Have a personal or library account? Click to login
Scutellarin mitigates LPS-ATP-induced cardiomyocyte pyroptosis through the inhibition of the NLRP3/caspase-1/GSDMD signalling pathway Cover

Scutellarin mitigates LPS-ATP-induced cardiomyocyte pyroptosis through the inhibition of the NLRP3/caspase-1/GSDMD signalling pathway

Open Access
|Oct 2025

References

  1. S. Toldo and A. Abbate, The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases, <em>Nat. Rev. Cardiol</em>. <bold>21</bold> (2024) 219–237; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41569-023-00946-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41569-023-00946-3</a>">https://doi.org/10.1038/s41569-023-00946-3</ext-link>
  2. S. Toldo, E. Mezzaroma, L. F. Buckley, N. Potere, M. Di Nisio, G. Biondi-Zoccai, B. W. Van Tassell and A. Abbate, Targeting the NLRP3 inflammasome in cardiovascular diseases; <em>Pharmacol. Ther</em>. <bold>236</bold> (2022) Article ID 108053; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.pharmthera.2021.108053" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.pharmthera.2021.108053</a>">https://doi.org/10.1016/j.pharmthera.2021.108053</ext-link>
  3. C. Pellegrini, A. Martelli, L. Antonioli, M. Fornai, C. Blandizzi and V. Calderone, NLRP3 inflamma-some in cardiovascular diseases: Pathophysiological and pharmacological implications, <em>Med. Res. Rev</em>. <bold>41</bold>(4) (2021) 1890–1926; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/med.21781" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/med.21781</a>">https://doi.org/10.1002/med.21781</ext-link>
  4. H. Y. Fang, X. N. Zhao, M. Zhang, Y. Y. Ma, J. L. Huang and P. Zhou, Beneficial effects of flavonoids on cardiovascular diseases by influencing NLRP3 inflammasome, <em>ŠĚ−ŒŒŸŽ’−łŒ−„ŸŁǯ</em> <bold>31</bold> (2023) 1715–1729; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10787-023-01249-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10787-023-01249-2</a>">https://doi.org/10.1007/s10787-023-01249-2</ext-link>
  5. J. P. Li, S. Qiu, G. J. Tai, Y. M. Liu, W. Wei, M. M. Fu, P. Q. Fang, J. N. Otieno, T. Battulga, X. X. Li and M. Xu, NLRP3 inflammasome-modulated angiogenic function of EPC via PI3K/Akt/mTOR pathway in diabetic myocardial infarction, <em>Cardiovasc. Diabetol</em>. <bold>24</bold> (2025) Article ID 6 (23 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/s12933-024-02541-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s12933-024-02541-3</a>">https://doi.org/10.1186/s12933-024-02541-3</ext-link>
  6. W. Zhou, C. Chen, Z. Chen, L. Liu, J. Jiang, Z. Wu, M. Zhao and Y. Chen, NLRP3: A novel mediator in cardiovascular disease, <em>J. Immunol. Res</em>. <bold>2018</bold> (2018) Article ID 5702103 (8 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1155/2018/5702103" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2018/5702103</a>">https://doi.org/10.1155/2018/5702103</ext-link>
  7. J. Fu and H. Wu, Structural mechanisms of NLRP3 inflammasome assembly and activation, <em>Annu. Rev. Immunol</em>. <bold>41</bold> (2023) 301–316; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1146/annurev-immunol-081022-021207" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1146/annurev-immunol-081022-021207</a>">https://doi.org/10.1146/annurev-immunol-081022-021207</ext-link>
  8. Y. Xie, G. Sun, Y. Tao, W. Zhang, S. Yang, L. Zhang, Y. Lu and G. Du, Current advances on the therapeutic potential of scutellarin: An updated review, <em>Nat. Prod. Bioprospect</em>. <bold>14</bold> (2024) Article ID 20 (15 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13659-024-00441-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13659-024-00441-3</a>">https://doi.org/10.1007/s13659-024-00441-3</ext-link>
