Have a personal or library account? Click to login
α-Heteroarylthiomethyl ketones: Small molecule inhibitors of 3CLpro Cover

α-Heteroarylthiomethyl ketones: Small molecule inhibitors of 3CLpro

Open Access
|Jul 2025

References

  1. C. I. Paules, H. D. Marston and A. S. Fauci, Coronavirus infections-more than just the common cold, JAMA 323(8) (2020) 707–708; https://doi.org/10.1001/jama.2020.0757
  2. V. C. C. Cheng, S. K. P. Lau, P. C. Y. Woo and K. Y. Yuen, Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection, Clin. MicroBiol. Rev. 20(4) (2007) 660–694; https://doi.org/10.1128/CMR.00023-07
  3. Y.-Z. Zhang and E. C. Holmes, A genomic perspective on the origin and emergence of SARS--CoV-2, Cell 181(2) (2020) 223–227; https://doi.org/10.1016/j.cell.2020.03.035
  4. A. Faramarzi, S. Norouzi, H. Dehdarirad, S. Aghlmand, H. Yusefzadeh and J. Javan-Noughabi, The global economic burden of COVID-19 disease: A comprehensive systematic review and meta-analysis, Syst. Rev. 13(1) (2024) Article ID 68 (10 pages); https://doi.org/10.1186/s13643-024-02476-6
  5. A. Pišlar, A. Mitrović, J. Sabotič, U. Pečar Fonović, M. Perišić Nanut, T. Jakoš, E. Senjor and J. Kos, The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors, PLoS Pathog. 16(11) (2020) e1009013 (23 pages); https://doi.org/10.1371/journal.ppat.1009013
  6. H. Hoenigsperger, R. Sivarajan and K. M. Sparrer, Differences and similarities between innate immune evasion strategies of human coronaviruses, Curr. Opin. Microbiol. 79 (2024) Article ID 102466 (11 pages); https://doi.org/10.1016/j.mib.2024.102466
  7. J. C. Ferreira, S. Fadl and W. M. Rabeh, Key dimer interface residues impact the catalytic activity of 3CLpro, the main protease of SARS-CoV-2, J. Biol. Chem. 298(6) (2022) Article ID 102023 (11 pages); https://doi.org/10.1016/j.jbc.2022.102023
  8. N. Atatreh, R. E. Mahgoub and M. A. Ghattas, Exploring covalent inhibitors of SARS-CoV-2 main protease: From peptidomimetics to novel scaffolds, J. Enzyme Inhib. Med. Chem. 40(1) (2025) Article ID 2460045 (26 pages); https://doi.org/10.1080/14756366.2025.2460045
  9. Y. Yang, Y.-D. Luo, C.-B. Zhang, Y. Xiang, X.-Y. Bai, D. Zhang, Z.-Y. Fu, R.-B. Hao and X.-L. Liu, Progress in research on inhibitors targeting SARS-CoV-2 main protease (Mpro), ACS Omega 9(32) (2024) 34196–34219; https://doi.org/10.1021/acsomega.4c03023
  10. Y.-Q. Xiao, J. Long, S.-S. Zhang, Y.-Y. Zhu and S.-X. Gu, Non-peptidic inhibitors targeting SARS--CoV-2 main protease: A review, Bioorg. Chem. 147 (2024) Article ID 107380 (21 pages); https://doi.org/10.1016/j.bioorg.2024.107380
  11. O. Ebenezer and M. Shapi, Promising inhibitors against main protease of SARS CoV-2 from medicinal plants: In silico identification, Acta Pharm. 72(2) (2022) 159–169; https://doi.org/10.2478/acph-2022-0020
  12. M. H. Choi, E. Y. F. Wan, I. C. K. Wong, E. W. Y. Chan, W. M. Chu, A. R. Tam, K. Y. Yuen and I. F. N. Hung, Comparative effectiveness of combination therapy with nirmatrelvir-ritonavir and remdesivir versus monotherapy with remdesivir or nirmatrelvir-ritonavir in patients hospitalised with COVID-19: A target trial emulation study, Lancet Infect. Dis. 24(11) (2024) 1213–1224; https://doi.org/10.1016/S1473-3099(24)00353-0
