R. Loomba, S. L. Friedman and G. I. Shulman, Mechanisms and disease consequences of nonalcoholic fatty liver disease, <em>Cell</em> <bold>184</bold>(10) (2021) 2537–2564; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cell.2021.04.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cell.2021.04.015</a>">https://doi.org/10.1016/j.cell.2021.04.015</ext-link>
F. Bessone, M. V. Razori and M. G. Roma, Molecular pathways of nonalcoholic fatty liver disease development and progression, <em>Cell. Mol. Life Sci.</em> <bold>76</bold>(1) (2019) 99–128; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00018-018-2942-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00018-018-2942-5</a>">https://doi.org/10.1007/s00018-018-2942-5</ext-link>
C. D. Byrne and G. Targher, NAFLD: A multisystem disease, <em>J. Hepatol.</em> <bold>62</bold>(1)(Suppl.) (2015) S47–S64; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jhep.2014.12.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhep.2014.12.012</a>">https://doi.org/10.1016/j.jhep.2014.12.012</ext-link>
A. Vadarlis, C. Antza, D. R. Bakaloudi, I. Doundoulakis, G. Kalopitas, M. Samara, T. Dardavessis, T. Maris and M. Chourdakis, Systematic review with meta-analysis: The effect of vitamin E supplementation in adult patients with non-alcoholic fatty liver disease, <em>J. Gastroenterol. Hepatol.</em> <bold>36</bold>(2) (2021) 311–319; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/jgh.15221" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/jgh.15221</a>">https://doi.org/10.1111/jgh.15221</ext-link>
M. Y. Wang, K. Prabahar, M. A. Găman and J. L. Zhang, Vitamin E supplementation in the treatment of nonalcoholic fatty liver disease (NAFLD): Evidence from an umbrella review of meta-analysis on randomized controlled trials, <em>J. Dig. Dis.</em> <bold>24</bold>(6–7) (2023) 380–389; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/1751-2980.13210" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/1751-2980.13210</a>">https://doi.org/10.1111/1751-2980.13210</ext-link>
C. Gofton, Y. Upendran, M. H. Zheng and J. George, MAFLD: How is it different from NAFLD?, <em>Clin. Mol. Hepatol.</em> <bold>29</bold>(Suppl) (2023) S17–S31; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3350/cmh.2022.0367" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3350/cmh.2022.0367</a>">https://doi.org/10.3350/cmh.2022.0367</ext-link>
S. L. Friedman, B. A. Neuschwander-Tetri, M. Rinella and A. J. Sanyal, Mechanisms of NAFLD development and therapeutic strategies, <em>Nat. Med.</em> <bold>24</bold>(7) (2018) 908–922; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41591-018-0104-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41591-018-0104-9</a>">https://doi.org/10.1038/s41591-018-0104-9</ext-link>
L. Rong, J. Zou, W. Ran, X. Qi, Y. Chen, H. Cui and J. Guo, Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD), <em>Front. Endocrinol.</em> (Lausanne) <bold>13</bold> (2023) Article ID 1087260 (18 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fendo.2022.1087260" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fendo.2022.1087260</a>">https://doi.org/10.3389/fendo.2022.1087260</ext-link>
M. J. Watt, P. M. Miotto, W. De Nardo and M. K. Montgomery, The liver as an endocrine organ – Linking NAFLD and insulin resistance, <em>Endocr. Rev.</em> <bold>40</bold>(5) (2019) 1367–1393; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1210/er.2018-00241" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1210/er.2018-00241</a>">https://doi.org/10.1210/er.2018-00241</ext-link>
Y. Sakurai, N. Kubota, T. Yamauchi and T. Kadowaki, Role of insulin resistance in MAFLD, <em>Int. J. Mol. Sci.</em> <bold>22</bold>(8) (2021) Article ID 4156 (26 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms22084156" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms22084156</a>">https://doi.org/10.3390/ijms22084156</ext-link>
G. Paradies, V. Paradies, F. M. Ruggiero and G. Petrosillo, Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease, <em>World J. Gastroenterol.</em> <bold>20</bold>(39) (2014) 14205–14218; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3748/wjg.v20.i39.14205" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3748/wjg.v20.i39.14205</a>">https://doi.org/10.3748/wjg.v20.i39.14205</ext-link>
J. Yang, M. Fernández-Galilea, L. Martínez-Fernández, P. González-Muniesa, A. Pérez-Chávez, J. A. Martínez and M. J. Moreno-Aliaga, Oxidative stress and non-alcoholic fatty liver disease: Effects of omega-3 fatty acid supplementation, <em>Nutrients</em> <bold>11</bold>(4) (2019) Article ID 872 (37 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/nu11040872" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/nu11040872</a>">https://doi.org/10.3390/nu11040872</ext-link>
C. Luci, M. Bourinet, P. S. Leclère, R. Anty and P. Gual, Chronic inflammation in non-alcoholic steatohepatitis: Molecular mechanisms and therapeutic strategies, <em>Front. Endocrinol.</em> (Lausanne) <bold>11</bold> (2020) Article ID 597648 (14 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fendo.2020.597648" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fendo.2020.597648</a>">https://doi.org/10.3389/fendo.2020.597648</ext-link>
R. Forlano, B. H. Mullish, S. K. Mukherjee, R. Nathwani, C. Harlow, P. Crook, R. Judge, A. Soubieres, P. Middleton, A. Daunt, P. Perez-Guzman, N. Selvapatt, M. Lemoine, A. Dhar, M. R. Thursz, S. Nayagam and P. Manousou, In-hospital mortality is associated with inflammatory response in NAFLD patients admitted for COVID-19, <em>PLoS One</em> <bold>15</bold>(10) (2020) e0240400; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1371/journal.pone.0240400" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0240400</a>">https://doi.org/10.1371/journal.pone.0240400</ext-link>.
