Have a personal or library account? Click to login
Synthesis of magnetic N-doped carbon dots as pH-responsive targeted molecule cargo and its antioxidant and antibacterial behaviour Cover

Synthesis of magnetic N-doped carbon dots as pH-responsive targeted molecule cargo and its antioxidant and antibacterial behaviour

Open Access
|Oct 2025

References

  1. B. Wang and S. Lu, The light of carbon dots: from mechanism to applications, Matter 5(1) (2022) 110–149; https://doi.org/10.1016/j.matt.2021.10.016
  2. S. Ganguly, P. Das, S. Banerjee and N. C. Das, Advancement in science and technology of carbon dot-polymer hybrid composites: a review, Funct. Compos. Struct. 1(2) (2019) Article ID 022001; https://doi.org/10.1088/2631-6331/ab0c80
  3. M. Kurian and A. Paul, Recent trends in the use of green sources for carbon dot synthesis – a short review, Carbon Trends 3 (2021) Article ID 100032 (11 pages); https://doi.org/10.1016/j.cartre.2021.100032
  4. G. Ge, L. Li, D. Wang, M. Chen, Z. Zeng, W. Xiong, X. Wu and C. Guo, Carbon dots: Synthesis, properties and biomedical applications, J. Mater. Chem. B 9(33) (2021) 6553–6575; https://doi.org/10.1039/D1TB01077H
  5. P. Das, S. Ganguly, S. Banerjee and N. C. Das, Graphene based emergent nanolights: A short review on the synthesis, properties and application, Res. Chem. Intermed. 45 (2019) 3823–3853; https://doi.org/10.1007/s11164-019-03823-2
  6. P. Das, S. R. Ahmed, S. Srinivasan and A. R. Rajabzadeh, Optical Properties of Quantum Dots, in Quantum Dots and Polymer Nanocomposites, CRC Press, 2022, pp. 69–85.
  7. M. Zulfajri, S. Sudewi, S. Ismulyati, A. Rasool, M. Adlim and G. G. Huang, Carbon dot/polymer composites with various precursors and their sensing applications: a review, Coatings 11(9) (2021) Article ID 1100; https://doi.org/10.3390/coatings11091100
  8. J. Wang and J. Qiu, A review of carbon dots in biological applications, J. Mater. Sci. 51 (2016) 4728–4738; https://doi.org/10.1007/s10853-016-9797-7
  9. T. Lv, L. Pan, X. Liu, T. Lu, G. Zhu, Z. Sun and C. Q. Sun, One-step synthesis of CdS–TiO₂–chemically reduced graphene oxide composites via microwave-assisted reaction for visible-light photo-catalytic degradation of methyl orange, Catal. Sci. Technol. 2(4) (2012) 754–758; https://doi.org/10.1039/C2CY00452F
  10. V. Ahuja, A.K. Bhatt, S. Varjani, K.-Y. Choi, S.-H. Kim, Y.-H. Yang and S. K. Bhatia, Quantum dot synthesis from waste biomass and its applications in energy and bioremediation, Chemosphere 293 (2022) Article ID 133564; https://doi.org/10.1016/j.chemosphere.2022.133564
  11. S. A. Shaik, S. Sengupta, R. S. Varma, M. B. Gawande and A. Goswami, Syntheses of N-doped carbon quantum dots (NCQDs) from bioderived precursors: a timely update, ACS Sustain. Chem. Eng. 9(1) (2020) 3–49; https://doi.org/10.1021/acssuschemeng.0c04727
  12. L. Behera, D. Pati, B. B. Sahu and S. Mohapatra, One-step synthesis of Mn-carbon dot nanoprobe for signal-on detection of arsenic and reversible temperature sensing, Colloids Surf. A 653 (2022) Article ID 130002; https://doi.org/10.1016/j.colsurfa.2022.130002
  13. A. A. Madhavan, D. Kushwaha, D. Nath, R. Ghosh Moulick and J. Bhattacharya, Natural occurrence of carbon dots during in vitro nonenzymatic glycosylation of hemoglobin A₀, ACS Omega 7(5) (2022) 3881–3888; https://doi.org/10.1021/acsomega.1c03219