  13. D. R. Owen, C. M. N. Allerton, A. S. Anderson, L. Aschenbrenner, M. Avery, S. Berritt, B. Boras, R. D. Cardin, A. Carlo, K. J. Coffman, A. Dantonio, L. Di, H. Eng, R. Ferre, K. S. Gajiwala, S. A. Gibson, S. E. Greasley, B. L. Hurst, E. P. Kadar, A. S. Kalgutkar, J. C. Lee, J. Lee, W. Liu, S. W. Mason, S. Noell, J. J. Novak, R. S. Obach, K. Ogilvie, N. C. Patel, M. Pettersson, D. K. Rai, M. R. Reese, M. F. Sammons, J. G. Sathish, R. S. P. Singh, C. M. Steppan, A. E. Stewart, J. B. Tuttle, L. Updyke, P. R. Verhoest, L. Wei, Q. Yang and Y. Zhu, An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19, Science 374(6575) (2021) 1586–1593; https://doi.org/10.1126/science.abl4784
  14. H. Yang, M. You, X. Shu, J. Zhen, M. Zhu, T. Fu, Y. Zhang, X. Jiang, L. Zhang, Y. Xu, Y. Zhang, H. Su, Q. Zhang and J. Shen, Design, synthesis and biological evaluation of peptidomimetic benzothiazolyl ketones as 3CLpro inhibitors against SARS-CoV-2, Eur. J. Med. Chem. 257 (2023) Article ID 115512 (13 pages); https://doi.org/10.1016/j.ejmech.2023.115512
  15. A. M. Shawky, F. A. Almalki, H. A. Alzahrani, A. N. Abdalla, B. G. M. Youssif, N. A. Ibrahim, M. Gamal, H. A. M. El-Sherief, M. M. Abdel-Fattah, A. A. Hefny, A. H. Abdelazeem and A. M. Gouda, Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions, Eur. J. Med. Chem. 277 (2024) Article ID 116704 (21 pages); https://doi.org/10.1016/j.ejmech.2024.116704
  16. X. Li and Y. Song, Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review, Eur. J. Med. Chem. 260 (2023) Article ID 115772 (53 pages); https://doi.org/10.1016/j.ejmech.2023.115772
  17. A. Krantz, L. J. Copp, P. J. Coles, R. A. Smith and S. B. Heard, Peptidyl (acyloxy)methyl ketones and the quiescent affinity label concept: The departing group as a variable structural element in the design of inactivators of cysteine proteinases, Biochemistry 30(19) (1991) 4678–4687; https://doi.org/10.1021/bi00233a007
  18. B. M. Wagner, R. A. Smith, P. J. Coles, L. J. Copp, M. J. Ernest and A. Krantz, In vivo inhibition of cathepsin B by peptidyl (acyloxy)methyl ketones, J. Med. Chem. 37(12) (1994) 1833–1840; https://doi.org/10.1021/jm00038a012
  19. A. G. Coman, C. C. Paraschivescu, N. D. Hadade, A. Juncu, O. Vlaicu, C.-I. Popescu and M. Matache, New acyloxymethyl ketones: useful probes for cysteine protease profiling, Synthesis 48(22) (2016) 3917–3923; https://doi.org/10.1055/s-0035-1562781
  20. R. L. Hoffman, R. S. Kania, M. A. Brothers, J. F. Davies, R. A. Ferre, K. S. Gajiwala, M. He, R. J. Hogan, K. Kozminski, L. Y. Li, J. W. Lockner, J. Lou, M. T. Marra, L. J. Mitchell, B. W. Murray, J. A. Nieman, S. Noell, S. P. Planken, T. Rowe, K. Ryan, G. J. Smith III, G. J. Solowiej, C. M. Steppan and B. Taggart, Discovery of ketone-based covalent inhibitors of coronavirus 3CL proteases for the potential therapeutic treatment of COVID-19, J. Med. Chem. 63(21) (2020) 12725–12747; https://doi.org/10.1021/acs.jmedchem.0c01063
  21. M. A. T. van de Plassche, M. Barniol-Xicota and S. H. L. Verhelst, Peptidyl acyloxymethyl ketones as activity-based probes for the main protease of SARS-CoV-2, ChembioChem. 21(23) (2020) 3383–3388; https://doi.org/10.1002/cbic.202000371
