References
- B. Wang and S. Lu, The light of carbon dots: from mechanism to applications, Matter 5(1) (2022) 110–149; https://doi.org/10.1016/j.matt.2021.10.016
- S. Ganguly, P. Das, S. Banerjee and N. C. Das, Advancement in science and technology of carbon dot-polymer hybrid composites: a review, Funct. Compos. Struct. 1(2) (2019) Article ID 022001; https://doi.org/10.1088/2631-6331/ab0c80
- M. Kurian and A. Paul, Recent trends in the use of green sources for carbon dot synthesis – a short review, Carbon Trends 3 (2021) Article ID 100032 (11 pages); https://doi.org/10.1016/j.cartre.2021.100032
- G. Ge, L. Li, D. Wang, M. Chen, Z. Zeng, W. Xiong, X. Wu and C. Guo, Carbon dots: Synthesis, properties and biomedical applications, J. Mater. Chem. B 9(33) (2021) 6553–6575; https://doi.org/10.1039/D1TB01077H
- P. Das, S. Ganguly, S. Banerjee and N. C. Das, Graphene based emergent nanolights: A short review on the synthesis, properties and application, Res. Chem. Intermed. 45 (2019) 3823–3853; https://doi.org/10.1007/s11164-019-03823-2
- P. Das, S. R. Ahmed, S. Srinivasan and A. R. Rajabzadeh, Optical Properties of Quantum Dots, in Quantum Dots and Polymer Nanocomposites, CRC Press, 2022, pp. 69–85.
- M. Zulfajri, S. Sudewi, S. Ismulyati, A. Rasool, M. Adlim and G. G. Huang, Carbon dot/polymer composites with various precursors and their sensing applications: a review, Coatings 11(9) (2021) Article ID 1100; https://doi.org/10.3390/coatings11091100
- J. Wang and J. Qiu, A review of carbon dots in biological applications, J. Mater. Sci. 51 (2016) 4728–4738; https://doi.org/10.1007/s10853-016-9797-7
- T. Lv, L. Pan, X. Liu, T. Lu, G. Zhu, Z. Sun and C. Q. Sun, One-step synthesis of CdS–TiO₂–chemically reduced graphene oxide composites via microwave-assisted reaction for visible-light photo-catalytic degradation of methyl orange, Catal. Sci. Technol. 2(4) (2012) 754–758; https://doi.org/10.1039/C2CY00452F
- V. Ahuja, A.K. Bhatt, S. Varjani, K.-Y. Choi, S.-H. Kim, Y.-H. Yang and S. K. Bhatia, Quantum dot synthesis from waste biomass and its applications in energy and bioremediation, Chemosphere 293 (2022) Article ID 133564; https://doi.org/10.1016/j.chemosphere.2022.133564
- S. A. Shaik, S. Sengupta, R. S. Varma, M. B. Gawande and A. Goswami, Syntheses of N-doped carbon quantum dots (NCQDs) from bioderived precursors: a timely update, ACS Sustain. Chem. Eng. 9(1) (2020) 3–49; https://doi.org/10.1021/acssuschemeng.0c04727
- L. Behera, D. Pati, B. B. Sahu and S. Mohapatra, One-step synthesis of Mn-carbon dot nanoprobe for signal-on detection of arsenic and reversible temperature sensing, Colloids Surf. A 653 (2022) Article ID 130002; https://doi.org/10.1016/j.colsurfa.2022.130002
- A. A. Madhavan, D. Kushwaha, D. Nath, R. Ghosh Moulick and J. Bhattacharya, Natural occurrence of carbon dots during in vitro nonenzymatic glycosylation of hemoglobin A₀, ACS Omega 7(5) (2022) 3881–3888; https://doi.org/10.1021/acsomega.1c03219
- H. Li, X. Yan, D. Kong, R. Jin, C. Sun, D. Du, Y. Lin and G. Lu, Recent advances in carbon dots for bioimaging applications, Nanoscale Horiz. 5(2) (2020) 218–234; https://doi.org/10.1039/C9NH00476A