  14. H. Li, X. Yan, D. Kong, R. Jin, C. Sun, D. Du, Y. Lin and G. Lu, Recent advances in carbon dots for bioimaging applications, Nanoscale Horiz. 5(2) (2020) 218–234; https://doi.org/10.1039/C9NH00476A
  15. G. A. Hutton, B. C. Martindale and E. Reisner, Carbon dots as photosensitisers for solar-driven catalysis, Chem. Soc. Rev. 46(20) (2017) 6111–6123; https://doi.org/10.1039/C7CS00235A
  16. V. Sharma, P. Tiwari and S. M. Mobin, Sustainable carbon-dots: Recent advances in green carbon dots for sensing and bioimaging, J. Mater. Chem. B 5 (2017) 8904–8924; https://doi.org/10.1039/C7TB02484C
  17. S. Ganguly, P. Das, S. Das, U. Ghorai, M. Bose, S. Ghosh, M. Mondal, A. K. Das, S. Banerjee and N. C. Das, Microwave assisted green synthesis of zwitterionic photoluminescent N-doped carbon dots: An efficient ‘on-off’ chemosensor for tracer Cr(+6) considering the inner filter effect and nano drug-delivery vector, Colloids Surf. A 579 (2019) Article ID 123604; https://doi.org/10.1016/j.colsurfa.2019.123604
  18. S. Ganguly, P. Das, E. Itzhaki, E. Hadad, A. Gedanken and S. Margel, Microwave-synthesized polysaccharide-derived carbon dots as therapeutic cargoes and toughening agents for elastomeric gels, ACS Appl. Mater. Interfaces 12(46) (2020) 51940–51951; https://doi.org/10.1021/acsami.0c14527
  19. S. K. Debnath and R. Srivastava, Drug delivery with carbon-based nanomaterials as versatile nano-carriers: Progress and prospects, Front. Nanotechnol. 3 (2021) Article ID 644564 (22 pages); https://doi.org/10.3389/fnano.2021.644564
  20. Q. Wang, X. Huang, Y. Long, X. Wang, H. Zhang, R. Zhu, L. Liang, P. Teng and H. Zheng, Hollow luminescent carbon dots for drug delivery, Carbon 59 (2013) 192–199; https://doi.org/10.1016/j.carbon.2013.03.009
  21. X. Jia, M. Pei, X. Zhao, K. Tian, T. Zhou and P. Liu, PEGylated oxidized alginate-DOX prodrug conjugate nanoparticles cross-linked with fluorescent carbon dots for tumor theranostics, ACS Biomater. Sci. Eng. 2(9) (2016) 1641–1648; https://doi.org/10.1021/acsbiomaterials.6b00443
  22. D. Guimarães, A. Cavaco-Paulo and E. Nogueira, Design of liposomes as drug delivery system for therapeutic applications, Int. J. Pharm. 601 (2021) Article ID 120571; https://doi.org/10.1016/j.ijpharm.2021.120571
  23. S. Yasamineh, P. Yasamineh, H. G. Kalajahi, O. Gholizadeh, Z. Yekanipour, H. Afkhami, M. Eslami, A. H. Kheirkhah, M. Taghizadeh and Y. Yazdani, A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system, Int. J. Pharm. 624 (2022) Article ID 121878; https://doi.org/10.1016/j.ijpharm.2022.121878
  24. G. Shim, S. Jeong, J. L. Oh and Y. Kang, Lipid-based nanoparticles for photosensitive drug delivery systems, J. Pharm. Investig. 52 (2022) 151–160; https://doi.org/10.1007/s40005-021-00553-9
  25. M. Zu, Y. Ma, B. Cannup, D. Xie, Y. Jung, J. Zhang, C. Yang, F. Gao, D. Merlin and B. Xiao, Oral delivery of natural active small molecules by polymeric nanoparticles for the treatment of inflammatory bowel diseases, Adv. Drug Deliv. Rev. 176 (2021) Article ID 113887; https://doi.org/10.1016/j.addr.2021.113887
  26. S. Karimi and H. Namazi, A photoluminescent folic acid-derived carbon dot functionalized magnetic dendrimer as a pH-responsive carrier for targeted doxorubicin delivery, New J. Chem. 45(14) (2021) 6397–6405; https://doi.org/10.1039/D0NJ06261H
  27. B. Rani, M. Ahmad, K. Alam, F. Seidi, S. Shakeel, J. Song, Y. Jin and H. Xiao, Recent advances in magnetic nanoparticles: Key applications, environmental insights and future strategies, Sustain. Mater. Technol. 40 (2024) e00985; https://doi.org/10.1016/j.susmat.2024.e00985
