Have a personal or library account? Click to login
Niosome-based delivery systems for olanzapine: Formulation, characterisation, and kinetic evaluation Cover

Niosome-based delivery systems for olanzapine: Formulation, characterisation, and kinetic evaluation

Open Access
|Oct 2025

References

  1. J. Paik, Olanzapine/Samidorphan: First approval, <em>Drugs</em> <bold>81</bold> (2021) 1431–1436; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s40265-021-01568-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s40265-021-01568-0</a>">https://doi.org/10.1007/s40265-021-01568-0</ext-link>
  2. P. Zubiaur, P. Soria-Chacartegui, G. Villapalos-García, J. J. Gordillo-Perdomo and F. Abad-Santos, The pharmacogenetics of treatment with olanzapine, <em>Pharmacogenomics</em> <bold>22</bold>(14) (2021) 939–958; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2217/pgs-2021-0051" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2217/pgs-2021-0051</a>">https://doi.org/10.2217/pgs-2021-0051</ext-link>
  3. M. Jovanović, K. Vučićević and B. Miljković, Understanding variability in the pharmacokinetics of atypical antipsychotics – focus on clozapine, olanzapine and aripiprazole population models, <em>Drug Metab. Rev.</em> <bold>52</bold>(1) (2020) 1–18; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/03602532.2020.1717517" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/03602532.2020.1717517</a>">https://doi.org/10.1080/03602532.2020.1717517</ext-link>
  4. V. Krishnamoorthy, A. Nagalingam, V. P. Ranjan Prasad, S. Parameshwaran, N. George and P. Kaliyan, Characterization of olanzapine-solid dispersions, <em>Iran. J. Pharm. Res.</em> <bold>10</bold>(1) (2011) 13–24; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.22037/IJPR.2010.880" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.22037/IJPR.2010.880</a>">https://doi.org/10.22037/IJPR.2010.880</ext-link>
  5. J. H. Mao, L. Han, X. Q. Liu and Z. Jiao, Significant predictors for olanzapine pharmacokinetics: A systematic review of population pharmacokinetic studies, <em>Expert Rev. Clin. Pharmacol.</em> <bold>16</bold>(6) (2023) 575–588; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/17512433.2023.2219055" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/17512433.2023.2219055</a>">https://doi.org/10.1080/17512433.2023.2219055</ext-link>
  6. M. Ur Rehman, A. Rasul, M. I. Khan, M. Rasool, G. Abbas, F. Masood, I. Nazir, M. Iqbal, N. Islam, M. Hameed and P. Akhtar Shah, Oral bioavailability studies of niosomal formulations of cyclosporine A in albino rabbits, <em>Pak. J. Pharm. Sci.</em> <bold>34</bold>(1) (2021) 313–319.
  7. A. Shahiwala and A. Misra, Studies in topical application of niosomally entrapped nimesulide, <em>J. Pharm. Pharm. Sci.</em> <bold>5</bold>(3) (2002) 220–225; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://pubmed.ncbi.nlm.nih.gov/12553889">https://pubmed.ncbi.nlm.nih.gov/12553889</ext-link>
  8. P. L. Yeo, C. L. Lim, S. M. Chye, A. P. K. Ling and R. Y. Koh, Niosomes: A review of their structure, properties, methods of preparation, and medical applications, <em>Asian Biomed.</em> <bold>11</bold>(4) (2018) 301–314; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1515/abm-2018-0002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/abm-2018-0002</a>">https://doi.org/10.1515/abm-2018-0002</ext-link>
  9. Y. K. Lin, C. Y. Hsiao, A. Alshetaili, I. A. Aljuffali, E. L. Chen and J. Y. Fang, Lipid-based nanoformulation optimization for achieving cutaneous targeting: Niosomes as the potential candidates to fulfill this aim, <em>Eur. J. Pharm. Sci.</em> <bold>186</bold> (2023) Article ID 106458 (13 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ejps.2023.106458" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ejps.2023.106458</a>">https://doi.org/10.1016/j.ejps.2023.106458</ext-link>
  10. M. Moghtaderi, K. Sedaghatnia, M. Bourbour, M. Fatemizadeh, Z. S. M. Moghaddam, F. Hejabi, F. Heidari, S. Quazi and B. Farasati Far, Niosomes: A novel targeted drug delivery system for cancer, <em>Med. Oncol.</em> <bold>39</bold> (2022) Article ID 240; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s12032-022-01836-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12032-022-01836-3</a>">https://doi.org/10.1007/s12032-022-01836-3</ext-link>