  22. R. Schulz, A. Atef, D. Becker, F. Gottschalk, C. Tauber, S. Wagner, C. Arkona, A. A. Abdel-Hafez, H. H. Farag, J. Rademann and G. Wolber, Phenylthiomethyl ketone-based fragments show selective and irreversible inhibition of enteroviral 3C proteases, J. Med. Chem. 61(3) (2018) 1218–1230; https://doi.org/10.1021/acs.jmedchem.7b01440
  23. F. J. Ashcroft, A. Bourboula, N. Mahammad, E. Barbayianni, A. J. Feuerherm, T. T. Nguyen, D. Hayashi, M. G. Kokotou, K. Alevizopoulos, E. A. Dennis, G. Kokotos and B. Johansen, Next generation thiazolyl ketone inhibitors of cytosolic phospholipase A2 α for targeted cancer therapy, Nat. Commun. 16(1) (2025) Article ID 164 (16 pages); https://doi.org/10.1038/s41467-024-55536-9
  24. U. P. Fonović, A. Mitrović, D. Knez, T. Jakoš, A. Pišlar, B. Brus, B. Doljak, J. Stojan, S. Žakelj, J. Trontelj, S. Gobec and J. Kos, Identification and characterization of the novel reversible and selective cathepsin X inhibitors, Sci. Rep. 7(1) (2017) Article ID 11459 (11 pages); https://doi.org/10.1038/s41598-017-11935-1
  25. U. P. Fonović, D. Knez, M. Hrast, N. Zidar, M. Proj, S. Gobec and J. Kos, Structure-activity relationships of triazole-benzodioxine inhibitors of cathepsin X, Eur. J. Med. Chem. 193 (2020) Article ID 112218 (17 pages); https://doi.org/10.1016/j.ejmech.2020.112218
  26. L. A. Woods, O. Dolezal, B. Ren, J. H. Ryan, T. S. Peat and S.-A. Poulsen, Native state mass spec-trometry, surface plasmon resonance, and X-ray crystallography correlate strongly as a fragment screening combination, J. Med. Chem. 59(5) (2016) 2192–2204; https://doi.org/10.1021/acs.jmedchem.5b01940
  27. M. Özil, Ö. Tuzcuoğlu, M. Emirik and N. Baltaş, Developing a scaffold for urease inhibition based on benzothiazoles: Synthesis, docking analysis, and therapeutic potential, Arch. Pharm. (Weinheim) 354(12) (2021) e2100200; https://doi.org/10.1002/ardp.202100200
  28. T.-T. Tung, T. T. Dao, M. G. Junyent, M. Palmgren, T. Günther-Pomorski, A. T. Fuglsang, S. B. Christensen and J. Nielsen, LEGO-inspired drug design: Unveiling a class of benzo[d]thiazoles containing a 3,4-dihydroxyphenyl moiety as plasma membrane H+-ATPase inhibitors, ChemMed-Chem. 13(1) (2018) 37–47; https://doi.org/10.1002/cmdc.201700635
  29. T. T. Thanh, H. L. Xuan and T. N. Quoc, Benzo[d]thiazole-2-thiol bearing 2-oxo-2-substituted-phenylethan-1-yl as potent selective lasB quorum sensing inhibitors of Gram-negative bacteria, RSC Adv. 11(46) (2021) 28797–28808; https://doi.org/10.1039/d1ra03616e
  30. C. M. Harris, S. E. Foley, E. R. Goedken, M. Michalak, S. Murdock and N. S. Wilson, Merits and pitfalls in the characterization of covalent inhibitors of Bruton’s tyrosine kinase, SLAS Discov. 23(10) (2018) 1040–1050; https://doi.org/10.1177/2472555218787445
  31. M. Proj, M. Hrast, D. Knez, K. Bozovičar, K. Grabrijan, A. Meden, S. Gobec and R. Frlan, Fragmentsized thiazoles in fragment-based drug discovery campaigns: friend or Foe?, ACS Med. Chem. Lett. 13(12) (2022) 1905–1910; https://doi.org/10.1021/acsmedchemlett.2c00429
  32. A. Simeonov and M. I. Davis, Interference with Fluorescence and Absorbance, in Assay Guidance Manual (Eds. S. Markossian, A. Grossman, K. Brimacombe, M. Arkin, D. Auld, C. Austin, J. Baell), Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda 2004.
