References
- K. G. Naber, H. Niggemann, G. Stein and G. Stein, Review of the literature and individual patients’ data meta-analysis on efficacy and tolerance of nitroxoline in the treatment of uncomplicated urinary tract infections, BMC Infect. Dis. 14 (2014) Article ID 628 (16 pages); https://doi.org/10.1186/s12879-014-0628-7
- C. Pelletier, P. Prognon and P. Bourlioux, Roles of divalent cations and pH in mechanism of action of nitroxoline against Escherichia coli strains, Antimicrob. Agents Chemother. 39(3) (1995) 707–713; https://doi.org/10.1128/aac.39.3.707
- B. Murugasu-Oei and T. Dick, In vitro activity of the chelating agents nitroxoline and oxine against Mycobacterium bovis BCG, Int. J. Antimicrob. Agents 18(6) (2001) 579–582; https://doi.org/10.1016/S0924-8579(01)00437-X
- E. Cacace, M. Tietgen, M. Steinhauer, A. Mateus, T. G. Schultze, M. Eckermann, M. Galardini, V. Varik, A. Koumoutsi, J. J. Parzeller, F. Corona, A. Orakov, M. Knopp, A. Brauer-Nikonow, P. Bork, C. V. Romao, M. Zimmermann, P. Cloetens, M. M. Savitski, A. Typas and S. Göttig, Uncovering nitroxoline activity spectrum, mode of action and resistance across Gram-negative bacteria, Nat. Commun. (16) (2025) Article ID 3783 (16 pages); https://doi.org/10.1038/s41467-025-58730-5
- A. Sobke, M. Klinger, B. Hermann, S. Sachse, S. Nietzsche, O. Makarewicz, P. M. Keller, W. Pfister and E. Straube, The urinary antibiotic 5-nitro-8-hydroxyquinoline (nitroxoline) reduces the formation and induces the dispersal of Pseudomonas aeruginosa biofilms by chelation of iron and zinc, Antimicrob. Agents Chemother. 56(11) (2012) 6021–6025; https://doi.org/10.1128/AAC.01484-12
- M. R. Jacobs, R. G. Robinson and H. J. Koornhof, Antibacterial activity of nitroxoline and sulphamethizole alone and in combination in urinary tract infections, S. Afr. Med. J. 54(23) (1978) 959–962; https://journals.co.za/doi/abs/10.10520/AJA20785135_19317
- R. Wykowski, A. M. Fuentefria and S. F. Andrade, Antimicrobial activity of clioquinol and nitroxoline: A scoping review, Arch. Microbiol. 204 (2022) Article ID 535 (31 pages); https://doi.org/10.1007/s00203-022-03122-2
- F. Fuchs, F. Becerra-Aparicio, K. Xanthopoulou K, H. Seifert and P. G. Higgins, In vitro activity of nitroxoline against carbapenem-resistant Acinetobacter baumannii isolated from the urinary tract, J. Antimicrob. Chemother. 77(7) (2022) 1912–1915; https://doi.org/10.1093/jac/dkac123
- H. Hof and C. Juretschke, Nitroxoline: an option for the treatment of urinary tract infection with multi-resistant uropathogenic bacteria, Infection 47 (2019) 493–495; https://doi.org/10.1007/s15010-018-1253-y
- A. M. Hoffmann, M. Wolke, J. Rybniker, G. Plum and F. Fuchs, In vitro activity of repurposed nitroxoline against clinically isolated mycobacteria including multidrug-resistant Mycobacterium tuberculosis, Front. Pharmacol. 13 (2022) Article ID 906097 (6 pages); https://doi.org/10.3389/fphar.2022.906097
- Y. Abouelhassan, Q. Yang, H. Yousaf, M. T. Nguyen, M. Rolfe, G. S. Schultz and R. W. Huigens, Nitroxoline: a broad-spectrum biofilm-eradicating agent against pathogenic bacteria, Int. J. Anti-microb. Agents 49(2) (2017) 247–251; https://doi.org/10.1016/j.ijantimicag.2016.10.017
- A. Proschak, G. Martinelli, D. Frank D, M. J. Rotter, S. Brunst, L. Weizel, L. D. Burgers, R. Fürst, E. Proschak, I. Sosič, S. Gobec and T. A. Wichelhaus, Nitroxoline and its derivatives are potent inhibitors of metallo-beta-lactamases, Eur. J. Med. Chem. 228 (2022) Article ID 113975 (10 pages); https://doi.org/10.1016/j.ejmech.2021.113975
