. [11] A. Esuli and F. Sebastiani, “SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining,” Proceedings of 5th Conference Language Resources and Evaluation, pp. 417–422, 2006.
  12. [12] “MPQA Resources.” [Online]. Available: http://mpqa.cs.pitt.edu/. [Accessed: Mar. 8, 2018].
  13. [13] G. Garkaje, E. Zilgalve, and R. Dargis, “Normalization and Automatized Sentiment Analysis of Contemporary Online Latvian Language,” Frontiers in Artificial Intelligence and Applications, vol. 268, pp. 83–86, 2014. https://doi.org/10.3233/978-1-61499-442-8-8310.3233/978-1-61499-442-8-83
  14. [14] J. Peisenieks, “Mašīntulkošanas iespējas Twitter sīkziņu sentimenta analīzē,” B. S. thesis, University of Latvia, Latvia, 2014.
  15. [15] J. Peisenieks and R. Skadiņš, “Uses of Machine Translation in the Sentiment Analysis of Tweets,” Frontiers in Artificial Intelligence and Applications, vol. 268, pp. 126–131, 2014.
  16. [16] J. Peisenieks, “Latvian tweet sentiment corpus.” [Online]. Available: https://github.com/FnTm/latvian-tweet-sentiment-corpus. [Accessed: Mar. 10, 2018].
  17. [17] D. Nicmanis, “Sabiedrības attieksmes modelēšana, izmantojot sentimenta analīzi,” B.S. thesis, University of Latvia, Latvia, 2017.
  18. [18] D. Nicmanis, “LV twitter sentiment corpus.” [Online]. Available: https://github.com/nicemanis/LV-twitter-sentiment-corpus. [Accessed: 10-Mar-2018].
  19. [19] K. Gediņš, “Automātiskā teksta emocionālās noskaņas noteikšana latviešu valodā,” B. S. thesis, University of Latvia, Latvia, 2013.
  20. [20] G. Špats and I. Birzniece, “Opinion Mining in Latvian Text Using Semantic Polarity Analysis and Machine Learning Approach,” Complex Systems Informatics and Modeling Quarterly, no. 7, pp. 51–59, 2016. https://doi.org/10.7250/csimq.2016-7.0310.7250/csimq.2016-7.03
  21. [21] “Latvian positive and negative sentiment words.” [Online]. Available: https://github.com/pumpurs/SentimentWordsLV. [Accessed: Mar. 10, 2018].
  22. [22] G. Špats, “Resources for opinion mining for written content classification in Latvian text.” [Online]. Available: https://github.com/gatis/om/tree/master/lexicon. [Accessed: Mar. 10, 2018].
  23. [23] N. Loukachevitch and Y. Rubtsova, “Entity-Oriented Sentiment Analysis of Tweets: Results and Problems Natalia,” Proceedings of the 18th International Conference on Text, Speech, and Dialogue, Lecture Notes in Computer Science, vol. 9302, pp. 551–559, 2015. https://doi.org/10.1007/978-3-319-24033-6_6210.1007/978-3-319-24033-6_62
  24. [24] N. V. Loukachevitch and I. I. Chetviorkin, “Open evaluation of sentiment-analysis systems based on the material of the Russian language,” Scientific and Technical Information Processing, vol. 41, no. 6, pp. 370–376, 2014. https://doi.org/10.3103/S014768821406005710.3103/S0147688214060057
  25. [25] N. S. Sakenovich and A. S. Zharmagambetov, “On One Approach of Solving Sentiment Analysis Task for Kazakh and Russian Languages Using Deep Learning,” Computational Collective Intelligence, Lecture Notes in Computer Science, vol. 10449, pp. 537–545, 2017. https://doi.org/10.1007/978-3-319-45246-3_5110.1007/978-3-319-45246-3_51
  26. [26] E. Tutubalina and S. Nikolenko, “Constructing Aspect-Based Sentiment Lexicons with Topic Modeling,” Proceedings of 5th Conference on Analysis of Images, Social Networks, and Text, vol. 10716, pp. 208–220, 2017. https://doi.org/10.1007/978-3-319-52920-2_2010.1007/978-3-319-52920-2_20
  27. [27] N. V. Loukachevitch, P. D. Blinov, E. V. Kotelnikov, Y. V. Rubtsova, V. V. Ivanov, and E. V. Tutubalina, “SentiRuEval: Testing Objectoriented sentiment analysis systems in Russian,” Computational Linguistics and Intellectual Technologies, vol. 2, no. 14, pp. 3–15, 2015.
  28. [28] G. Shalunts and G. Backfried, “SentiSAIL: Sentiment Analysis in English, German and Russian,” Proceedings of the 11th International Conference on Machine Learning and Data Mining in Pattern Recognition, vol. 9166, 2015. https://doi.org/10.1007/978-3-319-21024-7_610.1007/978-3-319-21024-7_6
  29. [29] R. Galinsky, A. Alekseev, and S. Nikolenko, “Improving Neural Network Models for Natural Language Processing in Russian with Synonyms,” Proceedings of AINL FRUCT 2016 Conference, vol. 3, pp. 45–51, 2016.
  30. [30] V. Bobichev, O. Kanishcheva, and O. Cherednichenko, “Sentiment analysis in the Ukrainian and Russian news,” Proceedings of 2017 IEEE 1st Electrical and Computer Engineering UKRCON 2017, pp. 1050–1055, 2017. https://doi.org/10.1109/UKRCON.2017.810041010.1109/UKRCON.2017.8100410
  31. [31] I. Gulbinskis, “Digitālo tekstu sentimenta analīze,” B. S. thesis, University of Latvia, Latvia, 2010.
  32. [32] “SemTi-Kamols.” [Online]. Available: http://www.semti-kamols.lv/?sadala=220. [Accessed: Mar. 10, 2018].
  33. [33] P. D. Turney, “Thumbs up or thumbs down? Semantic Orientation applied to Unsupervised Classification of Reviews,” Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, no. July, pp. 417–424, 2002.10.3115/1073083.1073153
  34. [34] “Latviešu valodas tekstu korpuss.” [Online]. Available: http://www.korpuss.lv/. [Accessed: Mar. 8, 2018].
  35. [35] P. Paikens, “Latvian morphology module.” [Online]. Available: https://github.com/PeterisP/morphology. [Accessed: Mar. 8, 2018].
DOI: https://doi.org/10.2478/acss-2018-0006 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 45 - 51
Published on: May 30, 2018
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Rinalds Vīksna, Gints Jēkabsons, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.