- G. A. Hutton, B. C. Martindale and E. Reisner, Carbon dots as photosensitisers for solar-driven catalysis, Chem. Soc. Rev. 46(20) (2017) 6111–6123; https://doi.org/10.1039/C7CS00235A
- V. Sharma, P. Tiwari and S. M. Mobin, Sustainable carbon-dots: Recent advances in green carbon dots for sensing and bioimaging, J. Mater. Chem. B 5 (2017) 8904–8924; https://doi.org/10.1039/C7TB02484C
- S. Ganguly, P. Das, S. Das, U. Ghorai, M. Bose, S. Ghosh, M. Mondal, A. K. Das, S. Banerjee and N. C. Das, Microwave assisted green synthesis of zwitterionic photoluminescent N-doped carbon dots: An efficient ‘on-off’ chemosensor for tracer Cr(+6) considering the inner filter effect and nano drug-delivery vector, Colloids Surf. A 579 (2019) Article ID 123604; https://doi.org/10.1016/j.colsurfa.2019.123604
- S. Ganguly, P. Das, E. Itzhaki, E. Hadad, A. Gedanken and S. Margel, Microwave-synthesized polysaccharide-derived carbon dots as therapeutic cargoes and toughening agents for elastomeric gels, ACS Appl. Mater. Interfaces 12(46) (2020) 51940–51951; https://doi.org/10.1021/acsami.0c14527
- S. K. Debnath and R. Srivastava, Drug delivery with carbon-based nanomaterials as versatile nano-carriers: Progress and prospects, Front. Nanotechnol. 3 (2021) Article ID 644564 (22 pages); https://doi.org/10.3389/fnano.2021.644564
- Q. Wang, X. Huang, Y. Long, X. Wang, H. Zhang, R. Zhu, L. Liang, P. Teng and H. Zheng, Hollow luminescent carbon dots for drug delivery, Carbon 59 (2013) 192–199; https://doi.org/10.1016/j.carbon.2013.03.009
- X. Jia, M. Pei, X. Zhao, K. Tian, T. Zhou and P. Liu, PEGylated oxidized alginate-DOX prodrug conjugate nanoparticles cross-linked with fluorescent carbon dots for tumor theranostics, ACS Biomater. Sci. Eng. 2(9) (2016) 1641–1648; https://doi.org/10.1021/acsbiomaterials.6b00443
- D. Guimarães, A. Cavaco-Paulo and E. Nogueira, Design of liposomes as drug delivery system for therapeutic applications, Int. J. Pharm. 601 (2021) Article ID 120571; https://doi.org/10.1016/j.ijpharm.2021.120571
- S. Yasamineh, P. Yasamineh, H. G. Kalajahi, O. Gholizadeh, Z. Yekanipour, H. Afkhami, M. Eslami, A. H. Kheirkhah, M. Taghizadeh and Y. Yazdani, A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system, Int. J. Pharm. 624 (2022) Article ID 121878; https://doi.org/10.1016/j.ijpharm.2022.121878
- G. Shim, S. Jeong, J. L. Oh and Y. Kang, Lipid-based nanoparticles for photosensitive drug delivery systems, J. Pharm. Investig. 52 (2022) 151–160; https://doi.org/10.1007/s40005-021-00553-9
- M. Zu, Y. Ma, B. Cannup, D. Xie, Y. Jung, J. Zhang, C. Yang, F. Gao, D. Merlin and B. Xiao, Oral delivery of natural active small molecules by polymeric nanoparticles for the treatment of inflammatory bowel diseases, Adv. Drug Deliv. Rev. 176 (2021) Article ID 113887; https://doi.org/10.1016/j.addr.2021.113887
- S. Karimi and H. Namazi, A photoluminescent folic acid-derived carbon dot functionalized magnetic dendrimer as a pH-responsive carrier for targeted doxorubicin delivery, New J. Chem. 45(14) (2021) 6397–6405; https://doi.org/10.1039/D0NJ06261H
- B. Rani, M. Ahmad, K. Alam, F. Seidi, S. Shakeel, J. Song, Y. Jin and H. Xiao, Recent advances in magnetic nanoparticles: Key applications, environmental insights and future strategies, Sustain. Mater. Technol. 40 (2024) e00985; https://doi.org/10.1016/j.susmat.2024.e00985