- B. Mirković, M. Renko, S. Turk, I. Sosič, Z. Jevnikar, N. Obermajer, D. Turk, S. Gobec and J. Kos, Novel mechanism of cathepsin B inhibition by antibiotic nitroxoline and related compounds, ChemMedChem 6(8) (2011) 1351–1356; https://doi.org/10.1002/cmdc.201100098
- J. S. Shim, Y. Matsui, S. Bhat, B. A. Nacev, J. Xu, H. E. Bhang, S. Dhara, K. C. Han, C. R. Chong, M. G. Pomper, A. So and J. O. Liu, Effect of nitroxoline on angiogenesis and growth of human bladder cancer, J. Natl. Cancer Inst. 102(24) (2010) 1855–1873; https://doi.org/10.1093/jnci/djq457
- H. Jiang, J. Xing, C. Wang, H. Zhang, L. Yue, X. Wan, W. Chen, H. Ding, Y. Xie, H. Tao, Z. Chen, H. Jiang, K. Chen, S. Chen, M. Zheng, Y. Zhang and C. Luo, Discovery of novel BET inhibitors by drug repurposing of nitroxoline and its analogues, Org. Biomol. Chem. 15 (2017) 9352–9361; https://doi.org/10.1039/c7ob02369c
- W. Chan-On, N. T. B. Huyen, N. Songtawee, W. Suwanjang, S. Prachayasittikul and V. Prachayasittikul, Quinoline-based clioquinol and nitroxoline exhibit anticancer activity inducing FoxM1 inhibition in cholangiocarcinoma cells, Drug Des. Devel. Ther. 9 (2015) 2033–2047; https://doi.org/10.2147/DDDT.S79313
- J. Lazovic, L. Guo, J. Nakashima, L. Mirsadraei, W. Yong, H. J. Kim, B. Ellingson, H. Wu and W. B. Pope, Nitroxoline induces apoptosis and slows glioma growth in vivo, Neuro-Oncol. 17(1) (2015) 53–62; https://doi.org/10.1093/neuonc/nou139
- H. Mao, Y. Du, Z. Zhang, B. Cao, J. Zhao, H. Zhou and X. Mao X, Nitroxoline shows antimyeloma activity by targeting the TRIM25/ p53 axle, Anticancer. Drugs 28(4) (2017) 376–383; https://doi.org/10.1097/CAD.0000000000000466
- W.-L. Chang, L.-C. Hsu, W.-J. Leu, C.-S. Chen and J.-H. Guh, Repurposing of nitroxoline as a poten tial anticancer agent against human prostate cancer: A crucial role on AMPK/mTOR signaling pathway and the interplay with Chk2 activation, Oncotarget 6 (2015) 39806–39820; https://doi.org/10.18632/oncotarget.5655
- N. Xu, L. Huang, X. Li, M. Watanabe, C. Li, A. Xu, C. Liu, Q. Li, M. Araki, K. Wada, Y. Nasu and P. Huang, The novel combination of nitroxoline and PD-1 blockade, exerts a potent antitumor effect in a mouse model of prostate cancer, Int. J. Biol. Sci. 15(5) (2019) 919–928; https://doi.org/10.7150/ijbs.32259
- J. Kos and A. Mitrović, Nitroxoline: repurposing its antimicrobial to antitumor application, Acta. Biochim. Pol. 66(4) (2019) 521–531; https://doi.org/10.18388/abp.2019_2904
- H. Wang, Y. Li, F. Sun, Y. Feng, K. Jin and X. Wang, 1,2,3,4-Tetrahydro-8-hydroxyquinoline-promoted copper-catalyzed coupling of nitrogen nucleophiles and aryl bromides, J. Org. Chem. 73(21) (2008) 8639–8642; https://doi.org/10.1021/jo8015488
- F. Yang, F. Song, W. Li, J. Lan and J. You, Palladium-catalyzed C–H activation of anilides at room temperature: Ortho-arylation and acetoxylation, RSC Adv. 3 (2013) 9649–9652; https://doi.org/10.1039/C3RA41981A
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program, J. Appl. Crystallogr. 42 (2009) 339–341; https://doi.org/10.1107/S0021889808042726
- G. M. Sheldrick, SHELXT – integrated space-group and crystal-structure determination, Acta Cryst. 71(1) (2015) 3–8; https://doi.org/10.1107/S2053273314026370
- C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, Mercury 4.0: From visualization to analysis, design and prediction, J. Appl. Cryst. 53(1) (2020) 226–235; https://doi.org/10.1107/S1600576719014092
- O. Olaleye, T. R. Raghunand, S. Bhat, C. Chong, P. Gu, J. Zhou, Y. Zhang, W. R. Bishai and J. O. Liu, Characterization of clioquinol and analogues as novel inhibitors of methionine aminopeptidases from Mycobacterium tuberculosis, Tuberculosis 91(S1) (2011) S61-65; https://doi.org/10.1016/j.tube.2011.10.012