  9. Y. Zhou, C. Gu, Y. Zhu, Y. Zhu, Y. Chen, L. Shi, Y. Yang, X. Lu and H. Pang, Pharmacological effects and the related mechanism of scutellarin on inflammation-related diseases: A review, <em>Front Pharmacol.</em> <bold>15</bold> (2024) Article ID 1463140 (15 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fphar.2024.1463140" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fphar.2024.1463140</a>">https://doi.org/10.3389/fphar.2024.1463140</ext-link>
  10. X. Zhang, T. Yin, Y. Wang, J. Du, J. Dou and X. Zhang, Effects of scutellarin on the mechanism of cardiovascular diseases: A review, <em>Front. Pharmacol</em>. <bold>14</bold> (2024) Article ID 1329969 (19 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fphar.2023.1329969" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fphar.2023.1329969</a>">https://doi.org/10.3389/fphar.2023.1329969</ext-link>
  11. L. J. Xu, R. C. Chen, X. Y. Ma, Y. Zhu, G. B. Sun and X. B. Sun, Scutellarin protects against myocar-dial ischemia-reperfusion injury by suppressing NLRP3 inflammasome activation, <em>Phytomedicine</em> <bold>68</bold> (2020) Article ID Article ID 153169 (11 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.phymed.2020.153169" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.phymed.2020.153169</a>">https://doi.org/10.1016/j.phymed.2020.153169</ext-link>
  12. H. Sharif, L. Wang, W. L. Wang, V. G. Magupalli, L. Andreeva, Q. Qiao, A. V. Hauenstein, Z. Wu, G. Núñez, Y. Mao and H. Wu, Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome, <em>Nature</em> <bold>570</bold> (2019) 338–343; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41586-019-1295-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41586-019-1295-z</a>">https://doi.org/10.1038/s41586-019-1295-z</ext-link>
  13. B. T. Fahr, T. O’Brien, P. Pham, N. D. Waal, S. Baskaran, B. C. Raimundo, J. W. Lam, M. M. Sopko, H. E. Purkey and M. J. Romanowski, Tethering identifies fragment that yields potent inhibitors of human caspase-1, <em>Bioorg. Med. Chem. Lett</em>. <bold>16</bold>(3) (2006) 559–562; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.bmcl.2005.10.048" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bmcl.2005.10.048</a>">https://doi.org/10.1016/j.bmcl.2005.10.048</ext-link>
  14. S. Kuang, J. Zheng, H. Yang, S. Li, S. Duan, Y. Shen, C. Ji, J. Gan, X. W. Xu and J. Li, Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis, <em>Proc. Natl. Acad. Sci. USA</em> <bold>114</bold>(40) (2017) 10642–10647. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1073/pnas.1708194114" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1073/pnas.1708194114</a>">https://doi.org/10.1073/pnas.1708194114</ext-link>
  15. Y. Liu, X. Yang, J. Gan, S. Chen, Z. X. Xiao and Y. Cao, CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting, <em>Nucleic Acids Res</em>. <bold>50</bold>(W1) (2022) W159-W164; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/nar/gkac394" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/nar/gkac394</a>">https://doi.org/10.1093/nar/gkac394</ext-link>
  16. X. N. Zhao, H. M. Ding, Y. Y. Ma, L. Wang and P. Zhou, Ling-Gui-Zhu-Gan decoction inhibits cardiomyocyte pyroptosis via the NLRP3/Caspase-1 signaling pathway, <em>Tissue Cell</em>. <bold>91</bold> (2024) Article ID 102588; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.tice.2024.102588" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tice.2024.102588</a>">https://doi.org/10.1016/j.tice.2024.102588</ext-link>
  17. X. Chen, Y. Li, J. Li, T. Liu, Q. Jiang, Y. Hong, Q. Wang, C. Li, D. Guo and Y. Wang, Qishen granule (QSG) exerts cardioprotective effects by inhibiting NLRP3 inflammasome and pyroptosis in myocardial infarction rats, <em>J. Ethnopharmacol</em>. <bold>285</bold> (2025) Article ID 114841; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jep.2021.114841" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jep.2021.114841</a>">https://doi.org/10.1016/j.jep.2021.114841</ext-link>
