Have a personal or library account? Click to login
Scutellarin mitigates LPS-ATP-induced cardiomyocyte pyroptosis through the inhibition of the NLRP3/caspase-1/GSDMD signalling pathway Cover

Scutellarin mitigates LPS-ATP-induced cardiomyocyte pyroptosis through the inhibition of the NLRP3/caspase-1/GSDMD signalling pathway

Open Access
|Oct 2025

References

  1. S. Toldo and A. Abbate, The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases, Nat. Rev. Cardiol. 21 (2024) 219–237; https://doi.org/10.1038/s41569-023-00946-3
  2. S. Toldo, E. Mezzaroma, L. F. Buckley, N. Potere, M. Di Nisio, G. Biondi-Zoccai, B. W. Van Tassell and A. Abbate, Targeting the NLRP3 inflammasome in cardiovascular diseases; Pharmacol. Ther. 236 (2022) Article ID 108053; https://doi.org/10.1016/j.pharmthera.2021.108053
  3. C. Pellegrini, A. Martelli, L. Antonioli, M. Fornai, C. Blandizzi and V. Calderone, NLRP3 inflamma-some in cardiovascular diseases: Pathophysiological and pharmacological implications, Med. Res. Rev. 41(4) (2021) 1890–1926; https://doi.org/10.1002/med.21781
  4. H. Y. Fang, X. N. Zhao, M. Zhang, Y. Y. Ma, J. L. Huang and P. Zhou, Beneficial effects of flavonoids on cardiovascular diseases by influencing NLRP3 inflammasome, ŠĚ−ŒŒŸŽ’−łŒ−„ŸŁǯ 31 (2023) 1715–1729; https://doi.org/10.1007/s10787-023-01249-2
  5. J. P. Li, S. Qiu, G. J. Tai, Y. M. Liu, W. Wei, M. M. Fu, P. Q. Fang, J. N. Otieno, T. Battulga, X. X. Li and M. Xu, NLRP3 inflammasome-modulated angiogenic function of EPC via PI3K/Akt/mTOR pathway in diabetic myocardial infarction, Cardiovasc. Diabetol. 24 (2025) Article ID 6 (23 pages); https://doi.org/10.1186/s12933-024-02541-3
  6. W. Zhou, C. Chen, Z. Chen, L. Liu, J. Jiang, Z. Wu, M. Zhao and Y. Chen, NLRP3: A novel mediator in cardiovascular disease, J. Immunol. Res. 2018 (2018) Article ID 5702103 (8 pages); https://doi.org/10.1155/2018/5702103
  7. J. Fu and H. Wu, Structural mechanisms of NLRP3 inflammasome assembly and activation, Annu. Rev. Immunol. 41 (2023) 301–316; https://doi.org/10.1146/annurev-immunol-081022-021207
  8. Y. Xie, G. Sun, Y. Tao, W. Zhang, S. Yang, L. Zhang, Y. Lu and G. Du, Current advances on the therapeutic potential of scutellarin: An updated review, Nat. Prod. Bioprospect. 14 (2024) Article ID 20 (15 pages); https://doi.org/10.1007/s13659-024-00441-3
  9. Y. Zhou, C. Gu, Y. Zhu, Y. Zhu, Y. Chen, L. Shi, Y. Yang, X. Lu and H. Pang, Pharmacological effects and the related mechanism of scutellarin on inflammation-related diseases: A review, Front Pharmacol. 15 (2024) Article ID 1463140 (15 pages); https://doi.org/10.3389/fphar.2024.1463140
  10. X. Zhang, T. Yin, Y. Wang, J. Du, J. Dou and X. Zhang, Effects of scutellarin on the mechanism of cardiovascular diseases: A review, Front. Pharmacol. 14 (2024) Article ID 1329969 (19 pages); https://doi.org/10.3389/fphar.2023.1329969
  11. L. J. Xu, R. C. Chen, X. Y. Ma, Y. Zhu, G. B. Sun and X. B. Sun, Scutellarin protects against myocar-dial ischemia-reperfusion injury by suppressing NLRP3 inflammasome activation, Phytomedicine 68 (2020) Article ID Article ID 153169 (11 pages); https://doi.org/10.1016/j.phymed.2020.153169