- M. Colombo, S. C. Romero, M. F. Casula, L. Gutiérrez, M. P. Morales, I. B. Böhm, J. T. Heverhagen, D. Prosperi and W. J. Parak, Biological applications of magnetic nanoparticles, Chem. Soc. Rev. 41(11) (2012) 4306–4334; https://doi.org/10.1039/C2CS15337H
- C. V. Fernandes, A. Francesko, C. Ribeiro, M. B. López, P. Martins and S. L. Mendez, Advances in magnetic nanoparticles for biomedical applications, Adv. Healthc. Mater. 7(5) (2018) Article ID 1700845; https://doi.org/10.1002/adhm.201700845
- S. K. Kailasa and J. R. Koduru, Perspectives of magnetic nature carbon dots in analytical chemistry: From separation to detection and bioimaging, TrAC Trends Environ. Anal. Chem. 33 (2022) e00153; https://doi.org/10.1016/j.teac.2021.e00153
- J. T. John, E. F. Nwude, S. Singh, B. G. Prajapati, D. U. Kapoor and N. Muangsin, Sustainable synthesis of gold nanoparticles for drug delivery and cosmeceutical applications: a review, BioNanoScience 14 (2024) 3355–3384; https://doi.org/10.1007/s12668-024-01436-7
- M. Yoosefian and H. Sabaghian, Silver nanoparticle-based drug delivery systems in the fight against COVID-19: Enhancing efficacy, reducing toxicity and improving drug bioavailability, J. Drug Target. 32(7) (2024) 794–806; https://doi.org/10.1080/1061186X.2024.2356147
- N. S. Thakur, N. Saleh, A. F. Khan, B. Chakrabarty and V. Agrahari, Progress and promise of photoresponsive nanocarriers for precision drug delivery in cancer, J. Photochem. Photobiol. C: Photochem. Rev. 59 (2024) Article ID 100665; https://doi.org/10.1016/j.jphotochemrev.2024.100665
- Z. Zhu, R. Cheng, L. Ling, Q. Li and S. Chen, Rapid and large-scale production of multi-fluorescence carbon dots by a magnetic hyperthermia method, Angew. Chem. Int. Ed. 59(8) (2020) 3099–3105; https://doi.org/10.1002/anie.201914331
- S. Li, Q. Zhou, Z. Li, M. Liu, Y. Li and C. Chen, Sensitive fluorescent probe based on combination of magnetic molecularly imprinted materials and carbon dots derived from Prussian blue for p-amino-azobenzene in environmental samples, J. Clean. Prod. 402 (2023) Article ID 136827; https://doi.org/10.1016/j.jclepro.2023.136827
- X. Li, Y. Fu, S. Zhao, J. Xiao, M. Lan, B. Wang, K. Zhang, X. Song and L. Zeng, Metal ions-doped carbon dots: Synthesis, properties and applications, Chem. Eng. J. 430 (2022) Article ID 133101; https://doi.org/10.1016/j.cej.2021.133101
- Y. Zhong, L. Chen, S. Yu, Y. Yang and X. Liu, Advances in magnetic carbon dots: A theranostics platform for fluorescence/magnetic resonance bimodal imaging and therapy for tumors, ACS Bio-mater. Sci. Eng. 9(12) (2023) 6548–6566; https://doi.org/10.1021/acsbiomaterials.3c00988
- T. Rezaei, M. Rezaei, S. Karimifard, F. M. Beram, M. S. Dakkali, M. Heydari, S. A. Behbahanizadeh, E. Mostafavi, D. Olegovich Bokov, M. J. Ansari, B. F. Far, I. Akbarzadeh and C. Chaiyasut, Folic acid-decorated pH-responsive nanoniosomes with enhanced endocytosis for breast cancer therapy: In vitro studies, Front. Pharmacol. 13 (2022) Article ID 851242 (17 pages); https://doi.org/10.3389/fphar.2022.851242
