References
- P. Blier, Pharmacology of rapid-onset antidepressant treatment strategies, J. Clin. Psychiatry 77 (2016) e1–e7.
- P. K. Gillman, Serotonin toxicity: A sometimes fatal complication of combined serotonergic drugs, J. Psychopharmacol. 34 (2020) 476–492.
- J. Wolff, P. Reißner, G. Hefner, C. Normann, K. Kaier, H. Binder, C. Hiemke, S. Toto, K. Domschke, M. Marschollek and A. Klimke C. Hiemke, S. Toto, K. Domschke, M. Marschollek and A. Klimke, Pharmacotherapy, drug-drug interactions and potentially inappropriate medication in depressive disorders, PLoS One 16 (2021) e0255192 (16 pages); https://doi.org/10.1371/journal.pone.0255192
- M. Olivares-Nazario, A. Fernández-Guasti and L. Martínez-Mota, Age-related changes in the anti-depressant-like effect of desipramine and fluoxetine in the rat forced-swim test, Behav. Pharmacol. 27(1) (2016) 22–28. https://doi.org/10.1097/FBP.0000000000000175
- A. F. Carvalho, M. S. Sharma, A. R. Brunoni, E. Vieta and G. A. Fava, The safety, tolerability and risks associated with the use of newer generation antidepressant drugs: a critical review of the literature, Psychother. Psychosom. 85(5) (2016) 270–288; https://doi.org/10.1159/000447034
- D. A. Mrazek, J. C. Hornberger, C. A. Altar and I. Degtiar, A review of the clinical, economic, and societal burden of treatment-resistant depression: 1996–2013, Psychiatr. Serv. 65(8) (2014) 977–987; https://doi.org/10.1176/appi.ps.201300059
- V. S. Pereira and V. A. Hiroaki-Sato, A brief history of antidepressant drug development: from tricyclics to beyond ketamine, Acta Neuropsychiatr. 30 (2018) 307–322; https://doi.org/10.1017/neu.2017.39
- J. F. Rodríguez-Landa and C. M. Contreras, A review of clinical and experimental observations about antidepressant actions and side effects produced by Hypericum perforatum extracts, Phyto-medicine 10(8) (2003) 688–699; https://doi.org/10.1078/0944-7113-00340
- J. F. Rodríguez-Landa, F. Hernández-López, J. Cueto-Escobedo, E. V. Herrera-Huerta, E. Rivadeneyra-Domínguez, B. Bernal-Morales and E. Romero-Avendaño, Chrysin (5,7-dihydroxyflavone) exerts anxiolytic-like effects through GABAA receptors in a surgical menopause model in rats, Biomed. Pharmacother. 109 (2019) 2387–2395; https://doi.org/10.1016/j.biopha.2018.11.111
- L. J. German-Ponciano, G. U. Rosas-Sánchez, S. I. Ortiz-Guerra, C. Soria-Fregozo and J. F. Rodríguez-Landa, Effects of chrysin on mRNA expression of 5-HT1A and 5-HT2A receptors in the raphe nuclei and hippocampus, Rev. Bras. Farmacogn. 31 (2021) 353–360; https://doi.org/10.1007/s43450-021-00164-3
- A. Alizadeh, Y. Pourfallah-Taft, M. Khoshnazar, A. Safdari, S. V. Komari, M. Zanganeh and M. Naziri, Flavonoids against depression: A comprehensive review of literature, Front. Pharmacol. 15 (2024) Article ID 1411168 (26 pages); https://doi.org/10.3389/fphar.2024.1411168
- M. Barbarić, K. Mišković, M. Bojić, M. B. Lončar, A. Smolčić-Bubalo, Ž. Debeljak and M. Medić-Šarić, Chemical composition of the ethanolic propolis extracts and its effect on HeLa cells, J. Ethnopharmacol. 135(3) (2011) 772–778; https://doi.org/10.1016/j.jep.2011.04.015
- E. Middleton, C. Kandaswami and T. C. Theoharides, The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer, Pharmacol. Rev. 52(4) (2000) 673–751; https://doi.org/10.1016/S0031-6997(24)01472-8
- M. S. Zarzecki, S. M. Araujo, V. C. Bortolotto, M. T. de Paula, C. R. Jesse and M. Prigol, Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice, Toxicol. Rep. 1 (2014) 200–208; https://doi.org/10.1016/j.toxrep.2014.02.003
- S. F. Nabavi, N. Braidy, S. Habtemariam, I. E. Orhan, M. Daglia, A. Manayi and S. M. Nabavi, Neuro-protective effects of chrysin: From chemistry to medicine, Neurochem. Int. 90 (2015) 224–231; https://doi.org/10.1016/j.neuint.2015.09.006