  12. H. Sharif, L. Wang, W. L. Wang, V. G. Magupalli, L. Andreeva, Q. Qiao, A. V. Hauenstein, Z. Wu, G. Núñez, Y. Mao and H. Wu, Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome, Nature 570 (2019) 338–343; https://doi.org/10.1038/s41586-019-1295-z
  13. B. T. Fahr, T. O’Brien, P. Pham, N. D. Waal, S. Baskaran, B. C. Raimundo, J. W. Lam, M. M. Sopko, H. E. Purkey and M. J. Romanowski, Tethering identifies fragment that yields potent inhibitors of human caspase-1, Bioorg. Med. Chem. Lett. 16(3) (2006) 559–562; https://doi.org/10.1016/j.bmcl.2005.10.048
  14. S. Kuang, J. Zheng, H. Yang, S. Li, S. Duan, Y. Shen, C. Ji, J. Gan, X. W. Xu and J. Li, Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis, Proc. Natl. Acad. Sci. USA 114(40) (2017) 10642–10647. https://doi.org/10.1073/pnas.1708194114
  15. Y. Liu, X. Yang, J. Gan, S. Chen, Z. X. Xiao and Y. Cao, CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting, Nucleic Acids Res. 50(W1) (2022) W159-W164; https://doi.org/10.1093/nar/gkac394
  16. X. N. Zhao, H. M. Ding, Y. Y. Ma, L. Wang and P. Zhou, Ling-Gui-Zhu-Gan decoction inhibits cardiomyocyte pyroptosis via the NLRP3/Caspase-1 signaling pathway, Tissue Cell. 91 (2024) Article ID 102588; https://doi.org/10.1016/j.tice.2024.102588
  17. X. Chen, Y. Li, J. Li, T. Liu, Q. Jiang, Y. Hong, Q. Wang, C. Li, D. Guo and Y. Wang, Qishen granule (QSG) exerts cardioprotective effects by inhibiting NLRP3 inflammasome and pyroptosis in myocardial infarction rats, J. Ethnopharmacol. 285 (2025) Article ID 114841; https://doi.org/10.1016/j.jep.2021.114841
  18. Y. Qiu, Y. Huang, M. Chen, Y. Yang, X. Li and W. Zhang, Mitochondrial DNA in NLRP3 inflamma-some activation, Int. Immunopharmacol. 108 (2022) Article ID 108719; https://doi.org/10.1016/j.intimp.2022.108719
  19. N. Kelley, D. Jeltema, Y. Duan and Y. He, The NLRP3 inflammasome: An overview of mechanisms of activation and regulation, Int. J. Mol. Sci. 20(13) (2019) Article ID 3328 (24 pages); https://doi.org/10.3390/ijms20133328
  20. Y. Huang, W. Xu and R. Zhou, NLRP3 inflammasome activation and cell death, Cell Mol. Immunol. 18 (2021) 2114–2127; https://doi.org/10.1038/s41423-021-00740-6
  21. A. Rauf, M. Shah, D. M. Yellon and S. M. Davidson, Role of caspase 1 in ischemia/reperfusion injury of the myocardium, J. Cardiovasc. Pharmacol. 74(3) (2019) 194–200; https://doi.org/10.1097/FJC.0000000000000694
  22. B. Zhang, G. Liu, B. Huang, H. Liu, H. Jiang, Z. Hu and J. Chen, KDM3A attenuates myocardial ischemic and reperfusion injury by ameliorating cardiac microvascular endothelial cell pyroptosis, Oxid. Med. Cell Longev. 2022 (2022) Article ID 4622520 (19 pages); https://doi.org/10.1155/2022/4622520
  23. S. Toldo and A. Abbate, The NLRP3 inflammasome in acute myocardial infarction, Nat. Rev. Cardiol. 15 (2018) 203–214; https://doi.org/10.1038/nrcardio.2017.161
  24. Y. S. Tang, Y. H. Zhao, Y. Zhong, X. Z. Li, J. X. Pu, Y. C. Luo and Q. L. Zhou, Neferine inhibits LPS-ATP-induced endothelial cell pyroptosis via regulation of ROS/NLRP3/Caspase-1 signaling pathway, Inflamm. Res. 68 (2019) 727–738. https://doi.org/10.1007/s00011-019-01256-6
