References
- S. Toldo and A. Abbate, The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases, Nat. Rev. Cardiol. 21 (2024) 219–237; https://doi.org/10.1038/s41569-023-00946-3
- S. Toldo, E. Mezzaroma, L. F. Buckley, N. Potere, M. Di Nisio, G. Biondi-Zoccai, B. W. Van Tassell and A. Abbate, Targeting the NLRP3 inflammasome in cardiovascular diseases; Pharmacol. Ther. 236 (2022) Article ID 108053; https://doi.org/10.1016/j.pharmthera.2021.108053
- C. Pellegrini, A. Martelli, L. Antonioli, M. Fornai, C. Blandizzi and V. Calderone, NLRP3 inflamma-some in cardiovascular diseases: Pathophysiological and pharmacological implications, Med. Res. Rev. 41(4) (2021) 1890–1926; https://doi.org/10.1002/med.21781
- H. Y. Fang, X. N. Zhao, M. Zhang, Y. Y. Ma, J. L. Huang and P. Zhou, Beneficial effects of flavonoids on cardiovascular diseases by influencing NLRP3 inflammasome, ŠĚ−ŒŒŸŽ’−łŒ−„ŸŁǯ 31 (2023) 1715–1729; https://doi.org/10.1007/s10787-023-01249-2
- J. P. Li, S. Qiu, G. J. Tai, Y. M. Liu, W. Wei, M. M. Fu, P. Q. Fang, J. N. Otieno, T. Battulga, X. X. Li and M. Xu, NLRP3 inflammasome-modulated angiogenic function of EPC via PI3K/Akt/mTOR pathway in diabetic myocardial infarction, Cardiovasc. Diabetol. 24 (2025) Article ID 6 (23 pages); https://doi.org/10.1186/s12933-024-02541-3
- W. Zhou, C. Chen, Z. Chen, L. Liu, J. Jiang, Z. Wu, M. Zhao and Y. Chen, NLRP3: A novel mediator in cardiovascular disease, J. Immunol. Res. 2018 (2018) Article ID 5702103 (8 pages); https://doi.org/10.1155/2018/5702103
- J. Fu and H. Wu, Structural mechanisms of NLRP3 inflammasome assembly and activation, Annu. Rev. Immunol. 41 (2023) 301–316; https://doi.org/10.1146/annurev-immunol-081022-021207
- Y. Xie, G. Sun, Y. Tao, W. Zhang, S. Yang, L. Zhang, Y. Lu and G. Du, Current advances on the therapeutic potential of scutellarin: An updated review, Nat. Prod. Bioprospect. 14 (2024) Article ID 20 (15 pages); https://doi.org/10.1007/s13659-024-00441-3
- Y. Zhou, C. Gu, Y. Zhu, Y. Zhu, Y. Chen, L. Shi, Y. Yang, X. Lu and H. Pang, Pharmacological effects and the related mechanism of scutellarin on inflammation-related diseases: A review, Front Pharmacol. 15 (2024) Article ID 1463140 (15 pages); https://doi.org/10.3389/fphar.2024.1463140
- X. Zhang, T. Yin, Y. Wang, J. Du, J. Dou and X. Zhang, Effects of scutellarin on the mechanism of cardiovascular diseases: A review, Front. Pharmacol. 14 (2024) Article ID 1329969 (19 pages); https://doi.org/10.3389/fphar.2023.1329969
- L. J. Xu, R. C. Chen, X. Y. Ma, Y. Zhu, G. B. Sun and X. B. Sun, Scutellarin protects against myocar-dial ischemia-reperfusion injury by suppressing NLRP3 inflammasome activation, Phytomedicine 68 (2020) Article ID Article ID 153169 (11 pages); https://doi.org/10.1016/j.phymed.2020.153169
- H. Sharif, L. Wang, W. L. Wang, V. G. Magupalli, L. Andreeva, Q. Qiao, A. V. Hauenstein, Z. Wu, G. Núñez, Y. Mao and H. Wu, Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome, Nature 570 (2019) 338–343; https://doi.org/10.1038/s41586-019-1295-z
- B. T. Fahr, T. O’Brien, P. Pham, N. D. Waal, S. Baskaran, B. C. Raimundo, J. W. Lam, M. M. Sopko, H. E. Purkey and M. J. Romanowski, Tethering identifies fragment that yields potent inhibitors of human caspase-1, Bioorg. Med. Chem. Lett. 16(3) (2006) 559–562; https://doi.org/10.1016/j.bmcl.2005.10.048
- S. Kuang, J. Zheng, H. Yang, S. Li, S. Duan, Y. Shen, C. Ji, J. Gan, X. W. Xu and J. Li, Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis, Proc. Natl. Acad. Sci. USA 114(40) (2017) 10642–10647. https://doi.org/10.1073/pnas.1708194114
- Y. Liu, X. Yang, J. Gan, S. Chen, Z. X. Xiao and Y. Cao, CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting, Nucleic Acids Res. 50(W1) (2022) W159-W164; https://doi.org/10.1093/nar/gkac394
- X. N. Zhao, H. M. Ding, Y. Y. Ma, L. Wang and P. Zhou, Ling-Gui-Zhu-Gan decoction inhibits cardiomyocyte pyroptosis via the NLRP3/Caspase-1 signaling pathway, Tissue Cell. 91 (2024) Article ID 102588; https://doi.org/10.1016/j.tice.2024.102588
- X. Chen, Y. Li, J. Li, T. Liu, Q. Jiang, Y. Hong, Q. Wang, C. Li, D. Guo and Y. Wang, Qishen granule (QSG) exerts cardioprotective effects by inhibiting NLRP3 inflammasome and pyroptosis in myocardial infarction rats, J. Ethnopharmacol. 285 (2025) Article ID 114841; https://doi.org/10.1016/j.jep.2021.114841