A. A. Kolodziejczyk, D. Zheng, O. Shibolet and E. Elinav, The role of the microbiome in NAFLD and NASH, <em>EMBO Mol. Med.</em> <bold>11</bold>(2) (2019) e9302; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.15252/emmm.201809302" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.15252/emmm.201809302</a>">https://doi.org/10.15252/emmm.201809302</ext-link>
A. Albillos, A. de Gottardi and M. Rescigno, The gut-liver axis in liver disease: Pathophysiological basis for therapy, <em>J. Hepatol.</em> <bold>72</bold>(3) (2020) 558–577; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jhep.2019.11.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhep.2019.11.003</a>">https://doi.org/10.1016/j.jhep.2019.11.003</ext-link>
Z. Younossi, Q. M. Anstee, M. Marietti, T. Hardy, L. Henry, M. Eslam, J. George and E. Bugianesi, Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention, <em>Nat. Rev. Gastroenterol. Hepatol.</em> <bold>15</bold>(1) (2018) 11–20; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/nrgastro.2017.109" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nrgastro.2017.109</a>">https://doi.org/10.1038/nrgastro.2017.109</ext-link>
S. Wei, L. Wang, P. C. Evans and S. Xu, NAFLD and NASH: Etiology, targets and emerging therapies, <em>Drug Discov. Today</em> <bold>29</bold>(3) (2024) Article ID 103910; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.drudis.2024.103910" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.drudis.2024.103910</a>">https://doi.org/10.1016/j.drudis.2024.103910</ext-link>
Y. Sun, Y. Ma, F. Sun, W. Feng, H. Ye, T. Tian and M. Lei, Astragaloside IV attenuates lipopolysaccharide induced liver injury by modulating Nrf2-mediated oxidative stress and NLRP3-mediated inflammation, <em>Heliyon</em> <bold>9</bold>(4) (2023) e15436; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.heliyon.2023.e15436" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.heliyon.2023.e15436</a>">https://doi.org/10.1016/j.heliyon.2023.e15436</ext-link>
S. Wu, F. Wen, X. Zhong, W. Du, M. Chen and J. Wang, Astragaloside IV ameliorate acute alcohol--induced liver injury in mice via modulating gut microbiota and regulating NLRP3/caspase-1 signaling pathway, <em>Ann. Med.</em> <bold>55</bold>(1) (2023) Article ID 2216942 (16 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/07853890.2023.2216942" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/07853890.2023.2216942</a>">https://doi.org/10.1080/07853890.2023.2216942</ext-link>
Y. Li, X. Yang, X. Li, S. Wang, P. Chen, T. Ma and B. Zhang, Astragaloside IV and cycloastragenol promote liver regeneration through regulation of hepatic oxidative homeostasis and glucose/lipid metabolism, <em>Phytomedicine</em> <bold>135</bold> (2024) Article ID 156165; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.phymed.2024.156165" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.phymed.2024.156165</a>">https://doi.org/10.1016/j.phymed.2024.156165</ext-link>
B. Zhou, D. L. Zhou, X. H. Wei, R. Y. Zhong, J. Xu and L. Sun, Astragaloside IV attenuates free fatty acid-induced ER stress and lipid accumulation in hepatocytes via AMPK activation, <em>Acta Pharmacol. Sin.</em> <bold>38</bold>(7) (2017) 998–1008; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/aps.2016.175" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/aps.2016.175</a>">https://doi.org/10.1038/aps.2016.175</ext-link>
Y. Zhai, W. Zhou, X. Yan, Y. Qiao, L. Guan, Z. Zhang, H. Liu, J. Jiang, J. Liu and L. Peng, Astragaloside IV ameliorates diet-induced hepatic steatosis in obese mice by inhibiting intestinal FXR via intestinal flora remodeling, <em>Phytomedicine</em> <bold>107</bold> (2022) Article ID 154444; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.phymed.2022.154444" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.phymed.2022.154444</a>">https://doi.org/10.1016/j.phymed.2022.154444</ext-link>
J. M. Clark, Weight loss as a treatment for nonalcoholic fatty liver disease, <em>J. Clin. Gastroenterol.</em> <bold>40</bold>(Suppl. 1) (2006) S39–S43; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1097/01.mcg.0000168641.31321.fa" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/01.mcg.0000168641.31321.fa</a>">https://doi.org/10.1097/01.mcg.0000168641.31321.fa</ext-link>
N. Hossain, P. Kanwar and S. R. Mohanty, A comprehensive updated review of pharmaceutical and nonpharmaceutical treatment for NAFLD, <em>Gastroenterol. Res. Pract.</em> <bold>2016</bold> (2016) Article ID 7109270 (17 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1155/2016/7109270" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2016/7109270</a>">https://doi.org/10.1155/2016/7109270</ext-link>
S. Pouwels, N. Sakran, Y. Graham, A. Leal, T. Pintar, W. Yang, R. Kassir, R. Singhal, K. Mahawar and D. Ramnarain, Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss, <em>BMC Endocr. Disord</em>. <bold>22</bold>(1) (2022) Article ID 63 (9 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/s12902-022-00980-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s12902-022-00980-1</a>">https://doi.org/10.1186/s12902-022-00980-1</ext-link>