- C. B. Filho, C. R. Jesse, F. Donato, R. Giacomeli, L. Del Fabbro, M. da Silva Antunes, M. G. De Gomes and L. C. Souza, Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+, K+-ATPase activity in the hippocampus and prefrontal cortex of mice: Antidepressant effect of chrysin, Neuroscience 289 (2015) 367–380; https://doi.org/10.1016/j.neuroscience.2014.12.048
- C. Borges Filho, C. R. Jesse, F. Donato, L. Del Fabbro, M. G. de Gomes, A. T. R. Goes and S. P. Boeira, Neurochemical factors associated with the antidepressant-like effect of flavonoid chrysin in chronically stressed mice, Eur. J. Pharmacol. 791 (2016) 284–296; https://doi.org/10.1016/j.ejphar.2016.09.005
- V. C. Bortolotto, F. C. Pinheiro, S. M. Araujo, M. R. Poetini, B. S. Bertolazi, M. T. de Paula and M. Prigol, Chrysin reverses the depressive-like behavior induced by hypothyroidism in female mice by regulating hippocampal serotonin and dopamine, Eur. J. Pharmacol. 822 (2018) 78–84; https://doi.org/10.1016/j.ejphar.2016.09.005
- V. E. Tseilikman, O. B. Tseilikman, M. N. Karpenko, D. S. Traktirov, D. A. Obukhova, V. A. Shatilov and J. Novak, Unraveling the serotonergic mechanism of stress-related anxiety: Focus on co-treatment with resveratrol and selective serotonin reuptake inhibitors, Biomedicines 12(11) (2024) Article ID 2455 (21 pages); https://doi.org/10.3390/biomedicines12112455
- B. Valdés-Sustaita, C. López-Rubalcava, M. E. González-Trujano, C. García-Viguera and E. Estrada-Camarena, Aqueous extract of pomegranate alone or in combination with citalopram produces antidepressant-like effects in an animal model of menopause: participation of estrogen receptors, Int. J. Mol. Sci. 18(12) (2017) Article ID 2643 (13 pages); https://doi.org/10.3390/ijms18122643
- National Research Council, Guide for the Care and Use of Laboratory Animals, 8th ed., National Academies Press, Washington, DC 2011, ISBN 978-0-309-15400-0.
- Estados Unidos Mexicanos, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, Norma Oficial Mexicana Nom-062-Zoo-1999, Especificaciones Tecnicas Para La Produccion, Cuidado y Uso de los Animales de Laboratorio, Diario Oficial (Primera Sección), pp. 107, Aug 22, 2001; https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf; last access date March 10, 2025.
- W. M. S. Russell, R. L. Burch and C. W. Hume, The Principles of Humane Experimental Technique, Johns Hopkins Bloomberg School of Public Health, Baltimore 2005.
- S. G. Sotocinal, R. E. Sorge, A. Zaloum, A. H. Tuttle, L. J. Martin, J. S. Wieskopf, J. C. S. Mapplebeck, P. Wei, S. Zhan, S. Zhang, J. J. McDougall, O. D. King and J. S. Mogil, The rat grimace scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions, Mol. Pain 7 (2011) Article ID 55 (10 pages); https://doi.org/10.1186/1744-8069-7-55
- L. J. Germán-Ponciano, A. Puga-Olguín, M. de Jesús Rovirosa-Hernández, M. Caba, E. Meza and J. F. Rodríguez-Landa, Differential effects of acute and chronic treatment with the flavonoid chrysin on anxiety-like behavior and Fos immunoreactivity in the lateral septal nucleus in rats, Acta Pharm. 70(3) (2020) 387–397; https://doi.org/10.2478/acph-2020-0022
- R. D. Porsolt, M. Le Pichon and M. Jalfre, Depression: A new animal model sensitive to antidepressant treatments, Nature 266 (1977) 730–732; https://doi.org/10.1038/266730a0
- J. F. Rodríguez-Landa, J. Cueto-Escobedo, A. Puga-Olguín, E. Rivadeneyra-Domínguez, B. Bernal-Morales, E. V. Herrera-Huerta and A. Santos-Torres, The phytoestrogen genistein produces similar effects as 17β-estradiol on anxiety-like behavior in rats at 12 weeks after ovariectomy, BioMed Res. Int. 2017 (2017) Article ID 9073816 (10 pages); https://doi.org/10.1155/2017/9073816
- A. Puga-Olguín, J. F. Rodríguez-Landa, M. de Jesús Rovirosa-Hernández, L. J. Germán-Ponciano, M. Caba, E. Meza and O. J. Olmos-Vázquez, Long-term ovariectomy increases anxiety-and despair-like behaviors associated with lower Fos immunoreactivity in the lateral septal nucleus in rats, Behav. Brain Res. 360 (2019) 185–195; https://doi.org/10.1016/j.bbr.2018.12.017
