C. I. Paules, H. D. Marston and A. S. Fauci, Coronavirus infections-more than just the common cold, JAMA323(8) (2020) 707–708; https://doi.org/10.1001/jama.2020.0757
V. C. C. Cheng, S. K. P. Lau, P. C. Y. Woo and K. Y. Yuen, Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection, Clin. MicroBiol. Rev.20(4) (2007) 660–694; https://doi.org/10.1128/CMR.00023-07
A. Faramarzi, S. Norouzi, H. Dehdarirad, S. Aghlmand, H. Yusefzadeh and J. Javan-Noughabi, The global economic burden of COVID-19 disease: A comprehensive systematic review and meta-analysis, Syst. Rev.13(1) (2024) Article ID 68 (10 pages); https://doi.org/10.1186/s13643-024-02476-6
A. Pišlar, A. Mitrović, J. Sabotič, U. Pečar Fonović, M. Perišić Nanut, T. Jakoš, E. Senjor and J. Kos, The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors, PLoS Pathog.16(11) (2020) e1009013 (23 pages); https://doi.org/10.1371/journal.ppat.1009013
H. Hoenigsperger, R. Sivarajan and K. M. Sparrer, Differences and similarities between innate immune evasion strategies of human coronaviruses, Curr. Opin. Microbiol.79 (2024) Article ID 102466 (11 pages); https://doi.org/10.1016/j.mib.2024.102466
J. C. Ferreira, S. Fadl and W. M. Rabeh, Key dimer interface residues impact the catalytic activity of 3CLpro, the main protease of SARS-CoV-2, J. Biol. Chem.298(6) (2022) Article ID 102023 (11 pages); https://doi.org/10.1016/j.jbc.2022.102023
N. Atatreh, R. E. Mahgoub and M. A. Ghattas, Exploring covalent inhibitors of SARS-CoV-2 main protease: From peptidomimetics to novel scaffolds, J. Enzyme Inhib. Med. Chem.40(1) (2025) Article ID 2460045 (26 pages); https://doi.org/10.1080/14756366.2025.2460045
Y. Yang, Y.-D. Luo, C.-B. Zhang, Y. Xiang, X.-Y. Bai, D. Zhang, Z.-Y. Fu, R.-B. Hao and X.-L. Liu, Progress in research on inhibitors targeting SARS-CoV-2 main protease (Mpro), ACS Omega9(32) (2024) 34196–34219; https://doi.org/10.1021/acsomega.4c03023
O. Ebenezer and M. Shapi, Promising inhibitors against main protease of SARS CoV-2 from medicinal plants: In silico identification, Acta Pharm. 72(2) (2022) 159–169; https://doi.org/10.2478/acph-2022-0020
M. H. Choi, E. Y. F. Wan, I. C. K. Wong, E. W. Y. Chan, W. M. Chu, A. R. Tam, K. Y. Yuen and I. F. N. Hung, Comparative effectiveness of combination therapy with nirmatrelvir-ritonavir and remdesivir versus monotherapy with remdesivir or nirmatrelvir-ritonavir in patients hospitalised with COVID-19: A target trial emulation study, Lancet Infect. Dis.24(11) (2024) 1213–1224; https://doi.org/10.1016/S1473-3099(24)00353-0
D. R. Owen, C. M. N. Allerton, A. S. Anderson, L. Aschenbrenner, M. Avery, S. Berritt, B. Boras, R. D. Cardin, A. Carlo, K. J. Coffman, A. Dantonio, L. Di, H. Eng, R. Ferre, K. S. Gajiwala, S. A. Gibson, S. E. Greasley, B. L. Hurst, E. P. Kadar, A. S. Kalgutkar, J. C. Lee, J. Lee, W. Liu, S. W. Mason, S. Noell, J. J. Novak, R. S. Obach, K. Ogilvie, N. C. Patel, M. Pettersson, D. K. Rai, M. R. Reese, M. F. Sammons, J. G. Sathish, R. S. P. Singh, C. M. Steppan, A. E. Stewart, J. B. Tuttle, L. Updyke, P. R. Verhoest, L. Wei, Q. Yang and Y. Zhu, An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19, Science374(6575) (2021) 1586–1593; https://doi.org/10.1126/science.abl4784
H. Yang, M. You, X. Shu, J. Zhen, M. Zhu, T. Fu, Y. Zhang, X. Jiang, L. Zhang, Y. Xu, Y. Zhang, H. Su, Q. Zhang and J. Shen, Design, synthesis and biological evaluation of peptidomimetic benzothiazolyl ketones as 3CLpro inhibitors against SARS-CoV-2, Eur. J. Med. Chem.257 (2023) Article ID 115512 (13 pages); https://doi.org/10.1016/j.ejmech.2023.115512