N. Sodum, G. Kumar, S. L. Bojja, N. Kumar and C. M. Rao, Epigenetics in NAFLD/NASH: Targets and therapy, <em>Pharmacol. Res.</em> <bold>167</bold> (2021) Article ID 105484; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.phrs.2021.105484" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.phrs.2021.105484</a>">https://doi.org/10.1016/j.phrs.2021.105484</ext-link>
S. A. Harrison, A. M. Allen, J. Dubourg, M. Noureddin and N. Alkhouri, Challenges and opportunities in NASH drug development, <em>Nat. Med</em>. <bold>29</bold>(3) (2023) 562–573; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41591-023-02242-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41591-023-02242-6</a>">https://doi.org/10.1038/s41591-023-02242-6</ext-link>
S. J. Song, J. C. T. Lai, G. L. H. Wong, V. W. S. Wong and T. C. F. Yip, Can we use old NAFLD data under the new MASLD definition?, <em>J. Hepatol.</em> <bold>80</bold>(2) (2024) e54–e56; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jhep.2023.07.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhep.2023.07.021</a>">https://doi.org/10.1016/j.jhep.2023.07.021</ext-link>
R. Younes and E. Bugianesi, The impact of metabolic syndrome on the outcome of NASH: Cirrhosis, hepatocellular carcinoma, and mortality, <em>Curr. Hepatol. Rep.</em> <bold>17</bold>(4) (2018) 336–344; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11901-018-0422-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11901-018-0422-x</a>">https://doi.org/10.1007/s11901-018-0422-x</ext-link>
N. Bhala, R. Younes and E. Bugianesi, Epidemiology and natural history of patients with NAFLD, <em>Curr. Pharm. Des.</em> <bold>19</bold>(29) (2013) 5169–5176; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2174/13816128113199990336" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2174/13816128113199990336</a>">https://doi.org/10.2174/13816128113199990336</ext-link>
H. Kojima, S. Sakurai, M. Uemura, H. Fukui, H. Morimoto and Y. Tamagawa, Mitochondrial abnormality and oxidative stress in nonalcoholic steatohepatitis, <em>Alcohol Clin. Exp. Res.</em> <bold>31</bold>(s1) (2007) S61–S66; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1530-0277.2006.00288.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1530-0277.2006.00288.x</a>">https://doi.org/10.1111/j.1530-0277.2006.00288.x</ext-link>
N. Alkhouri, M. P. Berk, R. Lopez, T. Abu-Rajab Tamimi, L. Yerian, Y. Chung, R. Zhang, T. M. Mc-Intyre, S. L. Hazen and A. E. Feldstein, OxNASH score correlates with histologic features and severity of nonalcoholic fatty liver disease, <em>Dig. Dis. Sci.</em> <bold>59</bold>(7) (2014) 1617–1624; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10620-014-3031-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10620-014-3031-8</a>">https://doi.org/10.1007/s10620-014-3031-8</ext-link>
L. S. R. R. Okada, C. P. Oliveira, J. T. Stefano, M. A. Nogueira, I. D. C. G. da Silva, F. B. Cordeiro, V. A. F. Alves, R. S. Torrinhas, F. J. Carrilho, P. Puri and D. L. Waitzberg, Omega-3 PUFA modulate lipo-genesis, ER stress, and mitochondrial dysfunction markers in NASH – proteomic and lipidomic insight, <em>Clin. Nutr.</em> <bold>37</bold>(5) (2017) 1474–1484; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.clnu.2017.08.031" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.clnu.2017.08.031</a>">https://doi.org/10.1016/j.clnu.2017.08.031</ext-link>
J. S. Chang, J. H. Ahn, S. H. Kang, S. B. Koh, J. Y. Kim, S. K. Baik, J. H. Huh, S. S. Lee, M. Y. Kim and K. S. Park, Metabolic stress index including mitochondrial biomarker for noninvasive diagnosis of hepatic steatosis, <em>Front. Endocrinol.</em> <bold>13</bold> (2022) Article ID 896334 (8 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fendo.2022.896334" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fendo.2022.896334</a>">https://doi.org/10.3389/fendo.2022.896334</ext-link>
J. Zhang, C. Wu, L. Gao, G. Du and X. Qin, Astragaloside IV derived from <em>Astragalus membranaceus</em>: A research review on the pharmacological effects, <em>Adv. Pharmacol.</em> <bold>87</bold> (2020) 89–112; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/bs.apha.2019.08.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/bs.apha.2019.08.002</a>">https://doi.org/10.1016/bs.apha.2019.08.002</ext-link>
L. Li, X. Hou, R. Xu, C. Liu and M. Tu, Research review on the pharmacological effects of astragalo-side IV, <em>Fundam. Clin. Pharmacol.</em> <bold>31</bold>(1) (2017) 17–36; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/fcp.12232" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/fcp.12232</a>">https://doi.org/10.1111/fcp.12232</ext-link>