  28. M. Colombo, S. C. Romero, M. F. Casula, L. Gutiérrez, M. P. Morales, I. B. Böhm, J. T. Heverhagen, D. Prosperi and W. J. Parak, Biological applications of magnetic nanoparticles, Chem. Soc. Rev. 41(11) (2012) 4306–4334; https://doi.org/10.1039/C2CS15337H
  29. C. V. Fernandes, A. Francesko, C. Ribeiro, M. B. López, P. Martins and S. L. Mendez, Advances in magnetic nanoparticles for biomedical applications, Adv. Healthc. Mater. 7(5) (2018) Article ID 1700845; https://doi.org/10.1002/adhm.201700845
  30. S. K. Kailasa and J. R. Koduru, Perspectives of magnetic nature carbon dots in analytical chemistry: From separation to detection and bioimaging, TrAC Trends Environ. Anal. Chem. 33 (2022) e00153; https://doi.org/10.1016/j.teac.2021.e00153
  31. J. T. John, E. F. Nwude, S. Singh, B. G. Prajapati, D. U. Kapoor and N. Muangsin, Sustainable synthesis of gold nanoparticles for drug delivery and cosmeceutical applications: a review, BioNanoScience 14 (2024) 3355–3384; https://doi.org/10.1007/s12668-024-01436-7
  32. M. Yoosefian and H. Sabaghian, Silver nanoparticle-based drug delivery systems in the fight against COVID-19: Enhancing efficacy, reducing toxicity and improving drug bioavailability, J. Drug Target. 32(7) (2024) 794–806; https://doi.org/10.1080/1061186X.2024.2356147
  33. N. S. Thakur, N. Saleh, A. F. Khan, B. Chakrabarty and V. Agrahari, Progress and promise of photoresponsive nanocarriers for precision drug delivery in cancer, J. Photochem. Photobiol. C: Photochem. Rev. 59 (2024) Article ID 100665; https://doi.org/10.1016/j.jphotochemrev.2024.100665
  34. Z. Zhu, R. Cheng, L. Ling, Q. Li and S. Chen, Rapid and large-scale production of multi-fluorescence carbon dots by a magnetic hyperthermia method, Angew. Chem. Int. Ed. 59(8) (2020) 3099–3105; https://doi.org/10.1002/anie.201914331
  35. S. Li, Q. Zhou, Z. Li, M. Liu, Y. Li and C. Chen, Sensitive fluorescent probe based on combination of magnetic molecularly imprinted materials and carbon dots derived from Prussian blue for p-amino-azobenzene in environmental samples, J. Clean. Prod. 402 (2023) Article ID 136827; https://doi.org/10.1016/j.jclepro.2023.136827
  36. X. Li, Y. Fu, S. Zhao, J. Xiao, M. Lan, B. Wang, K. Zhang, X. Song and L. Zeng, Metal ions-doped carbon dots: Synthesis, properties and applications, Chem. Eng. J. 430 (2022) Article ID 133101; https://doi.org/10.1016/j.cej.2021.133101
  37. Y. Zhong, L. Chen, S. Yu, Y. Yang and X. Liu, Advances in magnetic carbon dots: A theranostics platform for fluorescence/magnetic resonance bimodal imaging and therapy for tumors, ACS Bio-mater. Sci. Eng. 9(12) (2023) 6548–6566; https://doi.org/10.1021/acsbiomaterials.3c00988
  38. T. Rezaei, M. Rezaei, S. Karimifard, F. M. Beram, M. S. Dakkali, M. Heydari, S. A. Behbahanizadeh, E. Mostafavi, D. Olegovich Bokov, M. J. Ansari, B. F. Far, I. Akbarzadeh and C. Chaiyasut, Folic acid-decorated pH-responsive nanoniosomes with enhanced endocytosis for breast cancer therapy: In vitro studies, Front. Pharmacol. 13 (2022) Article ID 851242 (17 pages); https://doi.org/10.3389/fphar.2022.851242
  39. N. Choi, C. Tang, Y. Park, A. Du, G. A. Ayoko, Y. Hwang and S. Chae, Visible-light-driven photo-catalytic degradation of tetracycline using citric acid and lemon juice-derived carbon quantum dots incorporated TiO₂ nanocomposites, Sep. Purif. Technol. 350 (2024) Article ID 127836; https://doi.org/10.1016/j.seppur.2024.127836