  18. Y. Qiu, Y. Huang, M. Chen, Y. Yang, X. Li and W. Zhang, Mitochondrial DNA in NLRP3 inflamma-some activation, <em>Int. Immunopharmacol</em>. <bold>108</bold> (2022) Article ID 108719; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.intimp.2022.108719" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.intimp.2022.108719</a>">https://doi.org/10.1016/j.intimp.2022.108719</ext-link>
  19. N. Kelley, D. Jeltema, Y. Duan and Y. He, The NLRP3 inflammasome: An overview of mechanisms of activation and regulation, <em>Int. J. Mol. Sci</em>. <bold>20</bold>(13) (2019) Article ID 3328 (24 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms20133328" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms20133328</a>">https://doi.org/10.3390/ijms20133328</ext-link>
  20. Y. Huang, W. Xu and R. Zhou, NLRP3 inflammasome activation and cell death, <em>Cell Mol. Immunol</em>. <bold>18</bold> (2021) 2114–2127; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41423-021-00740-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41423-021-00740-6</a>">https://doi.org/10.1038/s41423-021-00740-6</ext-link>
  21. A. Rauf, M. Shah, D. M. Yellon and S. M. Davidson, Role of caspase 1 in ischemia/reperfusion injury of the myocardium, <em>J. Cardiovasc. Pharmacol</em>. <bold>74</bold>(3) (2019) 194–200; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1097/FJC.0000000000000694" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/FJC.0000000000000694</a>">https://doi.org/10.1097/FJC.0000000000000694</ext-link>
  22. B. Zhang, G. Liu, B. Huang, H. Liu, H. Jiang, Z. Hu and J. Chen, KDM3A attenuates myocardial ischemic and reperfusion injury by ameliorating cardiac microvascular endothelial cell pyroptosis, <em>Oxid. Med. Cell Longev</em>. <bold>2022</bold> (2022) Article ID 4622520 (19 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1155/2022/4622520" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2022/4622520</a>">https://doi.org/10.1155/2022/4622520</ext-link>
  23. S. Toldo and A. Abbate, The NLRP3 inflammasome in acute myocardial infarction, <em>Nat. Rev. Cardiol.</em> <bold>15</bold> (2018) 203–214; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/nrcardio.2017.161" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nrcardio.2017.161</a>">https://doi.org/10.1038/nrcardio.2017.161</ext-link>
  24. Y. S. Tang, Y. H. Zhao, Y. Zhong, X. Z. Li, J. X. Pu, Y. C. Luo and Q. L. Zhou, Neferine inhibits LPS-ATP-induced endothelial cell pyroptosis via regulation of ROS/NLRP3/Caspase-1 signaling pathway, <em>Inflamm. Res</em>. <bold>68</bold> (2019) 727–738. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00011-019-01256-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00011-019-01256-6</a>">https://doi.org/10.1007/s00011-019-01256-6</ext-link>
  25. E. L. Johnston, B. Heras, T. A. Kufer and M. Kaparakis-Liaskos, Detection of bacterial membrane vesicles by NOD-like receptors, <em>Int. J. Mol. Sci</em>. <bold>22</bold>(3) (2021) Article ID 1005 (14 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms22031005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms22031005</a>">https://doi.org/10.3390/ijms22031005</ext-link>
  26. H. Kong, H. Zhao, T. Chen, Y. Song and Y. Cui, Targeted P2X7/NLRP3 signaling pathway against inflammation, apoptosis, and pyroptosis of retinal endothelial cells in diabetic retinopathy, <em>Cell Death Dis</em>. <bold>13</bold> (2022) Article ID 336 (13 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41419-022-04786-w" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41419-022-04786-w</a>">https://doi.org/10.1038/s41419-022-04786-w</ext-link>