- N. Choi, C. Tang, Y. Park, A. Du, G. A. Ayoko, Y. Hwang and S. Chae, Visible-light-driven photo-catalytic degradation of tetracycline using citric acid and lemon juice-derived carbon quantum dots incorporated TiO₂ nanocomposites, Sep. Purif. Technol. 350 (2024) Article ID 127836; https://doi.org/10.1016/j.seppur.2024.127836
- M. O. Besenhard, A. P. LaGrow, A. Hodzic, M. Kriechbaum, L. Panariello, G. Bais, K. Loizou, S. Damilos, M. M. Cruz, N. T. K. Thanh and A. Gavriilidis, Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry, Chem. Eng. J. 399 (2020) Article ID 125740; https://doi.org/10.1016/j.cej.2020.125740
- S. Ganguly, Neelam, I. Grinberg and S. Margel, Layer-by-layer controlled synthesis at room temperature of tri-modal (MRI, fluorescence and CT) core/shell superparamagnetic IO/human serum albumin nanoparticles for diagnostic applications, Polym. Adv. Technol. 32(10) (2021) 3909–3921; https://doi.org/10.1002/pat.5344
- D. Amara and S. Margel, Synthesis and characterization of superparamagnetic core-shell micro-metre-sized particles of narrow size distribution by a swelling process, J. Mater. Chem. 22 (2012) 9268–9276; https://doi.org/10.1039/C2JM00021K
- R. Mohammad-Rezaei, H. Razmi, V. Abdollahi and A. A. Matin, Preparation and characterization of Fe₃O₄/graphene quantum dots nanocomposite as an efficient adsorbent in magnetic solid phase extraction: Application to determination of bisphenol A in water samples, Anal. Methods 6(20) (2014) 8413–8419; https://doi.org/10.1039/C4AY01633E
- S. Ganguly and S. Margel, Design of magnetic hydrogels for hyperthermia and drug delivery, Polymers 13(23) (2021) Article ID 4259 (22 pages); https://doi.org/10.3390/polym13234259
- Y. Köseoğlu, F. Yıldız, D. K. Kim, M. Muhammed and B. Aktaş, EPR studies on Na-oleate coated Fe₃O₄ nanoparticles, Phys. Status Solidi C 1(12) (2004) 3511–3515; https://doi.org/10.1002/pssc.200405493
- S. Zhuo, Y. Guan, H. Li, J. Fang, P. Zhang, J. Du and C. Zhu, Facile fabrication of fluorescent Fe-doped carbon quantum dots for dopamine sensing and bioimaging application, Analyst 144(2) (2019) 656–662; https://doi.org/10.1039/C8AN01741G
- Y. Guo, D. Tang, L. Zhang, B. Li, A. Iqbal, W. Liu and W. Qin, Synthesis of ultrathin carbon dots-coated iron oxide nanocubes decorated with silver nanoparticles and their excellent catalytic properties, Ceram. Int. 43(9) (2017) 7311–7320; https://doi.org/10.1016/j.ceramint.2017.03.033
- B. Li, X. Wang, Y. Guo, A. Iqbal, Y. Dong, W. Li, W. Liu, W. Qin, S. Chen and X. Zhou, One-pot synthesis of polyamines improved magnetism and fluorescence Fe₃O₄-carbon dots hybrid NPs for dual modal imaging, Dalton Trans. 45(13) (2016) 5484–5491; https://doi.org/10.1039/C5DT04488J
- C. Han, A. Zhang, Y. Kong, N. Yu, T. Xie, B. Dou, K. Li, Y. Wang, J. Li and K. Xu, Multifunctional iron oxide-carbon hybrid nanoparticles for targeted fluorescent/MR dual-modal imaging and detection of breast cancer cells, Anal. Chim. Acta 1067 (2019) 115–128; https://doi.org/10.1016/j.aca.2019.03.054
- E. R. Monazam, R. W. Breault and R. Siriwardane, Kinetics of magnetite (Fe₃O₄) oxidation to hematite (Fe₂O₃) in air for chemical looping combustion, Ind. Eng. Chem. Res. 53(34) (2014) 13320–13328; https://doi.org/10.1021/ie501536s