F. Xu, W. Q. Cui, Y. Wei, J. Cui, J. Qiu, L. L. Hu, W. Y. Gong, J. C. Dong and B. J. Liu, Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling, <em>J. Exp. Clin. Cancer Res.</em> <bold>37</bold>(1) (2018) Article ID 207 (16 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/s13046-018-0878-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s13046-018-0878-0</a>">https://doi.org/10.1186/s13046-018-0878-0</ext-link>
Z. Han, J. Zhu and Z. Han, Evaluation of astragaloside IV in hepatic fibrosis: A meta-analysis, <em>Medicine</em> <bold>100</bold>(13) (2021) e25105; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1097/MD.0000000000025105" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/MD.0000000000025105</a>">https://doi.org/10.1097/MD.0000000000025105</ext-link>
H. Wang, Z. Zhuang, Y.-Y. Huang, Y. Zhuang, J. Jin, X. Ye, Z. Lin, J. Zheng and H. Wang, Protective effect and possible mechanisms of astragaloside IV in animal models of diabetic nephropathy: A preclinical systematic review and meta-analysis, <em>Front. Pharmacol.</em> <bold>11</bold> (2020) Article ID 988 (17 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fphar.2020.00988" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fphar.2020.00988</a>">https://doi.org/10.3389/fphar.2020.00988</ext-link>
I. M. Costa, F. O. V. Lima, L. C. B. Fernandes, B. Norrara, F. I. Neta, R. D. Alves, J. R. L. P. Cavalcanti, E. E. S. Lucena, J. S. Cavalcante, A. C. M. Rego, I. A. Filho, D. B. Queiroz, M. A. M. Freire and F. P. Guzen, Astragaloside IV supplementation promotes a neuroprotective effect in experimental models of neurological disorders: A systematic review, <em>Curr. Neuropharmacol.</em> <bold>17</bold>(7) (2019) 648–665; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2174/1570159X16666180911123341" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2174/1570159X16666180911123341</a>">https://doi.org/10.2174/1570159X16666180911123341</ext-link>
M. Marušić, M. Paić, M. Knobloch and A.-M. Liberati Pršo, NAFLD, insulin resistance, and diabetes mellitus type 2, <em>Can. J. Gastroenterol. Hepatol.</em> <bold>2021</bold> (2021) Article ID 6613827 (9 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1155/2021/6613827" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2021/6613827</a>">https://doi.org/10.1155/2021/6613827</ext-link>
D. Xia, W. Li, C. Tang and J. Jiang, Astragaloside IV, as a potential anticancer agent, <em>Front. Pharmacol.</em> <bold>14</bold> (2023) Article ID 1065505 (15 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fphar.2023.1065505" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fphar.2023.1065505</a>">https://doi.org/10.3389/fphar.2023.1065505</ext-link>
K. Mehta, D. H. Van Thiel, N. Shah and S. Mobarhan, Nonalcoholic fatty liver disease: Pathogenesis and the role of antioxidants, <em>Nutr. Rev.</em> <bold>60</bold>(9) (2002) 289–293; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1301/002966402320387224" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1301/002966402320387224</a>">https://doi.org/10.1301/002966402320387224</ext-link>
F. Item, S. Wueest, V. Lemos, S. Stein, F. C. Lucchini, R. Denzler, M. C. Fisser, T. D. Challa, E. Pirinen, Y. Kim, S. Hemmi, E. Gulbins, A. Gross, L. A. O’Reilly, M. Stoffel, J. Auwerx and D. Konrad, Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function, <em>Nat. Commun</em>. <bold>8</bold>(1) (2017) Article ID 480 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41467-017-00566-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41467-017-00566-9</a>">https://doi.org/10.1038/s41467-017-00566-9</ext-link>
L. Ding, W. Sun, M. Balaz, A. He, M. Klug, S. Wieland, R. Caiazzo, V. Raverdy, F. Pattou, P. Lefebvre, I. J. Lodhi, B. Staels, M. Heim and C. Wolfrum, Peroxisomal β-oxidation acts as a sensor for intracellular fatty acids and regulates lipolysis, <em>Nat. Metab.</em> <bold>3</bold>(12) (2021) 1648–1661; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s42255-021-00489-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s42255-021-00489-2</a>">https://doi.org/10.1038/s42255-021-00489-2</ext-link>
X. Zhou, L. L. Wang, W. J. Tang and B. Tang, Astragaloside IV inhibits protein tyrosine phosphatase 1B and improves insulin resistance in insulin-resistant HepG2 cells and triglyceride accumulation in oleic acid (OA)-treated HepG2 cells, <em>J. Ethnopharmacol</em>. <bold>268</bold>(11) (2021) Article ID 113556; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jep.2020.113556" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jep.2020.113556</a>">https://doi.org/10.1016/j.jep.2020.113556</ext-link>
J. L. Rains and S. K. Jain, Oxidative stress, insulin signaling, and diabetes, <em>Free Radic. Biol. Med.</em> <bold>50</bold>(5) (2011) 567–575; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.freeradbiomed.2010.12.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.freeradbiomed.2010.12.006</a>">https://doi.org/10.1016/j.freeradbiomed.2010.12.006</ext-link>
S. Vomund, A. Schäfer, M. J. Parnham, B. Brüne and A. Von Knethen, Nrf2, the master regulator of anti-oxidative responses, <em>Int. J. Mol. Sci.</em> <bold>18</bold>(12) (2017) Article ID 2772 (19 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms18122772" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms18122772</a>">https://doi.org/10.3390/ijms18122772</ext-link>
