Have a personal or library account? Click to login
Biochemical characteristics of the 6-nitro regioisomer of nitroxoline and its 1,2,3,4-tetrahydroquinoline analogues Cover

Biochemical characteristics of the 6-nitro regioisomer of nitroxoline and its 1,2,3,4-tetrahydroquinoline analogues

Open Access
|Jul 2025

References

  1. K. G. Naber, H. Niggemann, G. Stein and G. Stein, Review of the literature and individual patients’ data meta-analysis on efficacy and tolerance of nitroxoline in the treatment of uncomplicated urinary tract infections, BMC Infect. Dis. 14 (2014) Article ID 628 (16 pages); https://doi.org/10.1186/s12879-014-0628-7
  2. C. Pelletier, P. Prognon and P. Bourlioux, Roles of divalent cations and pH in mechanism of action of nitroxoline against Escherichia coli strains, Antimicrob. Agents Chemother. 39(3) (1995) 707–713; https://doi.org/10.1128/aac.39.3.707
  3. B. Murugasu-Oei and T. Dick, In vitro activity of the chelating agents nitroxoline and oxine against Mycobacterium bovis BCG, Int. J. Antimicrob. Agents 18(6) (2001) 579–582; https://doi.org/10.1016/S0924-8579(01)00437-X
  4. E. Cacace, M. Tietgen, M. Steinhauer, A. Mateus, T. G. Schultze, M. Eckermann, M. Galardini, V. Varik, A. Koumoutsi, J. J. Parzeller, F. Corona, A. Orakov, M. Knopp, A. Brauer-Nikonow, P. Bork, C. V. Romao, M. Zimmermann, P. Cloetens, M. M. Savitski, A. Typas and S. Göttig, Uncovering nitroxoline activity spectrum, mode of action and resistance across Gram-negative bacteria, Nat. Commun. (16) (2025) Article ID 3783 (16 pages); https://doi.org/10.1038/s41467-025-58730-5
  5. A. Sobke, M. Klinger, B. Hermann, S. Sachse, S. Nietzsche, O. Makarewicz, P. M. Keller, W. Pfister and E. Straube, The urinary antibiotic 5-nitro-8-hydroxyquinoline (nitroxoline) reduces the formation and induces the dispersal of Pseudomonas aeruginosa biofilms by chelation of iron and zinc, Antimicrob. Agents Chemother. 56(11) (2012) 6021–6025; https://doi.org/10.1128/AAC.01484-12
  6. M. R. Jacobs, R. G. Robinson and H. J. Koornhof, Antibacterial activity of nitroxoline and sulphamethizole alone and in combination in urinary tract infections, S. Afr. Med. J. 54(23) (1978) 959–962; https://journals.co.za/doi/abs/10.10520/AJA20785135_19317
  7. R. Wykowski, A. M. Fuentefria and S. F. Andrade, Antimicrobial activity of clioquinol and nitroxoline: A scoping review, Arch. Microbiol. 204 (2022) Article ID 535 (31 pages); https://doi.org/10.1007/s00203-022-03122-2
  8. F. Fuchs, F. Becerra-Aparicio, K. Xanthopoulou K, H. Seifert and P. G. Higgins, In vitro activity of nitroxoline against carbapenem-resistant Acinetobacter baumannii isolated from the urinary tract, J. Antimicrob. Chemother. 77(7) (2022) 1912–1915; https://doi.org/10.1093/jac/dkac123
  9. H. Hof and C. Juretschke, Nitroxoline: an option for the treatment of urinary tract infection with multi-resistant uropathogenic bacteria, Infection 47 (2019) 493–495; https://doi.org/10.1007/s15010-018-1253-y
  10. A. M. Hoffmann, M. Wolke, J. Rybniker, G. Plum and F. Fuchs, In vitro activity of repurposed nitroxoline against clinically isolated mycobacteria including multidrug-resistant Mycobacterium tuberculosis, Front. Pharmacol. 13 (2022) Article ID 906097 (6 pages); https://doi.org/10.3389/fphar.2022.906097
  11. Y. Abouelhassan, Q. Yang, H. Yousaf, M. T. Nguyen, M. Rolfe, G. S. Schultz and R. W. Huigens, Nitroxoline: a broad-spectrum biofilm-eradicating agent against pathogenic bacteria, Int. J. Anti-microb. Agents 49(2) (2017) 247–251; https://doi.org/10.1016/j.ijantimicag.2016.10.017
  12. A. Proschak, G. Martinelli, D. Frank D, M. J. Rotter, S. Brunst, L. Weizel, L. D. Burgers, R. Fürst, E. Proschak, I. Sosič, S. Gobec and T. A. Wichelhaus, Nitroxoline and its derivatives are potent inhibitors of metallo-beta-lactamases, Eur. J. Med. Chem. 228 (2022) Article ID 113975 (10 pages); https://doi.org/10.1016/j.ejmech.2021.113975