  25. E. L. Johnston, B. Heras, T. A. Kufer and M. Kaparakis-Liaskos, Detection of bacterial membrane vesicles by NOD-like receptors, Int. J. Mol. Sci. 22(3) (2021) Article ID 1005 (14 pages); https://doi.org/10.3390/ijms22031005
  26. H. Kong, H. Zhao, T. Chen, Y. Song and Y. Cui, Targeted P2X7/NLRP3 signaling pathway against inflammation, apoptosis, and pyroptosis of retinal endothelial cells in diabetic retinopathy, Cell Death Dis. 13 (2022) Article ID 336 (13 pages); https://doi.org/10.1038/s41419-022-04786-w
  27. S. Nie, S. Zhang, R. Wu, Y. Zhao, Y. Wang, X. Wang, M. Zhu and P. Huang, Scutellarin: Pharmacological effects and therapeutic mechanisms in chronic diseases, Front Pharmacol. 15 (2024) Article ID 1470879 (23 pages); https://doi.org/10.3389/fphar.2024.1470879
  28. J. K. Li, Z. P. Song and X. Z. Hou, Scutellarin ameliorates ischemia/reperfusion injury-induced cardiomyocyte apoptosis and cardiac dysfunction via inhibition of the cGAS-STING pathway, Exp. Ther. Med. 25(4) (2023) Article ID 155 (9 pages); https://doi.org/10.3892/etm.2023.11854
  29. X. Fan, Y. Wang, X. Li, T. Zhong, C. Cheng and Y. Zhang, Scutellarin alleviates liver injury in type 2 diabetic mellitus by suppressing hepatocyte apoptosis in vitro and in vivo, Chin. Herb Med. 15(4) (2023) 542–548; https://doi.org/10.1016/j.chmed.2023.03.007
  30. L. Peng, L. Wen, Q. F. Shi, F. Gao, B. Huang, J. Meng, C. P. Hu and C. M. Wang, Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation, Cell Death Dis. 11 (2020) Article ID 978 (16 pages); https://doi.org/10.1038/s41419-020-03178-2
  31. W. C. Gao, T. H. Yang, B. B. Wang, Q. Liu, Q. Li, Z. H. Zhou, C. B. Zheng and P. Chen, Scutellarin inhibits oleic acid induced vascular smooth muscle foam cell formation via activating autophagy and inhibiting NLRP3 inflammasome activation, Clin. Exp. Pharmacol. Physiol. 51(4) (2024) e13845; https://doi.org/10.1111/1440-1681.13845
  32. Z. Wang, P. Zhang, Y. Zhao, F. Yu, S. Wang, K. Liu, X. Cheng, J. Shi, Q. He, Y. Xia and L. Cheng, Scutellarin protects against mitochondrial reactive oxygen species-dependent NLRP3 inflamma-some activation to attenuate intervertebral disc degeneration, Front. Bioeng. Biotechnol. 10 (2022) Article ID 883118 (17 pages); https://doi.org/10.3389/fbioe.2022.883118
  33. H. T. Bian, G. H. Wang, J. J. Huang, L. Liang, L. Xiao, and H. L. Wang, Scutellarin protects against lipopolysaccharide-induced behavioral deficits by inhibiting neuroinflammation and microglia activation in rats, Int. Immunopharmacol. 88 (2020) Article ID106943 (7 pages); https://doi.org/10.1016/j.intimp.2020.106943
DOI: https://doi.org/10.2478/acph-2025-0025 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 517 - 530
Accepted on: Jun 24, 2025
Published on: Oct 10, 2025
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Xiao-Wei Li, Yun-Fei Chen, Lan Zhou, Peng Zhou, Peng Huang, Qian Niu, Jin-Cai Li, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.