H. Yun, S. Park, M. J. Kim, W. K. Yang, D. U. Im, K. R. Yang, J. Hong, W. Choe, I. Kang, S. S. Kim and J. Ha, AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1, <em>FEBS J.</em> <bold>281</bold>(19) (2014) 4421–4438; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/febs.12949" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/febs.12949</a>">https://doi.org/10.1111/febs.12949</ext-link>
X. H. Zhou, L. Q. He, S. N. Zuo, Y. M. Zhang, D. Wan, C. M. Long, P. Huang, X. Wu, C. R. Wu, G. Liu and Y. Yin, Serine prevented high-fat diet–induced oxidative stress by activating AMPK and epigenetically modulating the expression of glutathione synthesis-related genes, <em>Biochim. Biophys. Acta Mol. Basis Dis.</em> <bold>1864</bold>(2) (2018) 488–498; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.bbadis.2017.11.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bbadis.2017.11.009</a>">https://doi.org/10.1016/j.bbadis.2017.11.009</ext-link>
L. Li, W. X. Huang, S. K. Wang, K. Sun, W. Zhang, Y. Ding, L. Zhang, B. Tumen and L. Lang, Astragaloside IV attenuates acetaminophen-induced liver injuries in mice by activating the Nrf2 signaling pathway, <em>Molecules</em> <bold>23</bold>(8) (2018) Article ID 2032 (9 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/molecules23082032" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/molecules23082032</a>">https://doi.org/10.3390/molecules23082032</ext-link>
N. Cheng, S. Chen, X. Liu, H. Zhao and W. Cao, Impact of <em>Schisandra chinensis</em> bee pollen on non-alcoholic fatty liver disease and gut microbiota in high-fat diet induced obese mice, <em>Nutrients</em> <bold>11</bold>(2) (2019) Article ID 346 (16 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/nu11020346" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/nu11020346</a>">https://doi.org/10.3390/nu11020346</ext-link>
M. Martin, K. Rehani, R. S. Jope and S. M. Michalek, Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3, <em>Nat. Immunol.</em> <bold>6</bold>(8) (2005) 777–784; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/ni1221" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/ni1221</a>">https://doi.org/10.1038/ni1221</ext-link>
D. Sag, D. Carling, R. D. Stout and J. Suttles, Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype, <em>J. Immunol.</em> <bold>181</bold>(12) (2008) 8633–8641; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.4049/jimmunol.181.12.8633" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4049/jimmunol.181.12.8633</a>">https://doi.org/10.4049/jimmunol.181.12.8633</ext-link>
R. Wei, H. Liu, R. Chen, Y. Sheng and T. Liu, Astragaloside IV combating liver cirrhosis through the PI3K/Akt/mTOR signaling pathway, <em>Exp. Ther. Med.</em> <bold>17</bold>(1) (2019) 393–397; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3892/etm.2018.6966" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3892/etm.2018.6966</a>">https://doi.org/10.3892/etm.2018.6966</ext-link> Spandidos Publications
D. Qin, D. N. Ma, Z. G. Ren, X. D. Zhu, C. H. Wang, Y. C. Wang, B. Ye, M. Cao, D. Gao, Z. Tang and Z. Tang, Astragaloside IV inhibits metastasis in hepatoma cells through the suppression of epithelial-mesenchymal transition via the Akt/GSK-3β/β-catenin pathway, <em>Oncol. Rep.</em> <bold>37</bold>(3) (2017) 1725–1735; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3892/or.2017.5389" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3892/or.2017.5389</a>">https://doi.org/10.3892/or.2017.5389</ext-link>
X. Qu, H. Gao, L. Tao, Y. Zhang, J. Zhai, J. Sun, Y. Song and S. Zhang, Astragaloside IV protects against cisplatin-induced liver and kidney injury via autophagy-mediated inhibition of NLRP3 in rats, <em>J. Toxicol. Sci.</em> <bold>44</bold>(3) (2019) 167–175; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2131/jts.44.167" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2131/jts.44.167</a>">https://doi.org/10.2131/jts.44.167</ext-link>
S. Saravanan, V. I. Islam, N. P. Babu, P. Pandikumar, K. Thirugnanasambantham, M. Chellappandian, C. S. Raj, M. G. Paulraj and S. Ignacimuthu, Swertiamarin attenuates inflammation mediators via modulating NF-κB/IκB and JAK2/STAT3 transcription factors in adjuvant induced arthritis, <em>Eur. J. Pharm. Sci.</em> <bold>56</bold> (2014) 70–86; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ejps.2014.02.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ejps.2014.02.005</a>">https://doi.org/10.1016/j.ejps.2014.02.005</ext-link>
Z. L. Bian, Y. Peng, Z. You, Q. Wang, Q. Miao, Y. Liu, X. Han, D. Qiu, Z. Li and X. Ma, CCN1 expression in hepatocytes contributes to macrophage infiltration in nonalcoholic fatty liver disease in mice, <em>J. Lipid Res.</em> <bold>54</bold>(1) (2013) 44–54; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1194/jlr.M026013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1194/jlr.M026013</a>">https://doi.org/10.1194/jlr.M026013</ext-link>