A. M. Shawky, F. A. Almalki, H. A. Alzahrani, A. N. Abdalla, B. G. M. Youssif, N. A. Ibrahim, M. Gamal, H. A. M. El-Sherief, M. M. Abdel-Fattah, A. A. Hefny, A. H. Abdelazeem and A. M. Gouda, Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions, Eur. J. Med. Chem.277 (2024) Article ID 116704 (21 pages); https://doi.org/10.1016/j.ejmech.2024.116704
X. Li and Y. Song, Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review, Eur. J. Med. Chem.260 (2023) Article ID 115772 (53 pages); https://doi.org/10.1016/j.ejmech.2023.115772
A. Krantz, L. J. Copp, P. J. Coles, R. A. Smith and S. B. Heard, Peptidyl (acyloxy)methyl ketones and the quiescent affinity label concept: The departing group as a variable structural element in the design of inactivators of cysteine proteinases, Biochemistry30(19) (1991) 4678–4687; https://doi.org/10.1021/bi00233a007
B. M. Wagner, R. A. Smith, P. J. Coles, L. J. Copp, M. J. Ernest and A. Krantz, In vivo inhibition of cathepsin B by peptidyl (acyloxy)methyl ketones, J. Med. Chem.37(12) (1994) 1833–1840; https://doi.org/10.1021/jm00038a012
A. G. Coman, C. C. Paraschivescu, N. D. Hadade, A. Juncu, O. Vlaicu, C.-I. Popescu and M. Matache, New acyloxymethyl ketones: useful probes for cysteine protease profiling, Synthesis48(22) (2016) 3917–3923; https://doi.org/10.1055/s-0035-1562781
R. L. Hoffman, R. S. Kania, M. A. Brothers, J. F. Davies, R. A. Ferre, K. S. Gajiwala, M. He, R. J. Hogan, K. Kozminski, L. Y. Li, J. W. Lockner, J. Lou, M. T. Marra, L. J. Mitchell, B. W. Murray, J. A. Nieman, S. Noell, S. P. Planken, T. Rowe, K. Ryan, G. J. Smith III, G. J. Solowiej, C. M. Steppan and B. Taggart, Discovery of ketone-based covalent inhibitors of coronavirus 3CL proteases for the potential therapeutic treatment of COVID-19, J. Med. Chem.63(21) (2020) 12725–12747; https://doi.org/10.1021/acs.jmedchem.0c01063
M. A. T. van de Plassche, M. Barniol-Xicota and S. H. L. Verhelst, Peptidyl acyloxymethyl ketones as activity-based probes for the main protease of SARS-CoV-2, ChembioChem.21(23) (2020) 3383–3388; https://doi.org/10.1002/cbic.202000371
R. Schulz, A. Atef, D. Becker, F. Gottschalk, C. Tauber, S. Wagner, C. Arkona, A. A. Abdel-Hafez, H. H. Farag, J. Rademann and G. Wolber, Phenylthiomethyl ketone-based fragments show selective and irreversible inhibition of enteroviral 3C proteases, J. Med. Chem.61(3) (2018) 1218–1230; https://doi.org/10.1021/acs.jmedchem.7b01440
F. J. Ashcroft, A. Bourboula, N. Mahammad, E. Barbayianni, A. J. Feuerherm, T. T. Nguyen, D. Hayashi, M. G. Kokotou, K. Alevizopoulos, E. A. Dennis, G. Kokotos and B. Johansen, Next generation thiazolyl ketone inhibitors of cytosolic phospholipase A2 α for targeted cancer therapy, Nat. Commun.16(1) (2025) Article ID 164 (16 pages); https://doi.org/10.1038/s41467-024-55536-9
U. P. Fonović, A. Mitrović, D. Knez, T. Jakoš, A. Pišlar, B. Brus, B. Doljak, J. Stojan, S. Žakelj, J. Trontelj, S. Gobec and J. Kos, Identification and characterization of the novel reversible and selective cathepsin X inhibitors, Sci. Rep.7(1) (2017) Article ID 11459 (11 pages); https://doi.org/10.1038/s41598-017-11935-1
U. P. Fonović, D. Knez, M. Hrast, N. Zidar, M. Proj, S. Gobec and J. Kos, Structure-activity relationships of triazole-benzodioxine inhibitors of cathepsin X, Eur. J. Med. Chem.193 (2020) Article ID 112218 (17 pages); https://doi.org/10.1016/j.ejmech.2020.112218
L. A. Woods, O. Dolezal, B. Ren, J. H. Ryan, T. S. Peat and S.-A. Poulsen, Native state mass spec-trometry, surface plasmon resonance, and X-ray crystallography correlate strongly as a fragment screening combination, J. Med. Chem.59(5) (2016) 2192–2204; https://doi.org/10.1021/acs.jmedchem.5b01940