- Y. Qiu, Y. Huang, M. Chen, Y. Yang, X. Li and W. Zhang, Mitochondrial DNA in NLRP3 inflamma-some activation, Int. Immunopharmacol. 108 (2022) Article ID 108719; https://doi.org/10.1016/j.intimp.2022.108719
- N. Kelley, D. Jeltema, Y. Duan and Y. He, The NLRP3 inflammasome: An overview of mechanisms of activation and regulation, Int. J. Mol. Sci. 20(13) (2019) Article ID 3328 (24 pages); https://doi.org/10.3390/ijms20133328
- Y. Huang, W. Xu and R. Zhou, NLRP3 inflammasome activation and cell death, Cell Mol. Immunol. 18 (2021) 2114–2127; https://doi.org/10.1038/s41423-021-00740-6
- A. Rauf, M. Shah, D. M. Yellon and S. M. Davidson, Role of caspase 1 in ischemia/reperfusion injury of the myocardium, J. Cardiovasc. Pharmacol. 74(3) (2019) 194–200; https://doi.org/10.1097/FJC.0000000000000694
- B. Zhang, G. Liu, B. Huang, H. Liu, H. Jiang, Z. Hu and J. Chen, KDM3A attenuates myocardial ischemic and reperfusion injury by ameliorating cardiac microvascular endothelial cell pyroptosis, Oxid. Med. Cell Longev. 2022 (2022) Article ID 4622520 (19 pages); https://doi.org/10.1155/2022/4622520
- S. Toldo and A. Abbate, The NLRP3 inflammasome in acute myocardial infarction, Nat. Rev. Cardiol. 15 (2018) 203–214; https://doi.org/10.1038/nrcardio.2017.161
- Y. S. Tang, Y. H. Zhao, Y. Zhong, X. Z. Li, J. X. Pu, Y. C. Luo and Q. L. Zhou, Neferine inhibits LPS-ATP-induced endothelial cell pyroptosis via regulation of ROS/NLRP3/Caspase-1 signaling pathway, Inflamm. Res. 68 (2019) 727–738. https://doi.org/10.1007/s00011-019-01256-6
- E. L. Johnston, B. Heras, T. A. Kufer and M. Kaparakis-Liaskos, Detection of bacterial membrane vesicles by NOD-like receptors, Int. J. Mol. Sci. 22(3) (2021) Article ID 1005 (14 pages); https://doi.org/10.3390/ijms22031005
- H. Kong, H. Zhao, T. Chen, Y. Song and Y. Cui, Targeted P2X7/NLRP3 signaling pathway against inflammation, apoptosis, and pyroptosis of retinal endothelial cells in diabetic retinopathy, Cell Death Dis. 13 (2022) Article ID 336 (13 pages); https://doi.org/10.1038/s41419-022-04786-w
- S. Nie, S. Zhang, R. Wu, Y. Zhao, Y. Wang, X. Wang, M. Zhu and P. Huang, Scutellarin: Pharmacological effects and therapeutic mechanisms in chronic diseases, Front Pharmacol. 15 (2024) Article ID 1470879 (23 pages); https://doi.org/10.3389/fphar.2024.1470879
- J. K. Li, Z. P. Song and X. Z. Hou, Scutellarin ameliorates ischemia/reperfusion injury-induced cardiomyocyte apoptosis and cardiac dysfunction via inhibition of the cGAS-STING pathway, Exp. Ther. Med. 25(4) (2023) Article ID 155 (9 pages); https://doi.org/10.3892/etm.2023.11854
- X. Fan, Y. Wang, X. Li, T. Zhong, C. Cheng and Y. Zhang, Scutellarin alleviates liver injury in type 2 diabetic mellitus by suppressing hepatocyte apoptosis in vitro and in vivo, Chin. Herb Med. 15(4) (2023) 542–548; https://doi.org/10.1016/j.chmed.2023.03.007
- L. Peng, L. Wen, Q. F. Shi, F. Gao, B. Huang, J. Meng, C. P. Hu and C. M. Wang, Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation, Cell Death Dis. 11 (2020) Article ID 978 (16 pages); https://doi.org/10.1038/s41419-020-03178-2
- W. C. Gao, T. H. Yang, B. B. Wang, Q. Liu, Q. Li, Z. H. Zhou, C. B. Zheng and P. Chen, Scutellarin inhibits oleic acid induced vascular smooth muscle foam cell formation via activating autophagy and inhibiting NLRP3 inflammasome activation, Clin. Exp. Pharmacol. Physiol. 51(4) (2024) e13845; https://doi.org/10.1111/1440-1681.13845
- Z. Wang, P. Zhang, Y. Zhao, F. Yu, S. Wang, K. Liu, X. Cheng, J. Shi, Q. He, Y. Xia and L. Cheng, Scutellarin protects against mitochondrial reactive oxygen species-dependent NLRP3 inflamma-some activation to attenuate intervertebral disc degeneration, Front. Bioeng. Biotechnol. 10 (2022) Article ID 883118 (17 pages); https://doi.org/10.3389/fbioe.2022.883118
- H. T. Bian, G. H. Wang, J. J. Huang, L. Liang, L. Xiao, and H. L. Wang, Scutellarin protects against lipopolysaccharide-induced behavioral deficits by inhibiting neuroinflammation and microglia activation in rats, Int. Immunopharmacol. 88 (2020) Article ID106943 (7 pages); https://doi.org/10.1016/j.intimp.2020.106943