  13. B. Mirković, M. Renko, S. Turk, I. Sosič, Z. Jevnikar, N. Obermajer, D. Turk, S. Gobec and J. Kos, Novel mechanism of cathepsin B inhibition by antibiotic nitroxoline and related compounds, ChemMedChem 6(8) (2011) 1351–1356; https://doi.org/10.1002/cmdc.201100098
  14. J. S. Shim, Y. Matsui, S. Bhat, B. A. Nacev, J. Xu, H. E. Bhang, S. Dhara, K. C. Han, C. R. Chong, M. G. Pomper, A. So and J. O. Liu, Effect of nitroxoline on angiogenesis and growth of human bladder cancer, J. Natl. Cancer Inst. 102(24) (2010) 1855–1873; https://doi.org/10.1093/jnci/djq457
  15. H. Jiang, J. Xing, C. Wang, H. Zhang, L. Yue, X. Wan, W. Chen, H. Ding, Y. Xie, H. Tao, Z. Chen, H. Jiang, K. Chen, S. Chen, M. Zheng, Y. Zhang and C. Luo, Discovery of novel BET inhibitors by drug repurposing of nitroxoline and its analogues, Org. Biomol. Chem. 15 (2017) 9352–9361; https://doi.org/10.1039/c7ob02369c
  16. W. Chan-On, N. T. B. Huyen, N. Songtawee, W. Suwanjang, S. Prachayasittikul and V. Prachayasittikul, Quinoline-based clioquinol and nitroxoline exhibit anticancer activity inducing FoxM1 inhibition in cholangiocarcinoma cells, Drug Des. Devel. Ther. 9 (2015) 2033–2047; https://doi.org/10.2147/DDDT.S79313
  17. J. Lazovic, L. Guo, J. Nakashima, L. Mirsadraei, W. Yong, H. J. Kim, B. Ellingson, H. Wu and W. B. Pope, Nitroxoline induces apoptosis and slows glioma growth in vivo, Neuro-Oncol. 17(1) (2015) 53–62; https://doi.org/10.1093/neuonc/nou139
  18. H. Mao, Y. Du, Z. Zhang, B. Cao, J. Zhao, H. Zhou and X. Mao X, Nitroxoline shows antimyeloma activity by targeting the TRIM25/ p53 axle, Anticancer. Drugs 28(4) (2017) 376–383; https://doi.org/10.1097/CAD.0000000000000466
  19. W.-L. Chang, L.-C. Hsu, W.-J. Leu, C.-S. Chen and J.-H. Guh, Repurposing of nitroxoline as a poten tial anticancer agent against human prostate cancer: A crucial role on AMPK/mTOR signaling pathway and the interplay with Chk2 activation, Oncotarget 6 (2015) 39806–39820; https://doi.org/10.18632/oncotarget.5655
  20. N. Xu, L. Huang, X. Li, M. Watanabe, C. Li, A. Xu, C. Liu, Q. Li, M. Araki, K. Wada, Y. Nasu and P. Huang, The novel combination of nitroxoline and PD-1 blockade, exerts a potent antitumor effect in a mouse model of prostate cancer, Int. J. Biol. Sci. 15(5) (2019) 919–928; https://doi.org/10.7150/ijbs.32259
  21. J. Kos and A. Mitrović, Nitroxoline: repurposing its antimicrobial to antitumor application, Acta. Biochim. Pol. 66(4) (2019) 521–531; https://doi.org/10.18388/abp.2019_2904
  22. H. Wang, Y. Li, F. Sun, Y. Feng, K. Jin and X. Wang, 1,2,3,4-Tetrahydro-8-hydroxyquinoline-promoted copper-catalyzed coupling of nitrogen nucleophiles and aryl bromides, J. Org. Chem. 73(21) (2008) 8639–8642; https://doi.org/10.1021/jo8015488
  23. F. Yang, F. Song, W. Li, J. Lan and J. You, Palladium-catalyzed C–H activation of anilides at room temperature: Ortho-arylation and acetoxylation, RSC Adv. 3 (2013) 9649–9652; https://doi.org/10.1039/C3RA41981A
  24. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program, J. Appl. Crystallogr. 42 (2009) 339–341; https://doi.org/10.1107/S0021889808042726
  25. G. M. Sheldrick, SHELXT – integrated space-group and crystal-structure determination, Acta Cryst. 71(1) (2015) 3–8; https://doi.org/10.1107/S2053273314026370
  26. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, Mercury 4.0: From visualization to analysis, design and prediction, J. Appl. Cryst. 53(1) (2020) 226–235; https://doi.org/10.1107/S1600576719014092
  27. O. Olaleye, T. R. Raghunand, S. Bhat, C. Chong, P. Gu, J. Zhou, Y. Zhang, W. R. Bishai and J. O. Liu, Characterization of clioquinol and analogues as novel inhibitors of methionine aminopeptidases from Mycobacterium tuberculosis, Tuberculosis 91(S1) (2011) S61-65; https://doi.org/10.1016/j.tube.2011.10.012