M. Özil, Ö. Tuzcuoğlu, M. Emirik and N. Baltaş, Developing a scaffold for urease inhibition based on benzothiazoles: Synthesis, docking analysis, and therapeutic potential, Arch. Pharm. (Weinheim) 354(12) (2021) e2100200; https://doi.org/10.1002/ardp.202100200
T.-T. Tung, T. T. Dao, M. G. Junyent, M. Palmgren, T. Günther-Pomorski, A. T. Fuglsang, S. B. Christensen and J. Nielsen, LEGO-inspired drug design: Unveiling a class of benzo[d]thiazoles containing a 3,4-dihydroxyphenyl moiety as plasma membrane H+-ATPase inhibitors, ChemMed-Chem.13(1) (2018) 37–47; https://doi.org/10.1002/cmdc.201700635
T. T. Thanh, H. L. Xuan and T. N. Quoc, Benzo[d]thiazole-2-thiol bearing 2-oxo-2-substituted-phenylethan-1-yl as potent selective lasB quorum sensing inhibitors of Gram-negative bacteria, RSC Adv.11(46) (2021) 28797–28808; https://doi.org/10.1039/d1ra03616e
C. M. Harris, S. E. Foley, E. R. Goedken, M. Michalak, S. Murdock and N. S. Wilson, Merits and pitfalls in the characterization of covalent inhibitors of Bruton’s tyrosine kinase, SLAS Discov.23(10) (2018) 1040–1050; https://doi.org/10.1177/2472555218787445
M. Proj, M. Hrast, D. Knez, K. Bozovičar, K. Grabrijan, A. Meden, S. Gobec and R. Frlan, Fragmentsized thiazoles in fragment-based drug discovery campaigns: friend or Foe?, ACS Med. Chem. Lett. 13(12) (2022) 1905–1910; https://doi.org/10.1021/acsmedchemlett.2c00429
A. Simeonov and M. I. Davis, Interference with Fluorescence and Absorbance, in Assay Guidance Manual (Eds. S. Markossian, A. Grossman, K. Brimacombe, M. Arkin, D. Auld, C. Austin, J. Baell), Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda 2004.
R. W. Marquis, Y. Ru, J. Zeng, R. E. Trout, S. M. LoCastro, A. D. Gribble, J. Witherington, A. E. Fenwick, B. Garnier, T. Tomaszek, D. Tew, M. E. Hemling, C. J. Quinn, W. W. Smith, B. Zhao, M. S. McQueney, C. A. Janson, K. D’Alessio and D. F. Veber, Cyclic ketone inhibitors of the cysteine protease cathepsin K, J. Med. Chem.44(5) (2001) 725–736; https://doi.org/10.1021/jm000320t
L. Fu, F. Ye, Y. Feng, F. Yu, Q. Wang, Y. Wu, C. Zhao, H. Sun, B. Huang, P. Niu, H. Song, Y. Shi, X. Li, W. Tan, J. Qi and G. F. Gao, Both BocepRev.ir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease, Nat. Commun.11(1) (2020) Article ID 4417 (8 pages); https://doi.org/10.1038/s41467-020-18233-x
R. Justin Grams, K. Yuan, M. W. Founds, M. L. Ware, M. G. Pilar and K.-L. Hsu, Imidazoles are tunable nucleofuges for developing tyrosine-reactive electrophiles, ChemBioChem.25(16) (2024) e202400382 (9 pages); https://doi.org/10.1002/cbic.202400382
M. Proj, D. Knez, I. Sosič and S. Gobec, Redox active or thiol reactive? Optimization of rapid screens to identify less evident nuisance compounds, Drug Discov. Today27(6) (2022) 1733–1742; https://doi.org/10.1016/j.drudis.2022.03.008
V. Vaissier Welborn, Understanding cysteine reactivity in protein environments with electric fields, J. Phys. Chem. B 127(46) (2023) 9936–9942; https://doi.org/10.1021/acs.jpcb.3c05749
E. Mons, S. Roet, R. Q. Kim and M. P. C. Mulder, A comprehensive guide for assessing covalent inhibition in enzymatic assays illustrated with kinetic simulations, Curr. Protoc.2(6) (2022) e419 (86 pages); https://doi.org/10.1002/cpz1.419
H. Liu, S. Iketani, A. Zask, N. Khanizeman, E. Bednarova, F. Forouhar, B. Fowler, S. J. Hong, H. Mohri, M. S. Nair, Y. Huang, N. E. S. Tay, S. Lee, C. Karan, S. J. Resnick, C. Quinn, W. Li, H. Shion, X. Xia, J. D. Daniels, M. Bartolo-Cruz, M. Farina, P. Rajbhandari, C. Jurtschenko, M. A. Lauber, T. McDonald, M. E. Stokes, B. L. Hurst, T. Rovis, A. Chavez, D. D. Ho and B. R. Stockwell, Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19, Nat. Commun.13(1) (2022) Article ID 1891 (16 pages); https://doi.org/10.1038/s41467-022-29413-2