- G. Gnanaprakash, S. Ayyappan, T. Jayakumar, J. Philip and B. Raj, Magnetic nanoparticles with enhanced γ-Fe₂O₃ to α-Fe₂O₃ phase transition temperature, Nanotechnology 17(23) (2006) Article ID 5851; https://doi.org/10.1088/0957-4484/17/23/023
- X. Hu, X.-Y. Ma, J. Tian and Z. Huang, Rapid and facile synthesis of graphene quantum dots with high antioxidant activity, Inorg. Chem. Commun. 122 (2020) Article ID 108288; https://doi.org/10.1016/j.inoche.2020.108288
- D. Li, X. Na, H. Wang, Y. Xie, S. Cong, Y. Song, X. Xu, B.-W. Zhu and M. Tan, Fluorescent carbon dots derived from Maillard reaction products: Their properties, biodistribution, cytotoxicity and antioxidant activity, J. Agric. Food Chem. 66(6) (2018) 1569–1575; https://doi.org/10.1021/acs.jafc.7b05643
- P. Das, S. Ganguly, S. Margel and A. Gedanken, Tailor-made magnetic nanolights: Fabrication to cancer theranostics applications, Nanoscale Adv. 3(24) (2021) 6762–6796; https://doi.org/10.1039/D1NA00447F
- Y. Zou, Z. Sun, Q. Wang, Y. Ju, N. Sun, Q. Yue, Y. Deng, S. Liu, S. Yang, Z. Wang, F. Li, Y. Hou, C. Deng, D. Ling and Y. Deng, Core-shell magnetic particles: Tailored synthesis and applications, Chem. Rev. 125(2) (2024) 972–1048; https://doi.org/10.1021/acs.chemrev.4c00710
- R. Y. Mushtaq, N. R. Naveen, K. J. Rolla, H. A. Shmrany, S. Alshehri, A. Salawi, M. Kurakula, M. A. Alghamdi, W. Y. Rizg, R. B. Bakhaidar, W. A. Abualsunun, K. M. Hosny and A. J. Alamoudi, Design and evaluation of magnetic-targeted bilosomal gel for rheumatoid arthritis: flurbiprofen delivery using superparamagnetic iron oxide nanoparticles, Front. Pharmacol. 15 (2024) Article ID 1433734 (14 pages); https://doi.org/10.3389/fphar.2024.1433734
- M. R. Brophy and P. Deasy, Application of the Higuchi model for drug release from dispersed matrices to particles of general shape, Int. J. Pharm. 37(1–2) (1987) 41–47; https://doi.org/10.1016/0378-5173(87)90008-1
- S. Kim, S. Philippot, S. Fontanay, R. E. Duval, E. Lamouroux, N. Canilho and A. Pasc, pH- and glutathione-responsive release of curcumin from mesoporous silica nanoparticles coated using tannic acid-Fe(III) complex, RSC Adv. 5(110) (2015) 90550–90558; https://doi.org/10.1039/C5RA16004A
- E. Aram, H. S. Abandansari, F. Radmanesh, H. R. Khorasani, M. R. Nowroozi, A. Hassanpour, H. Baharvand and D. Sabour, Shell-sheddable and charge-switchable magnetic nanoparticle as pH-sensitive nanocarrier for targeted drug delivery applications, Polym. Adv. Technol. 35(4) (2024) e6366; https://doi.org/10.1002/pat.6366
- M. Ayubi, M. Karimi, S. Abdpour, K. Rostamizadeh, M. Parsa, M. Zamani and A. Saedi, Magnetic nanoparticles decorated with PEGylated curcumin as dual-targeted drug delivery: Synthesis, toxi-city and biocompatibility study, Mater. Sci. Eng. C 104 (2019) Article ID 109810; https://doi.org/10.1016/j.msec.2019.109810
- N. A. Travlou, D. A. Giannakoudakis, M. Algarra, A. M. Labella, E. Rodríguez-Castellón and T. J. Bandosz, S- and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity, Carbon 135 (2018) 104–111; https://doi.org/10.1016/j.carbon.2018.04.018
- B. C. Chung, E. H. Mashalidis, T. Tanino, M. Kim, A. Matsuda, J. Hong, S. Ichikawa and S. Y. Lee, Structural insights into inhibition of lipid I production in bacterial cell wall synthesis, Nature 533 (2016) 557–560; https://doi.org/10.1038/nature17636