Have a personal or library account? Click to login
Chrysin enhances serotonergic and noradrenergic neurotransmission associated with antidepressant effects: A pharmacological study Cover

Chrysin enhances serotonergic and noradrenergic neurotransmission associated with antidepressant effects: A pharmacological study

Open Access
|Oct 2025

References

  1. P. Blier, Pharmacology of rapid-onset antidepressant treatment strategies, J. Clin. Psychiatry 77 (2016) e1–e7.
  2. P. K. Gillman, Serotonin toxicity: A sometimes fatal complication of combined serotonergic drugs, J. Psychopharmacol. 34 (2020) 476–492.
  3. J. Wolff, P. Reißner, G. Hefner, C. Normann, K. Kaier, H. Binder, C. Hiemke, S. Toto, K. Domschke, M. Marschollek and A. Klimke C. Hiemke, S. Toto, K. Domschke, M. Marschollek and A. Klimke, Pharmacotherapy, drug-drug interactions and potentially inappropriate medication in depressive disorders, PLoS One 16 (2021) e0255192 (16 pages); https://doi.org/10.1371/journal.pone.0255192
  4. M. Olivares-Nazario, A. Fernández-Guasti and L. Martínez-Mota, Age-related changes in the anti-depressant-like effect of desipramine and fluoxetine in the rat forced-swim test, Behav. Pharmacol. 27(1) (2016) 22–28. https://doi.org/10.1097/FBP.0000000000000175
  5. A. F. Carvalho, M. S. Sharma, A. R. Brunoni, E. Vieta and G. A. Fava, The safety, tolerability and risks associated with the use of newer generation antidepressant drugs: a critical review of the literature, Psychother. Psychosom. 85(5) (2016) 270–288; https://doi.org/10.1159/000447034
  6. D. A. Mrazek, J. C. Hornberger, C. A. Altar and I. Degtiar, A review of the clinical, economic, and societal burden of treatment-resistant depression: 1996–2013, Psychiatr. Serv. 65(8) (2014) 977–987; https://doi.org/10.1176/appi.ps.201300059
  7. V. S. Pereira and V. A. Hiroaki-Sato, A brief history of antidepressant drug development: from tricyclics to beyond ketamine, Acta Neuropsychiatr. 30 (2018) 307–322; https://doi.org/10.1017/neu.2017.39
  8. J. F. Rodríguez-Landa and C. M. Contreras, A review of clinical and experimental observations about antidepressant actions and side effects produced by Hypericum perforatum extracts, Phyto-medicine 10(8) (2003) 688–699; https://doi.org/10.1078/0944-7113-00340
  9. J. F. Rodríguez-Landa, F. Hernández-López, J. Cueto-Escobedo, E. V. Herrera-Huerta, E. Rivadeneyra-Domínguez, B. Bernal-Morales and E. Romero-Avendaño, Chrysin (5,7-dihydroxyflavone) exerts anxiolytic-like effects through GABAA receptors in a surgical menopause model in rats, Biomed. Pharmacother. 109 (2019) 2387–2395; https://doi.org/10.1016/j.biopha.2018.11.111
  10. L. J. German-Ponciano, G. U. Rosas-Sánchez, S. I. Ortiz-Guerra, C. Soria-Fregozo and J. F. Rodríguez-Landa, Effects of chrysin on mRNA expression of 5-HT1A and 5-HT2A receptors in the raphe nuclei and hippocampus, Rev. Bras. Farmacogn. 31 (2021) 353–360; https://doi.org/10.1007/s43450-021-00164-3
  11. A. Alizadeh, Y. Pourfallah-Taft, M. Khoshnazar, A. Safdari, S. V. Komari, M. Zanganeh and M. Naziri, Flavonoids against depression: A comprehensive review of literature, Front. Pharmacol. 15 (2024) Article ID 1411168 (26 pages); https://doi.org/10.3389/fphar.2024.1411168
  12. M. Barbarić, K. Mišković, M. Bojić, M. B. Lončar, A. Smolčić-Bubalo, Ž. Debeljak and M. Medić-Šarić, Chemical composition of the ethanolic propolis extracts and its effect on HeLa cells, J. Ethnopharmacol. 135(3) (2011) 772–778; https://doi.org/10.1016/j.jep.2011.04.015
  13. E. Middleton, C. Kandaswami and T. C. Theoharides, The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer, Pharmacol. Rev. 52(4) (2000) 673–751; https://doi.org/10.1016/S0031-6997(24)01472-8
  14. M. S. Zarzecki, S. M. Araujo, V. C. Bortolotto, M. T. de Paula, C. R. Jesse and M. Prigol, Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice, Toxicol. Rep. 1 (2014) 200–208; https://doi.org/10.1016/j.toxrep.2014.02.003
  15. S. F. Nabavi, N. Braidy, S. Habtemariam, I. E. Orhan, M. Daglia, A. Manayi and S. M. Nabavi, Neuro-protective effects of chrysin: From chemistry to medicine, Neurochem. Int. 90 (2015) 224–231; https://doi.org/10.1016/j.neuint.2015.09.006