- J. Cueto-Escobedo, J. Andrade-Soto, M. Lima-Maximino, C. Maximino, F. Hernández-López and J. F. Rodríguez-Landa, Involvement of GABAergic system in the antidepressant-like effects of chrysin (5,7-dihydroxyflavone) in ovariectomized rats in the forced swim test: Comparison with Neurosteroids, Behav. Brain Res. 386 (2020) Article ID 112590; https://doi.org/10.1016/j.bbr.2020.112590
- G. U. Rosas-Sánchez, L. J. Germán-Ponciano and J. F. Rodríguez-Landa, Considerations of pool dimensions in the forced swim test in predicting the potential antidepressant activity of drugs, Front. Behav. Neurosci. 15 (2022) Article ID 757348 (7 pages); https://doi.org/10.3389/fnbeh.2021.757348
- M. J. Detke, J. Johnson and I. Lucki, Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression, Exp. Clin. Psychopharmacol. 5(2) (1997) 107–112; https://doi.org/10.1037/1064-1297.5.2.107
- G. Guillén-Ruiz, B. Bernal-Morales, A. K. Limón-Vázquez, O. J. Olmos-Vázquez and J. F. Rodríguez-Landa, Involvement of the GABAA receptor in the antidepressant-like effects produced by low and high doses of the flavonoid chrysin in the rat: a longitudinal study, J. Integr. Neurosci. 23(3) (2024) Article ID 51 (13 pages); https://doi.org/10.31083/j.jin2303051
- M. Rojas-Carvajal, J. Fornaguera, A. Mora-Gallegos and J. C. Brenes, Testing experience and environmental enrichment potentiated open-field habituation and grooming behaviour in rats, Anim. Behav. 137 (2018) 225–235; https://doi.org/10.1016/j.anbehav.2018.01.018
- V. Castagné, R. D. Porsolt and P. Moser, Use of latency to immobility improves detection of antidepressant-like activity in the behavioral despair test in the mouse, Eur. J. Pharmacol. 616(1–3) (2009) 128–133; https://doi.org/10.1016/j.ejphar.2009.06.018
- E. R. Trunnell, J. Baines, S. Farghali, T. Jackson, K. Jayne, R. Smith and T. Stibbe, The need for guidance in antidepressant drug development: revisiting the role of the forced swim test and tail suspension test, Regul. Toxicol. Pharmacol. 151 (2024) Article ID 105666 (4 pages); https://doi.org/10.1016/j.yrtph.2024.105666
- C. M. Contreras, J. F. Rodríguez-Landa, A.G. Gutiérrez-García, B. Bernal-Morales, The lowest effective dose of fluoxetine in the forced swim test significantly affects the firing rate of lateral septal nucleus neurones in the rat, J. Psychopharmacol. 15(4) (2001) 231–236; https://doi.org/10.1177/026988110101500401
- J. F. Rodríguez-Landa, J. Cueto-Escobedo, L. Á. Flores-Aguilar, G. U. Rosas-Sánchez, M. D. J. Rovi-rosa-Hernández, F. García-Orduña, M. Carro-Juárez, The aqueous crude extracts of Montanoa frutescens and Montanoa grandiflora reduce immobility faster than fluoxetine through GABAA receptors in rats forced to swim, J. Evid.-Based Integr. Med. 23 (2018) Article ID 2515690X18762953 (12 pages); https://doi.org/10.1177/2515690X18762953
- R. Lozano-Hernández, J. F. Rodríguez-Landa, J. D. Hernández-Figueroa, M. Saavedra, F. R. Ramos-Morales and J. S. Cruz-Sánchez, Antidepressant-like effects of two commercially available products of Hypericum perforatum in the forced swim test: A long-term study, J. Med. Plants Res. 4(2) (2010)131–137.
- M. J. Detke, M. Rickels and I. Lucki, Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants, Psychopharmacology 121 (1995) 66–72; https://doi.org/10.1007/bf02245592
- O. V. Bogdanova, S. Kanekar, K. E. D’Anci and P. F. Renshaw, Factors influencing behavior in the forced swim test, Physiol. Behav. 118 (2013) 227–239; https://doi.org/10.1016/j.physbeh.2013.05.012
- J. F. Rodríguez-Landa, L. J. German-Ponciano, A. Puga-Olguín and O. J. Olmos-Vázquez, Pharmacological, neurochemical, and behavioral mechanisms underlying the anxiolytic-and antidepressant-like effects of flavonoid chrysin, Molecules 27(11) (2022) Article ID 3551 (17 pages); https://doi.org/10.3390/molecules27113551
- T. Farkhondeh, S. Samarghandian, M. Azimin-Nezhad, F. Samini, Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats, Int. J. Clin. Exp. Med. 8(2) (2015) 2465–2470.