  28. R. Kuhelj, M. Dolinar, J. Pungerčar and V. Turk, The preparation of catalytically active human cathepsin B from its precursor expressed in Escherichia coli in the form of inclusion bodies, Eur. J. Biochem. 229(2) (1995) 533–539; https://doi.org/10.1111/J.1432-1033.1995.0533K.X
  29. Y. Shimizu, H. Morimoto, M. Zhang and T. Ohshima, Microwave-assisted deacylation of unactivated amides using ammonium-salt-accelerated transamidation, Angew. Chem. Int. Ed. 51(34) (2012) 8564–8567; https://doi.org/10.1002/anie.201202354
  30. H. Jiang, J. E. Taggart, X. Zhang, D. M. Benbrook, S. E. Lind and W. Q. Ding, Nitroxoline (8-hydroxy-5-nitroquinoline) is more a potent anti-cancer agent than clioquinol (5-chloro-7-iodo-8-quinoline), Cancer Lett. 312(1) (2011) 11–17; https://doi.org/10.1016/j.canlet.2011.06.032
  31. D. Knez, I. Sosič, A. Pišlar, A. Mitrović, M. Jukič, J. Kos and S. Gobec, Biological evaluation of 8-hydroxyquinolines as multi-target directed ligands for treating Alzheimer’s disease, Curr. Alzheimer Res. 16(9) (2019) 801–814; https://doi.org/10.2174/1567205016666191010130351
  32. W. T. Lowther and B. W, Matthews. Structure and function of the methionine aminopeptidases, Biochim. Biophys. Acta 1477(1-2) (2000) 157–167; https://doi.org/10.1016/S0167-4838(99)00271-X
  33. S. Y. Bhat, Drug targeting of aminopeptidases: importance of deploying a right metal cofactor, Biophys. Rev. 16 (2024) 249–256; https://doi.org/10.1007/s12551-024-01192-8
  34. M. A. Altmeyer, A. Marschner, R. Schiffmann and C. D. Klein, Subtype-selectivity of metal-dependent methionine aminopeptidase inhibitors, Bioorg. Med. Chem. Lett. 20(14) (2010) 4038–4044; https://doi.org/10.1016/j.bmcl.2010.05.093
  35. J. Y. Li, L. L. Chen, Y. M. Cui, Q. L. Luo, J. Li, F. J. Nan and Q. Z. Ye, Specificity for inhibitors of metal-substituted methionine aminopeptidase, Biochem. Biophys. Res. Commun. 307(1) (2003), 172–179; https://doi.org/10.1016/S0006-291X(03)01144-6
  36. Q. Z. Ye, S. X. Xie, M. Huang, W. J. Huang, J. P. Lu and Z. Q. Ma, Metalloform-selective inhibitors of Escherichia coli methionine aminopeptidase and X-ray structure of a Mn(II)-form enzyme complexed with an inhibitor, J. Am. Chem. Soc. 126(43) (2004) 13940–13941; https://doi.org/10.1021/ja045864p
  37. M. Huang, S.-X. Xie, Z.-Q. Ma, Q.-Q. Huang, F.-J. Nan and Q.-Z. Ye, Inhibition of monometalated methionine aminopeptidase:  Inhibitor discovery and crystallographic analysis, J. Med. Chem. 50(23) (2007) 5735–5742; https://doi.org/10.1021/jm700930k
  38. J. Schmitz, E. Gilberg, R. Löser, J. Bajorath, U. Bartz and M. Gütschow, Cathepsin B: Active site mapping with peptidic substrates and inhibitors, Bioorg. Med. Chem. (27)11 (2019) 1–15; https://doi.org/10.1016/j.bmc.2018.10.017
  39. I. Sosič, B. Mirković, K. Arenz, B. Štefane, J. Kos and S. Gobec, Development of new cathepsin B inhibitors: combining bioisosteric replacements and structure-based design to explore the structure–activity relationships of nitroxoline derivatives, J. Med. Chem. 56(2) (2013) 521–533; https://doi.org/10.1021/jm301544x
  40. A. Mitrović, B. Mirković, I. Sosič, S. Gobec and J. Kos, Inhibition of endopeptidase and exopeptidase activity of cathepsin B impairs extracellular matrix degradation and tumour invasion, Biol. Chem. 397(2) (2016) 165–174; https://doi.org/10.1515/hsz-2015-0236
  41. L. Sorokin, The impact of the extracellular matrix on inflammation, Nat. Rev. Immunol. 10 (2010) 712−723; https://doi.org/10.1038/nri2852
DOI: https://doi.org/10.2478/acph-2025-0018 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 235 - 257
Accepted on: May 30, 2025
Published on: Jul 3, 2025
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Ana Mitrović, Damijan Knez, Martina Hrast Rambaher, Jakob Kljun, Janko Kos, Stanislav Gobec, Izidor Sosič, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.