  16. C. B. Filho, C. R. Jesse, F. Donato, R. Giacomeli, L. Del Fabbro, M. da Silva Antunes, M. G. De Gomes and L. C. Souza, Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+, K+-ATPase activity in the hippocampus and prefrontal cortex of mice: Antidepressant effect of chrysin, Neuroscience 289 (2015) 367–380; https://doi.org/10.1016/j.neuroscience.2014.12.048
  17. C. Borges Filho, C. R. Jesse, F. Donato, L. Del Fabbro, M. G. de Gomes, A. T. R. Goes and S. P. Boeira, Neurochemical factors associated with the antidepressant-like effect of flavonoid chrysin in chronically stressed mice, Eur. J. Pharmacol. 791 (2016) 284–296; https://doi.org/10.1016/j.ejphar.2016.09.005
  18. V. C. Bortolotto, F. C. Pinheiro, S. M. Araujo, M. R. Poetini, B. S. Bertolazi, M. T. de Paula and M. Prigol, Chrysin reverses the depressive-like behavior induced by hypothyroidism in female mice by regulating hippocampal serotonin and dopamine, Eur. J. Pharmacol. 822 (2018) 78–84; https://doi.org/10.1016/j.ejphar.2016.09.005
  19. V. E. Tseilikman, O. B. Tseilikman, M. N. Karpenko, D. S. Traktirov, D. A. Obukhova, V. A. Shatilov and J. Novak, Unraveling the serotonergic mechanism of stress-related anxiety: Focus on co-treatment with resveratrol and selective serotonin reuptake inhibitors, Biomedicines 12(11) (2024) Article ID 2455 (21 pages); https://doi.org/10.3390/biomedicines12112455
  20. B. Valdés-Sustaita, C. López-Rubalcava, M. E. González-Trujano, C. García-Viguera and E. Estrada-Camarena, Aqueous extract of pomegranate alone or in combination with citalopram produces antidepressant-like effects in an animal model of menopause: participation of estrogen receptors, Int. J. Mol. Sci. 18(12) (2017) Article ID 2643 (13 pages); https://doi.org/10.3390/ijms18122643
  21. National Research Council, Guide for the Care and Use of Laboratory Animals, 8th ed., National Academies Press, Washington, DC 2011, ISBN 978-0-309-15400-0.
  22. Estados Unidos Mexicanos, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, Norma Oficial Mexicana Nom-062-Zoo-1999, Especificaciones Tecnicas Para La Produccion, Cuidado y Uso de los Animales de Laboratorio, Diario Oficial (Primera Sección), pp. 107, Aug 22, 2001; https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf; last access date March 10, 2025.
  23. W. M. S. Russell, R. L. Burch and C. W. Hume, The Principles of Humane Experimental Technique, Johns Hopkins Bloomberg School of Public Health, Baltimore 2005.
  24. S. G. Sotocinal, R. E. Sorge, A. Zaloum, A. H. Tuttle, L. J. Martin, J. S. Wieskopf, J. C. S. Mapplebeck, P. Wei, S. Zhan, S. Zhang, J. J. McDougall, O. D. King and J. S. Mogil, The rat grimace scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions, Mol. Pain 7 (2011) Article ID 55 (10 pages); https://doi.org/10.1186/1744-8069-7-55
  25. L. J. Germán-Ponciano, A. Puga-Olguín, M. de Jesús Rovirosa-Hernández, M. Caba, E. Meza and J. F. Rodríguez-Landa, Differential effects of acute and chronic treatment with the flavonoid chrysin on anxiety-like behavior and Fos immunoreactivity in the lateral septal nucleus in rats, Acta Pharm. 70(3) (2020) 387–397; https://doi.org/10.2478/acph-2020-0022
  26. R. D. Porsolt, M. Le Pichon and M. Jalfre, Depression: A new animal model sensitive to antidepressant treatments, Nature 266 (1977) 730–732; https://doi.org/10.1038/266730a0
  27. J. F. Rodríguez-Landa, J. Cueto-Escobedo, A. Puga-Olguín, E. Rivadeneyra-Domínguez, B. Bernal-Morales, E. V. Herrera-Huerta and A. Santos-Torres, The phytoestrogen genistein produces similar effects as 17β-estradiol on anxiety-like behavior in rats at 12 weeks after ovariectomy, BioMed Res. Int. 2017 (2017) Article ID 9073816 (10 pages); https://doi.org/10.1155/2017/9073816
  28. A. Puga-Olguín, J. F. Rodríguez-Landa, M. de Jesús Rovirosa-Hernández, L. J. Germán-Ponciano, M. Caba, E. Meza and O. J. Olmos-Vázquez, Long-term ovariectomy increases anxiety-and despair-like behaviors associated with lower Fos immunoreactivity in the lateral septal nucleus in rats, Behav. Brain Res. 360 (2019) 185–195; https://doi.org/10.1016/j.bbr.2018.12.017
  29. J. Cueto-Escobedo, J. Andrade-Soto, M. Lima-Maximino, C. Maximino, F. Hernández-López and J. F. Rodríguez-Landa, Involvement of GABAergic system in the antidepressant-like effects of chrysin (5,7-dihydroxyflavone) in ovariectomized rats in the forced swim test: Comparison with Neurosteroids, Behav. Brain Res. 386 (2020) Article ID 112590; https://doi.org/10.1016/j.bbr.2020.112590