  27. S. Nie, S. Zhang, R. Wu, Y. Zhao, Y. Wang, X. Wang, M. Zhu and P. Huang, Scutellarin: Pharmacological effects and therapeutic mechanisms in chronic diseases, <em>Front Pharmacol</em>. <bold>15</bold> (2024) Article ID 1470879 (23 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fphar.2024.1470879" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fphar.2024.1470879</a>">https://doi.org/10.3389/fphar.2024.1470879</ext-link>
  28. J. K. Li, Z. P. Song and X. Z. Hou, Scutellarin ameliorates ischemia/reperfusion injury-induced cardiomyocyte apoptosis and cardiac dysfunction via inhibition of the cGAS-STING pathway, <em>Exp. Ther. Med</em>. <bold>25</bold>(4) (2023) Article ID 155 (9 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3892/etm.2023.11854" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3892/etm.2023.11854</a>">https://doi.org/10.3892/etm.2023.11854</ext-link>
  29. X. Fan, Y. Wang, X. Li, T. Zhong, C. Cheng and Y. Zhang, Scutellarin alleviates liver injury in type 2 diabetic mellitus by suppressing hepatocyte apoptosis <em>in vitro</em> and <em>in vivo</em>, <em>Chin. Herb Med</em>. <bold>15</bold>(4) (2023) 542–548; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.chmed.2023.03.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.chmed.2023.03.007</a>">https://doi.org/10.1016/j.chmed.2023.03.007</ext-link>
  30. L. Peng, L. Wen, Q. F. Shi, F. Gao, B. Huang, J. Meng, C. P. Hu and C. M. Wang, Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation, <em>Cell Death Dis</em>. <bold>11</bold> (2020) Article ID 978 (16 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41419-020-03178-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41419-020-03178-2</a>">https://doi.org/10.1038/s41419-020-03178-2</ext-link>
  31. W. C. Gao, T. H. Yang, B. B. Wang, Q. Liu, Q. Li, Z. H. Zhou, C. B. Zheng and P. Chen, Scutellarin inhibits oleic acid induced vascular smooth muscle foam cell formation via activating autophagy and inhibiting NLRP3 inflammasome activation, <em>Clin. Exp. Pharmacol. Physiol</em>. <bold>51</bold>(4) (2024) e13845; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/1440-1681.13845" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/1440-1681.13845</a>">https://doi.org/10.1111/1440-1681.13845</ext-link>
  32. Z. Wang, P. Zhang, Y. Zhao, F. Yu, S. Wang, K. Liu, X. Cheng, J. Shi, Q. He, Y. Xia and L. Cheng, Scutellarin protects against mitochondrial reactive oxygen species-dependent NLRP3 inflamma-some activation to attenuate intervertebral disc degeneration, <em>Front. Bioeng. Biotechnol</em>. <bold>10</bold> (2022) Article ID 883118 (17 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fbioe.2022.883118" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fbioe.2022.883118</a>">https://doi.org/10.3389/fbioe.2022.883118</ext-link>
  33. H. T. Bian, G. H. Wang, J. J. Huang, L. Liang, L. Xiao, and H. L. Wang, Scutellarin protects against lipopolysaccharide-induced behavioral deficits by inhibiting neuroinflammation and microglia activation in rats, <em>Int. Immunopharmacol</em>. <bold>88</bold> (2020) Article ID106943 (7 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.intimp.2020.106943" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.intimp.2020.106943</a>">https://doi.org/10.1016/j.intimp.2020.106943</ext-link>
DOI: https://doi.org/10.2478/acph-2025-0025 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 517 - 530
Accepted on: Jun 24, 2025
Published on: Oct 10, 2025
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2025 Xiao-Wei Li, Yun-Fei Chen, Lan Zhou, Peng Zhou, Peng Huang, Qian Niu, Jin-Cai Li, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.