  40. M. O. Besenhard, A. P. LaGrow, A. Hodzic, M. Kriechbaum, L. Panariello, G. Bais, K. Loizou, S. Damilos, M. M. Cruz, N. T. K. Thanh and A. Gavriilidis, Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry, Chem. Eng. J. 399 (2020) Article ID 125740; https://doi.org/10.1016/j.cej.2020.125740
  41. S. Ganguly, Neelam, I. Grinberg and S. Margel, Layer-by-layer controlled synthesis at room temperature of tri-modal (MRI, fluorescence and CT) core/shell superparamagnetic IO/human serum albumin nanoparticles for diagnostic applications, Polym. Adv. Technol. 32(10) (2021) 3909–3921; https://doi.org/10.1002/pat.5344
  42. D. Amara and S. Margel, Synthesis and characterization of superparamagnetic core-shell micro-metre-sized particles of narrow size distribution by a swelling process, J. Mater. Chem. 22 (2012) 9268–9276; https://doi.org/10.1039/C2JM00021K
  43. R. Mohammad-Rezaei, H. Razmi, V. Abdollahi and A. A. Matin, Preparation and characterization of Fe₃O₄/graphene quantum dots nanocomposite as an efficient adsorbent in magnetic solid phase extraction: Application to determination of bisphenol A in water samples, Anal. Methods 6(20) (2014) 8413–8419; https://doi.org/10.1039/C4AY01633E
  44. S. Ganguly and S. Margel, Design of magnetic hydrogels for hyperthermia and drug delivery, Polymers 13(23) (2021) Article ID 4259 (22 pages); https://doi.org/10.3390/polym13234259
  45. Y. Köseoğlu, F. Yıldız, D. K. Kim, M. Muhammed and B. Aktaş, EPR studies on Na-oleate coated Fe₃O₄ nanoparticles, Phys. Status Solidi C 1(12) (2004) 3511–3515; https://doi.org/10.1002/pssc.200405493
  46. S. Zhuo, Y. Guan, H. Li, J. Fang, P. Zhang, J. Du and C. Zhu, Facile fabrication of fluorescent Fe-doped carbon quantum dots for dopamine sensing and bioimaging application, Analyst 144(2) (2019) 656–662; https://doi.org/10.1039/C8AN01741G
  47. Y. Guo, D. Tang, L. Zhang, B. Li, A. Iqbal, W. Liu and W. Qin, Synthesis of ultrathin carbon dots-coated iron oxide nanocubes decorated with silver nanoparticles and their excellent catalytic properties, Ceram. Int. 43(9) (2017) 7311–7320; https://doi.org/10.1016/j.ceramint.2017.03.033
  48. B. Li, X. Wang, Y. Guo, A. Iqbal, Y. Dong, W. Li, W. Liu, W. Qin, S. Chen and X. Zhou, One-pot synthesis of polyamines improved magnetism and fluorescence Fe₃O₄-carbon dots hybrid NPs for dual modal imaging, Dalton Trans. 45(13) (2016) 5484–5491; https://doi.org/10.1039/C5DT04488J
  49. C. Han, A. Zhang, Y. Kong, N. Yu, T. Xie, B. Dou, K. Li, Y. Wang, J. Li and K. Xu, Multifunctional iron oxide-carbon hybrid nanoparticles for targeted fluorescent/MR dual-modal imaging and detection of breast cancer cells, Anal. Chim. Acta 1067 (2019) 115–128; https://doi.org/10.1016/j.aca.2019.03.054
  50. E. R. Monazam, R. W. Breault and R. Siriwardane, Kinetics of magnetite (Fe₃O₄) oxidation to hematite (Fe₂O₃) in air for chemical looping combustion, Ind. Eng. Chem. Res. 53(34) (2014) 13320–13328; https://doi.org/10.1021/ie501536s
  51. G. Gnanaprakash, S. Ayyappan, T. Jayakumar, J. Philip and B. Raj, Magnetic nanoparticles with enhanced γ-Fe₂O₃ to α-Fe₂O₃ phase transition temperature, Nanotechnology 17(23) (2006) Article ID 5851; https://doi.org/10.1088/0957-4484/17/23/023