  11. D. A. Deulkar, J. A. Kubde, P. R. Hatwar, R. L. Bakal and A. N. Motwani, Niosomes: A promising approach for targeted drug delivery, <em>GSC Biol. Pharm. Sci.</em> <bold>29</bold>(1) (2024) 179–195; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.30574/gscbps.2024.29.1.0341" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.30574/gscbps.2024.29.1.0341</a>">https://doi.org/10.30574/gscbps.2024.29.1.0341</ext-link>
  12. S. Gao, Z. Sui, Q. Jiang and Y. Jiang, Functional evaluation of niosomes utilizing surfactants in nanomedicine applications, <em>Int. J. Nanomedicine</em> <bold>2024</bold> (2024) 10283–10305; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2147/IJN.S480639" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2147/IJN.S480639</a>">https://doi.org/10.2147/IJN.S480639</ext-link>
  13. M. Yaghoobian, A. Haeri, N. Bolourchian, S. Shahhosseni and S. Dadashzadeh, The impact of surfactant composition and surface charge of niosomes on the oral absorption of repaglinide as a BCS II model drug, <em>Int. J. Nanomedicine</em> <bold>2020</bold> (2020) 8767–8781; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2147/IJN.S261932" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2147/IJN.S261932</a>">https://doi.org/10.2147/IJN.S261932</ext-link>
  14. B. D. Coday, T. Luxbacher, A. E. Childress, N. Almaraz, P. Xu and T. Y. Cath, Indirect determination of zeta potential at high ionic strength: Specific application to semipermeable polymeric membranes, <em>J. Memb. Sci.</em> <bold>478</bold> (2015) 58–64; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.memsci.2014.12.047" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.memsci.2014.12.047</a>">https://doi.org/10.1016/j.memsci.2014.12.047</ext-link>
  15. A. K. Sailaja and M. Shreya, Preparation and characterization of naproxen loaded niosomes by ether injection method, <em>Nano Biomed. Eng.</em> <bold>10</bold>(2) (2018) 143–149; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5101/nbe.v10i2.p174-180" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5101/nbe.v10i2.p174-180</a>">https://doi.org/10.5101/nbe.v10i2.p174-180</ext-link>
  16. A. Moammeri, M. M. Chegeni, H. Sahrayi, R. Ghafelehbashi, F. Memarzadeh, A. Mansouri, I. Akbarzadeh, M. Sadat Abtahi, F. Hejabi and Q. Ren, Current advances in niosomes applications for drug delivery and cancer treatment, <em>Mater. Today Bio.</em> <bold>23</bold> (2023) Article ID 100837 (20 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.mtbio.2023.100837" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.mtbio.2023.100837</a>">https://doi.org/10.1016/j.mtbio.2023.100837</ext-link>
  17. P. Pandey, R. Pal, V. K. R. Khadam, H. S. Chawra and R. P. Singh, Advancement and characteristics of non-ionic surfactant vesicles (niosome) and their application for analgesics, <em>Int. J. Pharm. Investig.</em> <bold>14</bold>(3) (2024) 616–632; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5530/IJPI.14.3.74" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5530/IJPI.14.3.74</a>">https://doi.org/10.5530/IJPI.14.3.74</ext-link>
  18. D. Pozzi, R. Caminiti, C. Marianecci, M. Carafa, E. Santucci, S. C. De Sanctis and G. Caracciolo, Effect of cholesterol on the formation and hydration behavior of solid-supported niosomal membranes, <em>Langmuir</em> <bold>26</bold>(4) (2010) 2268–2273; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/la9026877" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/la9026877</a>">https://doi.org/10.1021/la9026877</ext-link>
  19. M. H. Nematollahi, A. Pardakhty, M. Torkzadeh-Mahanai, M. Mehrabani and G. Asadikaram, Changes in physical and chemical properties of niosome membrane induced by cholesterol: A promising approach for niosome bilayer intervention, <em>RSC Adv.</em> <bold>7</bold> (2017) Article ID 49463 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/C7RA07834J" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/C7RA07834J</a>">https://doi.org/10.1039/C7RA07834J</ext-link>
  20. F. Nowroozi, A. Almasi, J. Javidi, A. Haeri and S. Dadashzadeh, Effect of surfactant type, cholesterol content and various downsizing methods on the particle size of niosomes, <em>Iran. J. Pharm. Res.</em> <bold>17</bold> (2018) 1–13.