E. Radi, P. Formichi, C. Battisti and A. Federico, Apoptosis and oxidative stress in neurodegenerative diseases, <em>J. Alzheimer’s Dis.</em> <bold>42</bold>(Suppl. 3) (2014) S125–S152; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3233/JAD-132738" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3233/JAD-132738</a>">https://doi.org/10.3233/JAD-132738</ext-link>
K. J. Campbell and S. W. G. Tait, Targeting BCL-2 regulated apoptosis in cancer, <em>Open Biol</em>. <bold>8</bold>(5) (2018) Article ID 180002 (11 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1098/rsob.180002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1098/rsob.180002</a>">https://doi.org/10.1098/rsob.180002</ext-link>
C. A. Gregory, H. Singh, A. S. Perry and D. J. Prockop, Deletion of the BH1 domain of Bcl-2 accelerates apoptosis by acting in a dominant negative fashion, <em>J. Biol. Chem.</em> <bold>278</bold>(22) (2003) 19732–19742; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1074/jbc.M300373200" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1074/jbc.M300373200</a>">https://doi.org/10.1074/jbc.M300373200</ext-link>
C. Cárdenas, R. A. Miller, I. Smith, T. Bui, J. Molgó, M. Müller, H. Vais, K.-H. Cheung, J. Yang, I. Parker, C. B. Thompson, M. J. Birnbaum, K. R. Hallows and J. K. Foskett, Essential regulation of cell bioenergetics by constitutive InsP₃ receptor Ca²⁺ transfer to mitochondria, <em>Cell</em> <bold>142</bold>(2) (2010) 270–283; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cell.2010.06.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cell.2010.06.007</a>">https://doi.org/10.1016/j.cell.2010.06.007</ext-link>
J. A. Martinez, Z. Zhang, S. I. Svetlov, R. L. Hayes, K. K. Wang and S. F. Larner, Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in differentiated PC12 cells, <em>Apoptosis</em> <bold>15</bold>(12) (2010) 1480–1493; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10495-010-0531-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10495-010-0531-7</a>">https://doi.org/10.1007/s10495-010-0531-7</ext-link>
C. J. Hanson, M. D. Bootman, C. W. Distelhorst, R. J. H. Wojcikiewicz and H. L. Roderick, Bcl-2 suppresses Ca²⁺ release through inositol 1,4,5-trisphosphate receptors and inhibits Ca²⁺ uptake by mitochondria without affecting ER calcium store content, <em>Cell Calcium</em> <bold>44</bold>(3) (2008) 324–338; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ceca.2008.01.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ceca.2008.01.003</a>">https://doi.org/10.1016/j.ceca.2008.01.003</ext-link>
X. Liu, W. Chu, S. Shang, L. Ma, C. Jiang, Y. Ding, J. Wang, S. Zhang and B. Shao, Preliminary study on the anti-apoptotic mechanism of astragaloside IV on radiation-induced brain cells, <em>Int. J. Immunopathol. Pharmacol</em>. <bold>34</bold> (2020) Article ID 2058738420954594; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1177/2058738420954594" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/2058738420954594</a>">https://doi.org/10.1177/2058738420954594</ext-link>
Z. Liu, Z. Zhou, P. Ai, C. Zhang, J. Chen and Y. Wang, Astragaloside IV attenuates ferroptosis after subarachnoid hemorrhage via Nrf2/HO-1 signaling pathway, <em>Front. Pharmacol.</em> <bold>13</bold> (2022) Article ID 924826 (13 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fphar.2022.924826" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fphar.2022.924826</a>">https://doi.org/10.3389/fphar.2022.924826</ext-link>
Z. Qi, P. Zhang, L. Yang, P. Song, J. Zhao, H. Wang, Y. Zhao and L. Cao, Astragaloside IV alleviates doxorubicin-induced cardiotoxicity by inhibiting cardiomyocyte pyroptosis through the SIRT1/NLRP3 pathway, <em>Am. J. Chin. Med.</em> <bold>52</bold>(2) (2024) 453–469; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1142/S0192415X24500198" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1142/S0192415X24500198</a>">https://doi.org/10.1142/S0192415X24500198</ext-link>
X. Meng, G. Zhang, H. Cao, D. Yu, X. Fang, W. M. de Vos and H. Wu, Gut dysbacteriosis and intestinal disease: Mechanism and treatment, <em>J. Appl. Microbiol</em>. <bold>129</bold>(4) (2020) 787–805; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/jam.14661" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/jam.14661</a>">https://doi.org/10.1111/jam.14661</ext-link>
L. L. Deng, Astragaloside IV as potential antioxidant against diabetic ketoacidosis in juvenile mice through activating JNK/Nrf2 signaling pathway, <em>Arch. Med. Res.</em> <bold>51</bold>(7) (2020) 654–663; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.arcmed.2020.06.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.arcmed.2020.06.013</a>">https://doi.org/10.1016/j.arcmed.2020.06.013</ext-link>
