Have a personal or library account? Click to login
Quantum-chemical studies of rutile nanoparticles toxicity II. Comparison of B3LYP and PM6 data Cover

Quantum-chemical studies of rutile nanoparticles toxicity II. Comparison of B3LYP and PM6 data

By: Martin Breza  
Open Access
|Apr 2021

References

  1. Alagona G, Ghio C (2009a) Antioxidant Properties of Pterocarpans through Their Copper(II) Coordination Ability. A DFT Study in Vacuo and in Aqueous Solution. J Phys Chem. A 113: 15206—15216.10.1021/jp905521u19831341
  2. Alagona G, Ghio C (2009b) Plicatin B conformational landscape and affinity to copper (I and II) metal cations. A DFT study. Phys Chem Chem Phys 11: 776—790.10.1039/B813464B19290324
  3. Becke AD (1993) Density-functional thermochemistry 3. The role of exact exchange. J Chem Phys 98: 5648—5652.10.1063/1.464913
  4. Breza M, Šimon P (2019) Quantum-chemical studies of rutile nanoparticles toxicity I. Defect-free rod-like model clusters. Acta Chim Slovaca 12: 168—174.10.2478/acs-2019-0023
  5. Breza M, Šimon P (2020) On shape dependence of the toxicity of rutile nanoparticles. J Nanopart Res (2020) 22: 0058.10.1007/s11051-020-4773-1
  6. Cioslowski J (1989) A new population analysis based on atomic polar tensors. J Am Chem Soc 111: 8333—8336.10.1021/ja00204a001
  7. Dunning Jr TH, Hay PJ (1977) Gaussian Basis Sets for Molecular Calculations, in Modern Theoretical Chemistry, (Ed. Schaefer HF III), Vol. 3, Plenum, New York, pp. 1—28.
  8. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al. (2009) Gaussian 09, Revision D.01, Gaussian Inc., Wallingford, CT.
  9. Forest V, Leclerc L, Hochepie JF, Trouvé A, Sarry G, Pourchez J (2017) Impact of cerium oxide nanoparticles shape on their in vitro cellular toxicity. Toxicol Vitro 38: 136—141.10.1016/j.tiv.2016.09.02227693598
  10. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations — potentials for the transition-metal atoms Sc to Hg. J Chem Phys 82: 270—283.10.1063/1.448799
  11. Hsiao I-L, Huang Y-J (2011) Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. Sci Total Environ 409: 1219—1228.10.1016/j.scitotenv.2010.12.03321255821
  12. Huang Y-W, Cambre M, Lee H-J (2017) The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int J Mol Sci 18: 2702.10.3390/ijms18122702575130329236059
  13. Jelemenská I, Breza M (2021) Comparative DFT study of the effectiveness of p-phenylenediamine antioxidants through their coordination ability towards the late 1st row transition metals. Polym. Degrad. Stab. 183: 109438.10.1016/j.polymdegradstab.2020.109438
  14. Lee JH, Ju JE, Kim BI, Pak PJ, Choi EK, Lee HS, Chung N (2014) Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem 33: 2759—2766.10.1002/etc.273525176020
  15. Mammino L (2013) Investigation of the antioxidant properties of hyperjovinol A through its Cu(II) coordination ability. J Mol Model 19: 2127—2142.10.1007/s00894-012-1684-923212237
  16. Mulliken RS (1955) Electronic Population Analysis on LCAO-MO Molecular Wave Functions I. J Chem Phys 23: 1833—1840.10.1063/1.1740588
  17. Puškárová I, Breza M (2016) DFT studies of the effectiveness of p-phenylenediamine antioxidants through their Cu(II) coordination ability. Polym Degrad Stab 128: 15—21.10.1016/j.polymdegradstab.2016.02.028
  18. Puškárová I, Breza M (2017) DFT studies of the effectiveness of p-substituted diphenyl amine antioxidants in styrene-butadiene rubber through their Cu(II) coordination ability. Chem Phys Lett 680: 78—82.10.1016/j.cplett.2017.05.036
  19. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88: 899—926.10.1021/cr00088a005
  20. Stewart JJP (2007) Optimization of parameters for semiempirical methods. V. Modification of NDDO approximations and application to 70 elements. J Mol Model 13: 1173—1213.10.1007/s00894-007-0233-4203987117828561
  21. Tsiepe TJ, Kabanda M, Serobatse KRN (2015) Antioxidant Properties of Kanakugiol Revealed Through the Hydrogen Atom Transfer, Electron Transfer and M2+ (M2+ = Cu(II) or Co(II) Ion) Coordination Ability Mechanisms. A DFT Study In Vacuo and in Solution. Food Biophys 10: 342—359.10.1007/s11483-015-9397-0
DOI: https://doi.org/10.2478/acs-2021-0006 | Journal eISSN: 1339-3065 | Journal ISSN: 1337-978X
Language: English
Page range: 38 - 50
Published on: Apr 30, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Related subjects:

© 2021 Martin Breza, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.