  30. G. U. Rosas-Sánchez, L. J. Germán-Ponciano and J. F. Rodríguez-Landa, Considerations of pool dimensions in the forced swim test in predicting the potential antidepressant activity of drugs, Front. Behav. Neurosci. 15 (2022) Article ID 757348 (7 pages); https://doi.org/10.3389/fnbeh.2021.757348
  31. M. J. Detke, J. Johnson and I. Lucki, Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression, Exp. Clin. Psychopharmacol. 5(2) (1997) 107–112; https://doi.org/10.1037/1064-1297.5.2.107
  32. G. Guillén-Ruiz, B. Bernal-Morales, A. K. Limón-Vázquez, O. J. Olmos-Vázquez and J. F. Rodríguez-Landa, Involvement of the GABAA receptor in the antidepressant-like effects produced by low and high doses of the flavonoid chrysin in the rat: a longitudinal study, J. Integr. Neurosci. 23(3) (2024) Article ID 51 (13 pages); https://doi.org/10.31083/j.jin2303051
  33. M. Rojas-Carvajal, J. Fornaguera, A. Mora-Gallegos and J. C. Brenes, Testing experience and environmental enrichment potentiated open-field habituation and grooming behaviour in rats, Anim. Behav. 137 (2018) 225–235; https://doi.org/10.1016/j.anbehav.2018.01.018
  34. V. Castagné, R. D. Porsolt and P. Moser, Use of latency to immobility improves detection of antidepressant-like activity in the behavioral despair test in the mouse, Eur. J. Pharmacol. 616(1–3) (2009) 128–133; https://doi.org/10.1016/j.ejphar.2009.06.018
  35. E. R. Trunnell, J. Baines, S. Farghali, T. Jackson, K. Jayne, R. Smith and T. Stibbe, The need for guidance in antidepressant drug development: revisiting the role of the forced swim test and tail suspension test, Regul. Toxicol. Pharmacol. 151 (2024) Article ID 105666 (4 pages); https://doi.org/10.1016/j.yrtph.2024.105666
  36. C. M. Contreras, J. F. Rodríguez-Landa, A.G. Gutiérrez-García, B. Bernal-Morales, The lowest effective dose of fluoxetine in the forced swim test significantly affects the firing rate of lateral septal nucleus neurones in the rat, J. Psychopharmacol. 15(4) (2001) 231–236; https://doi.org/10.1177/026988110101500401
  37. J. F. Rodríguez-Landa, J. Cueto-Escobedo, L. Á. Flores-Aguilar, G. U. Rosas-Sánchez, M. D. J. Rovi-rosa-Hernández, F. García-Orduña, M. Carro-Juárez, The aqueous crude extracts of Montanoa frutescens and Montanoa grandiflora reduce immobility faster than fluoxetine through GABAA receptors in rats forced to swim, J. Evid.-Based Integr. Med. 23 (2018) Article ID 2515690X18762953 (12 pages); https://doi.org/10.1177/2515690X18762953
  38. R. Lozano-Hernández, J. F. Rodríguez-Landa, J. D. Hernández-Figueroa, M. Saavedra, F. R. Ramos-Morales and J. S. Cruz-Sánchez, Antidepressant-like effects of two commercially available products of Hypericum perforatum in the forced swim test: A long-term study, J. Med. Plants Res. 4(2) (2010)131–137.
  39. M. J. Detke, M. Rickels and I. Lucki, Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants, Psychopharmacology 121 (1995) 66–72; https://doi.org/10.1007/bf02245592
  40. O. V. Bogdanova, S. Kanekar, K. E. D’Anci and P. F. Renshaw, Factors influencing behavior in the forced swim test, Physiol. Behav. 118 (2013) 227–239; https://doi.org/10.1016/j.physbeh.2013.05.012
  41. J. F. Rodríguez-Landa, L. J. German-Ponciano, A. Puga-Olguín and O. J. Olmos-Vázquez, Pharmacological, neurochemical, and behavioral mechanisms underlying the anxiolytic-and antidepressant-like effects of flavonoid chrysin, Molecules 27(11) (2022) Article ID 3551 (17 pages); https://doi.org/10.3390/molecules27113551
  42. T. Farkhondeh, S. Samarghandian, M. Azimin-Nezhad, F. Samini, Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats, Int. J. Clin. Exp. Med. 8(2) (2015) 2465–2470.
DOI: https://doi.org/10.2478/acph-2025-0029 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 505 - 516
Accepted on: Sep 15, 2025
Published on: Oct 10, 2025
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Gilberto-Uriel Rosas-Sánchez, León Jesús Germán-Ponciano, Juan Francisco Rodríguez-Landa, Ángel Alberto Puig-Lagunes, César Soria-Fregozo, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.