D. M. Chopyk and A. Grakoui, Contribution of the intestinal microbiome and gut barrier to hepatic disorders, <em>Gastroenterology</em> <bold>159</bold>(3) (2020) 849–863; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1053/j.gastro.2020.04.077" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1053/j.gastro.2020.04.077</a>">https://doi.org/10.1053/j.gastro.2020.04.077</ext-link>
J. W. Jung, F. Wang, A. Turk, J. S. Park, H. Ma, Y. Ma, H.-R. Noh, G. Sui, D. S. Shin, M. K. Lee and Y. S. Roh, Zaluzanin C alleviates inflammation and lipid accumulation in Kupffer cells and hepatocytes by regulating mitochondrial ROS, <em>Molecules</em> <bold>28</bold>(22) (2023) Article ID 7484; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/molecules28227484" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/molecules28227484</a>">https://doi.org/10.3390/molecules28227484</ext-link>
D. Zhang, X. Hao, L. Xu, J. Cui, L. Xue and Z. Tian, Intestinal flora imbalance promotes alcohol-induced liver fibrosis by the TGFβ/Smad signaling pathway in mice, <em>Oncol. Lett.</em> <bold>14</bold>(4) (2017) 4511–4516; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3892/ol.2017.6762" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3892/ol.2017.6762</a>">https://doi.org/10.3892/ol.2017.6762</ext-link>
A. Wieland, D. N. Frank, B. Harnke and K. Bambha, Systematic review: Microbial dysbiosis and nonalcoholic fatty liver disease, <em>Aliment. Pharmacol. Ther.</em> <bold>42</bold>(9) (2015) 1051–1063; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/apt.13376" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/apt.13376</a>">https://doi.org/10.1111/apt.13376</ext-link>
L. Xue, Z. Deng, W. Luo, X. He and Y. Chen, Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: A randomized clinical trial, <em>Front. Cell. Infect. Microbiol.</em> <bold>12</bold> (2022) Article ID 759306 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fcimb.2022.759306" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fcimb.2022.759306</a>">https://doi.org/10.3389/fcimb.2022.759306</ext-link>
V. Kaden-Volynets, M. Basic, U. Neumann, D. Pretz, A. Rings, A. Bleich and S. C. Bischoff, Lack of liver steatosis in germ-free mice following hypercaloric diets, <em>Eur. J. Nutr.</em> <bold>58</bold> (2019) 1933–1945; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00394-018-1748-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00394-018-1748-4</a>">https://doi.org/10.1007/s00394-018-1748-4</ext-link>
J. Fu, M. J. Bonder, M. C. Cenit, E. F. Tigchelaar, A. Maatman, J. A. M. Dekens, E. Brandsma, J. Marczynska, F. Imhann, R. K. Weersma, L. Franke, T. W. Poon, R. J. Xavier, D. Gevers, M. H. Hofker, C. Wijmenga and A. Zhernakova, The gut microbiome contributes to a substantial proportion of the variation in blood lipids, <em>Circ. Res</em>. <bold>117</bold>(9) (2015) 817–824; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1161/CIRCRESAHA.115.306807" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1161/CIRCRESAHA.115.306807</a>">https://doi.org/10.1161/CIRCRESAHA.115.306807</ext-link>
Z. Li, E. Hu, F. Zheng, S. Wang, W. Zhang, J. Luo, T. Tang, Q. Huang and Y. Wang, The effects of astragaloside IV on gut microbiota and serum metabolism in a mice model of intracerebral hemorrhage, <em>Phytomedicine</em> <bold>121</bold> (2023) Article ID 155086; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.phymed.2023.155086" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.phymed.2023.155086</a>">https://doi.org/10.1016/j.phymed.2023.155086</ext-link>
X. Q. Du, L. P. Shi, Z. W. Chen, J. Y. Hu, B. Zuo, Y. Xiong and W. F. Cao, Astragaloside IV ameliorates isoprenaline-induced cardiac fibrosis in mice via modulating gut microbiota and fecal metabolites, <em>Front. Cell. Infect. Microbiol.</em> <bold>12</bold> (2022) Article ID 836150 (11 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fcimb.2022.836150" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fcimb.2022.836150</a>">https://doi.org/10.3389/fcimb.2022.836150</ext-link>
T. Yang, S. Xie, L. Cao, M. Li, L. Ding, L. Wang, S. Pang, Z. Wang and L. Geng, Astragaloside IV modulates gut macrophages M1/M2 polarization by reshaping gut microbiota and short chain fatty acids in sepsis, <em>Shock</em> <bold>61</bold>(1) (2024) 120–131; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1097/SHK.0000000000002262" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/SHK.0000000000002262</a>">https://doi.org/10.1097/SHK.0000000000002262</ext-link>
P. Golabi, H. Bush, M. Stepanova, C. T. Locklear, J. P. Weston, Z. Goodman, I. M. Younossi and Z. M. Younossi, Liver transplantation (LT) for cryptogenic cirrhosis (CC) and nonalcoholic steato-hepatitis (NASH) cirrhosis: Data from the Scientific Registry of Transplant Recipients (SRTR): 1994 to 2016, <em>Medicine</em> <bold>97</bold>(31) (2018) e11518; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1097/MD.0000000000011518" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/MD.0000000000011518</a>">https://doi.org/10.1097/MD.0000000000011518</ext-link>