- R. Kuhelj, M. Dolinar, J. Pungerčar and V. Turk, The preparation of catalytically active human cathepsin B from its precursor expressed in Escherichia coli in the form of inclusion bodies, Eur. J. Biochem. 229(2) (1995) 533–539; https://doi.org/10.1111/J.1432-1033.1995.0533K.X
- Y. Shimizu, H. Morimoto, M. Zhang and T. Ohshima, Microwave-assisted deacylation of unactivated amides using ammonium-salt-accelerated transamidation, Angew. Chem. Int. Ed. 51(34) (2012) 8564–8567; https://doi.org/10.1002/anie.201202354
- H. Jiang, J. E. Taggart, X. Zhang, D. M. Benbrook, S. E. Lind and W. Q. Ding, Nitroxoline (8-hydroxy-5-nitroquinoline) is more a potent anti-cancer agent than clioquinol (5-chloro-7-iodo-8-quinoline), Cancer Lett. 312(1) (2011) 11–17; https://doi.org/10.1016/j.canlet.2011.06.032
- D. Knez, I. Sosič, A. Pišlar, A. Mitrović, M. Jukič, J. Kos and S. Gobec, Biological evaluation of 8-hydroxyquinolines as multi-target directed ligands for treating Alzheimer’s disease, Curr. Alzheimer Res. 16(9) (2019) 801–814; https://doi.org/10.2174/1567205016666191010130351
- W. T. Lowther and B. W, Matthews. Structure and function of the methionine aminopeptidases, Biochim. Biophys. Acta 1477(1-2) (2000) 157–167; https://doi.org/10.1016/S0167-4838(99)00271-X
- S. Y. Bhat, Drug targeting of aminopeptidases: importance of deploying a right metal cofactor, Biophys. Rev. 16 (2024) 249–256; https://doi.org/10.1007/s12551-024-01192-8
- M. A. Altmeyer, A. Marschner, R. Schiffmann and C. D. Klein, Subtype-selectivity of metal-dependent methionine aminopeptidase inhibitors, Bioorg. Med. Chem. Lett. 20(14) (2010) 4038–4044; https://doi.org/10.1016/j.bmcl.2010.05.093
- J. Y. Li, L. L. Chen, Y. M. Cui, Q. L. Luo, J. Li, F. J. Nan and Q. Z. Ye, Specificity for inhibitors of metal-substituted methionine aminopeptidase, Biochem. Biophys. Res. Commun. 307(1) (2003), 172–179; https://doi.org/10.1016/S0006-291X(03)01144-6
- Q. Z. Ye, S. X. Xie, M. Huang, W. J. Huang, J. P. Lu and Z. Q. Ma, Metalloform-selective inhibitors of Escherichia coli methionine aminopeptidase and X-ray structure of a Mn(II)-form enzyme complexed with an inhibitor, J. Am. Chem. Soc. 126(43) (2004) 13940–13941; https://doi.org/10.1021/ja045864p
- M. Huang, S.-X. Xie, Z.-Q. Ma, Q.-Q. Huang, F.-J. Nan and Q.-Z. Ye, Inhibition of monometalated methionine aminopeptidase: Inhibitor discovery and crystallographic analysis, J. Med. Chem. 50(23) (2007) 5735–5742; https://doi.org/10.1021/jm700930k
- J. Schmitz, E. Gilberg, R. Löser, J. Bajorath, U. Bartz and M. Gütschow, Cathepsin B: Active site mapping with peptidic substrates and inhibitors, Bioorg. Med. Chem. (27)11 (2019) 1–15; https://doi.org/10.1016/j.bmc.2018.10.017
- I. Sosič, B. Mirković, K. Arenz, B. Štefane, J. Kos and S. Gobec, Development of new cathepsin B inhibitors: combining bioisosteric replacements and structure-based design to explore the structure–activity relationships of nitroxoline derivatives, J. Med. Chem. 56(2) (2013) 521–533; https://doi.org/10.1021/jm301544x
- A. Mitrović, B. Mirković, I. Sosič, S. Gobec and J. Kos, Inhibition of endopeptidase and exopeptidase activity of cathepsin B impairs extracellular matrix degradation and tumour invasion, Biol. Chem. 397(2) (2016) 165–174; https://doi.org/10.1515/hsz-2015-0236
- L. Sorokin, The impact of the extracellular matrix on inflammation, Nat. Rev. Immunol. 10 (2010) 712−723; https://doi.org/10.1038/nri2852