  33. R. W. Marquis, Y. Ru, J. Zeng, R. E. Trout, S. M. LoCastro, A. D. Gribble, J. Witherington, A. E. Fenwick, B. Garnier, T. Tomaszek, D. Tew, M. E. Hemling, C. J. Quinn, W. W. Smith, B. Zhao, M. S. McQueney, C. A. Janson, K. D’Alessio and D. F. Veber, Cyclic ketone inhibitors of the cysteine protease cathepsin K, J. Med. Chem. 44(5) (2001) 725–736; https://doi.org/10.1021/jm000320t
  34. L. Fu, F. Ye, Y. Feng, F. Yu, Q. Wang, Y. Wu, C. Zhao, H. Sun, B. Huang, P. Niu, H. Song, Y. Shi, X. Li, W. Tan, J. Qi and G. F. Gao, Both BocepRev.ir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease, Nat. Commun. 11(1) (2020) Article ID 4417 (8 pages); https://doi.org/10.1038/s41467-020-18233-x
  35. R. Justin Grams, K. Yuan, M. W. Founds, M. L. Ware, M. G. Pilar and K.-L. Hsu, Imidazoles are tunable nucleofuges for developing tyrosine-reactive electrophiles, ChemBioChem. 25(16) (2024) e202400382 (9 pages); https://doi.org/10.1002/cbic.202400382
  36. M. Proj, D. Knez, I. Sosič and S. Gobec, Redox active or thiol reactive? Optimization of rapid screens to identify less evident nuisance compounds, Drug Discov. Today 27(6) (2022) 1733–1742; https://doi.org/10.1016/j.drudis.2022.03.008
  37. V. Vaissier Welborn, Understanding cysteine reactivity in protein environments with electric fields, J. Phys. Chem. B 127(46) (2023) 9936–9942; https://doi.org/10.1021/acs.jpcb.3c05749
  38. E. Mons, S. Roet, R. Q. Kim and M. P. C. Mulder, A comprehensive guide for assessing covalent inhibition in enzymatic assays illustrated with kinetic simulations, Curr. Protoc. 2(6) (2022) e419 (86 pages); https://doi.org/10.1002/cpz1.419
  39. H. Liu, S. Iketani, A. Zask, N. Khanizeman, E. Bednarova, F. Forouhar, B. Fowler, S. J. Hong, H. Mohri, M. S. Nair, Y. Huang, N. E. S. Tay, S. Lee, C. Karan, S. J. Resnick, C. Quinn, W. Li, H. Shion, X. Xia, J. D. Daniels, M. Bartolo-Cruz, M. Farina, P. Rajbhandari, C. Jurtschenko, M. A. Lauber, T. McDonald, M. E. Stokes, B. L. Hurst, T. Rovis, A. Chavez, D. D. Ho and B. R. Stockwell, Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19, Nat. Commun. 13(1) (2022) Article ID 1891 (16 pages); https://doi.org/10.1038/s41467-022-29413-2
DOI: https://doi.org/10.2478/acph-2025-0023 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 283 - 297
Accepted on: Jun 6, 2025
Published on: Jul 3, 2025
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Damijan Knez, Matic Proj, Krištof Bozovičar, Stanislav Gobec, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.