S. A. Harrison, M. R. Bashir, C. D. Guy, R. Zhou, C. A. Moylan, J. P. Frias, N. Alkhouri, M. B. Bansal, S. Baum, B. A. Neuschwander-Tetri, R. Taub and S. E. Moussa, Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: A multicentre, randomised, double-blind, placebo- controlled, phase 2 trial, <em>Lancet</em> <bold>394</bold>(10213) (2019) 2012–2024; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0140-6736(19)32517-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0140-6736(19)32517-6</a>">https://doi.org/10.1016/S0140-6736(19)32517-6</ext-link>
A. R. Saran, S. Dave and A. Zarrinpar, Circadian rhythms in the pathogenesis and treatment of fatty liver disease, <em>Gastroenterology</em> <bold>158</bold>(7) (2020) 1948–1966.e1; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1053/j.gastro.2020.01.050" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1053/j.gastro.2020.01.050</a>">https://doi.org/10.1053/j.gastro.2020.01.050</ext-link>
S. M. Francque, P. Bedossa, V. Ratziu, Q. M. Anstee, E. Bugianesi, A. J. Sanyal, R. Loomba, S. A. Harrison, R. Balabanska, L. Mateva, N. Lanthier, N. Alkhouri, C. Moreno, J. M. Schattenberg, D. Stefanova-Petrova, L. Vonghia, R. Rouzier, M. Guillaume, A. Hodge, M. Romero-Gómez, P. Huot-Marchand, M. Baudin, M.-P. Richard, J.-L. Abitbol, P. Broqua, J.-L. Junien and M. F. Abdelmalek, A randomized, controlled trial of the pan-PPAR agonist lanifibranor in NASH, <em>N. Engl. J. Med.</em> <bold>385</bold>(17) (2021) 1547–1558; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1056/NEJMoa2036205" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1056/NEJMoa2036205</a>">https://doi.org/10.1056/NEJMoa2036205</ext-link>
P. N. Newsome, K. Buchholtz, K. Cusi, M. Linder, T. Okanoue, V. Ratziu, A. J. Sanyal, A.-S. Sejling and S. A. Harrison, A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steato-hepatitis, <em>N. Engl. J. Med.</em> <bold>384</bold>(12) (2021) 1113–1124; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1056/NEJMoa2028395" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1056/NEJMoa2028395</a>">https://doi.org/10.1056/NEJMoa2028395</ext-link>
N. Alkhouri, R. Herring, H. Kabler, Z. Kayali, T. Hassanein, A. Kohli, R. S. Huss, Y. Zhu, A. N. Billin, L. H. Damgaard, K. Buchholtz, M. S. Kjær, C. Balendran, R. P. Myers, R. Loomba and M. Noureddin, Safety and efficacy of combination therapy with semaglutide, cilofexor and firsocostat in patients with non-alcoholic steatohepatitis: A randomised, open-label phase II trial, <em>J. Hepatol.</em> <bold>77</bold>(3) (2022) 607–618; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jhep.2022.04.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhep.2022.04.003</a>">https://doi.org/10.1016/j.jhep.2022.04.003</ext-link>
R. Loomba, E. J. Lawitz, J. P. Frias, G. Ortiz-Lasanta, L. Johansson, B. B. Franey, L. Morrow, M. Rosenstock, C. L. Hartsfield, C.-Y. Chen, L. Tseng, R. W. Charlton, H. Mansbach and M. Margalit, Safety, pharmacokinetics, and pharmacodynamics of pegozafermin in patients with non-alcoholic steatohepatitis: A randomised, double-blind, placebo-controlled, phase 1b/2a multiple-ascending--dose study, <em>Lancet Gastroenterol. Hepatol.</em> <bold>8</bold>(2) (2023) 120–132; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S2468-1253(22)00347-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S2468-1253(22)00347-8</a>">https://doi.org/10.1016/S2468-1253(22)00347-8</ext-link>
S. A. Harrison, J. P. Frias, G. Neff, G. A. Abrams, K. J. Lucas, W. Sanchez, S. Gogia, M. Y. Sheikh, C. Behling, P. Bedossa, L. Shao, D. Chan, E. Fong, B. de Temple, R. Shringarpure, E. J. Tillman, T. Rolph, A. Cheng and K. Yale, Safety and efficacy of once-weekly efruxifermin versus placebo in non-alcoholic steatohepatitis (HARMONY): A multicentre, randomised, double-blind, placebo--controlled, phase 2b trial, <em>Lancet Gastroenterol. Hepatol.</em> <bold>8</bold>(12) (2023) 1080–1093; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S2468-1253(23)00272-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S2468-1253(23)00272-8</a>">https://doi.org/10.1016/S2468-1253(23)00272-8</ext-link>
J. Zhou, L. R. Waskowicz, A. Lim, X.-H. Liao, B. Lian, H. Masamune, S. Refetoff, B. Tran, D. D. Koeberl and P. M. Yen, A liver-specific thyromimetic, VK2809, decreases hepatosteatosis in glycogen storage disease type Ia, <em>Thyroid</em> <bold>29</bold>(8) (2019) 1158–1167; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1089/thy.2019.0007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1089/thy.2019.0007</a>">https://doi.org/10.1089/thy.2019.0007</ext-link>
S. A. Harrison, R. Taub, G. W. Neff, K. J. Lucas, D. Labriola, S. E. Moussa, N. Alkhouri and M. R. Bashir, Resmetirom for nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled phase 3 trial, <em>Nat. Med</em>. <bold>29</bold>(11) (2023) 2919–2928; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41591-023-02603-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41591-023-02603-1</a>">https://doi.org/10.1038/s41591-023-02603-1</ext-link>