Have a personal or library account? Click to login
Robust control of a chemical reactor with uncertainties Cover

Robust control of a chemical reactor with uncertainties

Open Access
|Nov 2013

References

  1. Angeli D and Astolfi A (2007) A tight small-gain theorem for not necessarily ISS systems, Syst. Control Lett. 56(1): 87-91.10.1016/j.sysconle.2006.08.003
  2. Antonelli R, Astolfi A (2003) Continuous Stirred Tank Reactors: Easy to Stabilise? Automatica 39(10): 817-1827.10.1016/S0005-1098(03)00177-8
  3. Bequette BW (1991) Nonlinear control of chemical processes: a review. Industrial Engineering ChemicalResearch 30: 1391-1413.10.1021/ie00055a001
  4. Bosgra OH, Kwakernaak H, Meinsma G (2000) Design methods for control systems, DISC lecture notes 2000-2001, http://web.boun.edu.tr/eskinat/ME687.html, accessed 18. 3. 2013.
  5. Doyle JC, Stein G (1981) Multivariable Feedback Design - Concepts for a Classical Modern Synthesis. IEEE Transactions on Automatic Control 26: 4-16.10.1109/TAC.1981.1102555
  6. Doyle JC (1984) Lecture Notes, ONR/Honeywell Workshop on Advances in Multivariable Control, Minneapolis.
  7. Gerhard J, Monningmann M, Marquardt W (2004). Robust stable nonlinear control and design of a CSTR in a large operating range. In Proceedings of the7th International Symposium on Dynamics and Control ofProcess Systems. Massachusetts. IFAC. 92.10.1016/S1474-6670(17)31813-X
  8. Green M and Limebeer DNJ (1994) Linear robust control. Prentice Hall. New Jersey.
  9. Henrion D, Tarbouriech S, Kučera V (2005) Control of linear systems subject to time-domain constraints with polynomial pole placement and LMIs, IEEETransactions on Automatic Control 50(9), 1360-1364.10.1109/TAC.2005.854615
  10. Chaves M (2005) Input-to-state stability of rate-controlled biochemical networks, SIAM Journal on Control andOptimization 44(2): 704-727.10.1137/S0363012903437964
  11. Chilali M and Gahinet P (1996) Η∞ design with pole placement constraints: An LMI approach. IEEE Trans. Automat. Contr. 41(3): 358-367.10.1109/9.486637
  12. Ingham J, Dunn IJ, Heinzle E, Přenosil JE (1994) ChemicalEngineering Dynamics. VCH Verlags-gesellschaft. Weinheim.10.1002/9783527616015
  13. Ito H (2008) A degree of flexibility in Lyapunov inequalities for establishing input-to-state stability of interconnected systems, Automatica 44(9): 2340-2346.10.1016/j.automatica.2008.01.001
  14. Jiang ZP, Mareels IMY and Wang Y (1996) A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems, Automatica 32(8): 1211-1215.10.1016/0005-1098(96)00051-9
  15. Karafyllis I and Zhong-Ping J (2007) A small-gain theorem for a wide class of feedback systems with control application. SIAM Journal on Control andOptimization 46(4): 1483-1517.10.1137/060669310
  16. Khalil HK (1996) Nonlinear systems. Prentice Hall. New Jersey.
  17. Kučera V (2007) Polynomial control: Past, present and future. In Proc. 16th International Conference ProcessControl, Štrbske Pleso 2007, 1-23.10.1002/rnc.1127
  18. Kučera V (2008) A comparison of approaches to solving the H2 control problem. Kybernetika 44(3), 328-335, ISSN 0023-5954.
  19. Kwakernaak H (2002) Mixed sensitivity design. In: 15thIFAC World Congress, Barcelona, Spain.
  20. Laila DS and Nešić D (2003) Discrete-time Lyapunovbased small-gain theorem for parameterized interconnected ISS systems, IEEE Trans. Autom. Control 48(10): 1783-1788.10.1109/TAC.2003.817928
  21. Luyben WL (2007) Chemical reactor design and control. John Wiley & Sons. New Jersy. ISBN 978-0-470-09770-0.10.1002/9780470134917
  22. Molnar A, Markoš J, Jelemensky Ľ (2002) Accuracy of Mathematical Model with Regard to Safety Analysis of Chemical Reactors. Chemical Papers 56: 357-361.
  23. Nešić D and Liberzon D (2005) A small-gain approach to stability analysis of hybrid systems, in Proc. 44th IEEE Conf. on Decision and Control Available: http://decision.csl.uiuc.edu/˜liberzon/publications.html.
  24. Scherer CW (2006) LMI relaxations in robust control, European Journal of Control 12: 3-29, DOI: 10.3166/ ejc.12.3-29.
  25. Scherer C, Gahinet P, Chilali M (1997) Multi-objective output-feedback control via LMI optimization. IEEETrans. Automat. Contr. 42: 896-911.
  26. Sontag ED (1989) Smooth Stabilization Implies Coprime Factorization, IEEE Transactions on Automatic Control 34: 435-442.10.1109/9.28018
  27. Teel AR (2005) Input-to-State Stability and the Nonlinear Small Gain Theorem, Preprint.
  28. Tlacuahuac AF, Alvarez J, Guerra ES, Oaxaca G (2005) Optimal Transition and Robust Control Design for Exothermic Continuous Reactors. AIChE Journal 51(3): 895-908.10.1002/aic.10345
  29. Vasičkaninová A, Bakošová M (2009) Neural Network Predictive Control of a Chemical Reactor. Acta ChimicaSlovaca 2(2): 21-36.10.7148/2009-0563-0569
  30. Vasičkaninová A, Bakošová M, Karšaiová M (2011) Neuro-fuzzy Control of a Chemical Reactor with Uncertainties. Ed: Fikar M, Kvasnica M, In Proceedingsof the 18th International Conference on Process Control, 360-365, Slovak University of Technology in Bratislava, Tatranska Lomnica, Slovakia.
  31. Veselý V and Harśanyi L (2007) Robust control for dynamic systems (in Slovak). STU, Bratislava.
  32. Yang F, Gani M, Henrion D (2007), Fixed-order robust H∞ controller design with regional pole assignment, IEEE Transactions on Automatic Control, 52: 1959-1963, DOI: 10.1109/TAC.2007.90624.
  33. Zames G, Francis BA (1983). Feedback, Minimax Sensitivity and Optimal Robustness. IEEE Transactionson Automatic Control. 28: 586-601.
DOI: https://doi.org/10.2478/acs-2013-0031 | Journal eISSN: 1339-3065 | Journal ISSN: 1337-978X
Language: English
Page range: 194 - 201
Published on: Nov 23, 2013
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2013 Anna Vasičkaninová, Monika Bakošová, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons License.