  52. X. Hu, X.-Y. Ma, J. Tian and Z. Huang, Rapid and facile synthesis of graphene quantum dots with high antioxidant activity, Inorg. Chem. Commun. 122 (2020) Article ID 108288; https://doi.org/10.1016/j.inoche.2020.108288
  53. D. Li, X. Na, H. Wang, Y. Xie, S. Cong, Y. Song, X. Xu, B.-W. Zhu and M. Tan, Fluorescent carbon dots derived from Maillard reaction products: Their properties, biodistribution, cytotoxicity and antioxidant activity, J. Agric. Food Chem. 66(6) (2018) 1569–1575; https://doi.org/10.1021/acs.jafc.7b05643
  54. P. Das, S. Ganguly, S. Margel and A. Gedanken, Tailor-made magnetic nanolights: Fabrication to cancer theranostics applications, Nanoscale Adv. 3(24) (2021) 6762–6796; https://doi.org/10.1039/D1NA00447F
  55. Y. Zou, Z. Sun, Q. Wang, Y. Ju, N. Sun, Q. Yue, Y. Deng, S. Liu, S. Yang, Z. Wang, F. Li, Y. Hou, C. Deng, D. Ling and Y. Deng, Core-shell magnetic particles: Tailored synthesis and applications, Chem. Rev. 125(2) (2024) 972–1048; https://doi.org/10.1021/acs.chemrev.4c00710
  56. R. Y. Mushtaq, N. R. Naveen, K. J. Rolla, H. A. Shmrany, S. Alshehri, A. Salawi, M. Kurakula, M. A. Alghamdi, W. Y. Rizg, R. B. Bakhaidar, W. A. Abualsunun, K. M. Hosny and A. J. Alamoudi, Design and evaluation of magnetic-targeted bilosomal gel for rheumatoid arthritis: flurbiprofen delivery using superparamagnetic iron oxide nanoparticles, Front. Pharmacol. 15 (2024) Article ID 1433734 (14 pages); https://doi.org/10.3389/fphar.2024.1433734
  57. M. R. Brophy and P. Deasy, Application of the Higuchi model for drug release from dispersed matrices to particles of general shape, Int. J. Pharm. 37(1–2) (1987) 41–47; https://doi.org/10.1016/0378-5173(87)90008-1
  58. S. Kim, S. Philippot, S. Fontanay, R. E. Duval, E. Lamouroux, N. Canilho and A. Pasc, pH- and glutathione-responsive release of curcumin from mesoporous silica nanoparticles coated using tannic acid-Fe(III) complex, RSC Adv. 5(110) (2015) 90550–90558; https://doi.org/10.1039/C5RA16004A
  59. E. Aram, H. S. Abandansari, F. Radmanesh, H. R. Khorasani, M. R. Nowroozi, A. Hassanpour, H. Baharvand and D. Sabour, Shell-sheddable and charge-switchable magnetic nanoparticle as pH-sensitive nanocarrier for targeted drug delivery applications, Polym. Adv. Technol. 35(4) (2024) e6366; https://doi.org/10.1002/pat.6366
  60. M. Ayubi, M. Karimi, S. Abdpour, K. Rostamizadeh, M. Parsa, M. Zamani and A. Saedi, Magnetic nanoparticles decorated with PEGylated curcumin as dual-targeted drug delivery: Synthesis, toxi-city and biocompatibility study, Mater. Sci. Eng. C 104 (2019) Article ID 109810; https://doi.org/10.1016/j.msec.2019.109810
  61. N. A. Travlou, D. A. Giannakoudakis, M. Algarra, A. M. Labella, E. Rodríguez-Castellón and T. J. Bandosz, S- and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity, Carbon 135 (2018) 104–111; https://doi.org/10.1016/j.carbon.2018.04.018
  62. B. C. Chung, E. H. Mashalidis, T. Tanino, M. Kim, A. Matsuda, J. Hong, S. Ichikawa and S. Y. Lee, Structural insights into inhibition of lipid I production in bacterial cell wall synthesis, Nature 533 (2016) 557–560; https://doi.org/10.1038/nature17636
DOI: https://doi.org/10.2478/acph-2025-0017 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 383 - 406
Accepted on: May 28, 2025
Published on: Oct 10, 2025
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Hayat Alzahrani, Mohammed S. Alkaltham, Tawfiq Alsulami, Abdulhakeem Alzahrani, Suleiman A Althawab, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.