  21. P. Palozza, R. Muzzalupo, S. Trombino, A. Valdannini and N. Picci, Solubilization and stabilization of β-carotene in niosomes: Delivery to cultured cells, <em>Chem. Phys. Lipids</em> <bold>139</bold>(1) (2006) 32–42; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.chemphyslip.2005.09.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.chemphyslip.2005.09.004</a>">https://doi.org/10.1016/j.chemphyslip.2005.09.004</ext-link>
  22. A. Manosroi, P. Wongtrakul, J. Manosroi, H. Sakai, F. Sugawara, M. Yuasa and M. Abe, Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol, <em>Colloids Surf. B Biointerfaces</em> <bold>30</bold>(1–2) (2003) 129–138; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0927-7765(03)00080-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0927-7765(03)00080-8</a>">https://doi.org/10.1016/S0927-7765(03)00080-8</ext-link>
  23. N. Ruwizhi and B. A. Aderibigbe, The efficacy of cholesterol-based carriers in drug delivery, <em>Molecules</em> <bold>25</bold>(18) (2020) Article ID 4330 (40 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/molecules25184330" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/molecules25184330</a>">https://doi.org/10.3390/molecules25184330</ext-link>
  24. N. S. Heredia, K. Vizuete, M. Flores-Calero, V. Pazmiño, F. K. Pilaquinga, B. Kumar and A. Debut, Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid), <em>PLoS One</em> <bold>17</bold> (2022) e0264825 (18 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1371/journal.pone.0264825" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0264825</a>">https://doi.org/10.1371/journal.pone.0264825</ext-link>
  25. I. Y. Wu, S. Bala, N. Škalko-Basnet and M. P. di Cagno, Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes, <em>Eur. J. Pharm. Sci.</em> <bold>138</bold> (2019) Article ID 105026 (14 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ejps.2019.105026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ejps.2019.105026</a>">https://doi.org/10.1016/j.ejps.2019.105026</ext-link>
  26. S. Zolghadri, A. G. Asad, F. Farzi, F. Ghajarzadeh, Z. Habibi, M. Rahban, S. Zolghadri and A. Stanek, Span 60/cholesterol niosomal formulation as a suitable vehicle for gallic acid delivery with potent in vitro antibacterial, antimelanoma, and antityrosinase activity, <em>Pharmaceuticals</em> <bold>16</bold>(12) (2023) Article ID 1680; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ph16121680" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ph16121680</a>">https://doi.org/10.3390/ph16121680</ext-link>
  27. B. Korchowiec, M. Paluch, Y. Corvis and E. Rogalska, A Langmuir film approach to elucidating interactions in lipid membranes: 1,2-dipalmitoyl-<em>sn</em>-glycero-3-phosphoethanolamine/cholesterol/metal cation systems, <em>Chem. Phys. Lipids</em> <bold>144</bold>(2) (2006) 127–136; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.chemphyslip.2006.08.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.chemphyslip.2006.08.005</a>">https://doi.org/10.1016/j.chemphyslip.2006.08.005</ext-link>
  28. A. Rasul, M. Imran Khan, M. U. Rehman, G. Abbas, N. Aslam, S. Ahmad, K. Abbas, P. Akhtar Shah, M. Iqbal,A. M. Ahmed Al Subari, T. Shaheer and S. Shas, In vitro characterization and release studies of combined nonionic surfactant-based vesicles for the prolonged delivery of an immunosuppressant model drug, <em>Int. J. Nanomedicine</em> <bold>2020</bold> (2020) 7937–7949; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2147/IJN.S268846" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2147/IJN.S268846</a>">https://doi.org/10.2147/IJN.S268846</ext-link>
  29. M. H. Mowlaeifar, M. Niakousari, S. M. H. Hosseini and M. H. Eskandari, Effect of cholesterol to vitamin D3 and Span 60 to Tween 60 ratios on the characteristics of niosomes: Variable optimization using response surface methodology (RSM), <em>J. Food Qual.</em> <bold>2022</bold> (2022) Article ID 7005531 (8 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1155/2022/7005531" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2022/7005531</a>">https://doi.org/10.1155/2022/7005531</ext-link>
  30. G. Abdelbary and N. El-gendy, Niosome-encapsulated gentamicin for ophthalmic controlled delivery, <em>AAPS PharmSciTech</em> <bold>9</bold> (2008) 740–747; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1208/s12249-008-9105-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1208/s12249-008-9105-1</a>">https://doi.org/10.1208/s12249-008-9105-1</ext-link>
  31. P. Balakrishnan, B. J. Lee, D. H. Oh, J. O. Kim, Y. I. Lee, D. D. Kim, J.-P. Jee, Y.-B. Lee, J. S. Woo, C. S. Yong and H.-G. Choi, Enhanced oral bioavailability of Coenzyme Q10 by self-emulsifying drug delivery systems, <em>Int. J. Pharm.</em> <bold>374</bold>(1–2) (2009) 66–72; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijpharm.2009.03.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijpharm.2009.03.008</a>">https://doi.org/10.1016/j.ijpharm.2009.03.008</ext-link>
DOI: https://doi.org/10.2478/acph-2025-0026 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 531 - 545
Accepted on: Jul 25, 2025
Published on: Oct 10, 2025
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2025 Samiah Alhabardi, Basmah Aldosari, Gadah Al-Hamoud, Shog Moahmmed Alali, Reema Al Khbiah, Lama Albulayhi, Wedad Sarawi, Naifa Alenazi, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.