Have a personal or library account? Click to login
Synthesis of magnetic N-doped carbon dots as pH-responsive targeted molecule cargo and its antioxidant and antibacterial behaviour Cover

Synthesis of magnetic N-doped carbon dots as pH-responsive targeted molecule cargo and its antioxidant and antibacterial behaviour

Open Access
|Oct 2025

References

  1. B. Wang and S. Lu, The light of carbon dots: from mechanism to applications, <em>Matter</em> <bold>5</bold>(1) (2022) 110–149; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.matt.2021.10.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.matt.2021.10.016</a>">https://doi.org/10.1016/j.matt.2021.10.016</ext-link>
  2. S. Ganguly, P. Das, S. Banerjee and N. C. Das, Advancement in science and technology of carbon dot-polymer hybrid composites: a review, <em>Funct. Compos. Struct.</em> <bold>1</bold>(2) (2019) Article ID 022001; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1088/2631-6331/ab0c80" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/2631-6331/ab0c80</a>">https://doi.org/10.1088/2631-6331/ab0c80</ext-link>
  3. M. Kurian and A. Paul, Recent trends in the use of green sources for carbon dot synthesis – a short review, <em>Carbon Trends</em> <bold>3</bold> (2021) Article ID 100032 (11 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cartre.2021.100032" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cartre.2021.100032</a>">https://doi.org/10.1016/j.cartre.2021.100032</ext-link>
  4. G. Ge, L. Li, D. Wang, M. Chen, Z. Zeng, W. Xiong, X. Wu and C. Guo, Carbon dots: Synthesis, properties and biomedical applications, <em>J. Mater. Chem. B</em> <bold>9</bold>(33) (2021) 6553–6575; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/D1TB01077H" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/D1TB01077H</a>">https://doi.org/10.1039/D1TB01077H</ext-link>
  5. P. Das, S. Ganguly, S. Banerjee and N. C. Das, Graphene based emergent nanolights: A short review on the synthesis, properties and application, <em>Res. Chem. Intermed.</em> <bold>45</bold> (2019) 3823–3853; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11164-019-03823-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11164-019-03823-2</a>">https://doi.org/10.1007/s11164-019-03823-2</ext-link>
  6. P. Das, S. R. Ahmed, S. Srinivasan and A. R. Rajabzadeh, <em>Optical Properties of Quantum Dots</em>, in <em>Quantum Dots and Polymer Nanocomposites</em>, CRC Press, 2022, pp. 69–85.
  7. M. Zulfajri, S. Sudewi, S. Ismulyati, A. Rasool, M. Adlim and G. G. Huang, Carbon dot/polymer composites with various precursors and their sensing applications: a review, <em>Coatings</em> <bold>11</bold>(9) (2021) Article ID 1100; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/coatings11091100" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/coatings11091100</a>">https://doi.org/10.3390/coatings11091100</ext-link>
  8. J. Wang and J. Qiu, A review of carbon dots in biological applications, <em>J. Mater. Sci.</em> <bold>51</bold> (2016) 4728–4738; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10853-016-9797-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10853-016-9797-7</a>">https://doi.org/10.1007/s10853-016-9797-7</ext-link>
  9. T. Lv, L. Pan, X. Liu, T. Lu, G. Zhu, Z. Sun and C. Q. Sun, One-step synthesis of CdS–TiO₂–chemically reduced graphene oxide composites via microwave-assisted reaction for visible-light photo-catalytic degradation of methyl orange, <em>Catal. Sci. Technol.</em> <bold>2</bold>(4) (2012) 754–758; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/C2CY00452F" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/C2CY00452F</a>">https://doi.org/10.1039/C2CY00452F</ext-link>
  10. V. Ahuja, A.K. Bhatt, S. Varjani, K.-Y. Choi, S.-H. Kim, Y.-H. Yang and S. K. Bhatia, Quantum dot synthesis from waste biomass and its applications in energy and bioremediation, <em>Chemosphere</em> <bold>293</bold> (2022) Article ID 133564; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.chemosphere.2022.133564" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.chemosphere.2022.133564</a>">https://doi.org/10.1016/j.chemosphere.2022.133564</ext-link>
  11. S. A. Shaik, S. Sengupta, R. S. Varma, M. B. Gawande and A. Goswami, Syntheses of N-doped carbon quantum dots (NCQDs) from bioderived precursors: a timely update, <em>ACS Sustain. Chem. Eng</em>. <bold>9</bold>(1) (2020) 3–49; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acssuschemeng.0c04727" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acssuschemeng.0c04727</a>">https://doi.org/10.1021/acssuschemeng.0c04727</ext-link>
  12. L. Behera, D. Pati, B. B. Sahu and S. Mohapatra, One-step synthesis of Mn-carbon dot nanoprobe for signal-on detection of arsenic and reversible temperature sensing, <em>Colloids Surf. A</em> <bold>653</bold> (2022) Article ID 130002; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.colsurfa.2022.130002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.colsurfa.2022.130002</a>">https://doi.org/10.1016/j.colsurfa.2022.130002</ext-link>
  13. A. A. Madhavan, D. Kushwaha, D. Nath, R. Ghosh Moulick and J. Bhattacharya, Natural occurrence of carbon dots during in vitro nonenzymatic glycosylation of hemoglobin A₀, <em>ACS Omega</em> <bold>7</bold>(5) (2022) 3881–3888; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acsomega.1c03219" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acsomega.1c03219</a>">https://doi.org/10.1021/acsomega.1c03219</ext-link>
  14. H. Li, X. Yan, D. Kong, R. Jin, C. Sun, D. Du, Y. Lin and G. Lu, Recent advances in carbon dots for bioimaging applications, <em>Nanoscale Horiz.</em> <bold>5</bold>(2) (2020) 218–234; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/C9NH00476A" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/C9NH00476A</a>">https://doi.org/10.1039/C9NH00476A</ext-link>
  15. G. A. Hutton, B. C. Martindale and E. Reisner, Carbon dots as photosensitisers for solar-driven catalysis, <em>Chem. Soc. Rev.</em> <bold>46</bold>(20) (2017) 6111–6123; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/C7CS00235A" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/C7CS00235A</a>">https://doi.org/10.1039/C7CS00235A</ext-link>
  16. V. Sharma, P. Tiwari and S. M. Mobin, Sustainable carbon-dots: Recent advances in green carbon dots for sensing and bioimaging, <em>J. Mater. Chem. B</em> <bold>5</bold> (2017) 8904–8924; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/C7TB02484C" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/C7TB02484C</a>">https://doi.org/10.1039/C7TB02484C</ext-link>
  17. S. Ganguly, P. Das, S. Das, U. Ghorai, M. Bose, S. Ghosh, M. Mondal, A. K. Das, S. Banerjee and N. C. Das, Microwave assisted green synthesis of zwitterionic photoluminescent N-doped carbon dots: An efficient ‘on-off’ chemosensor for tracer Cr(+6) considering the inner filter effect and nano drug-delivery vector, <em>Colloids Surf. A</em> <bold>579</bold> (2019) Article ID 123604; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.colsurfa.2019.123604" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.colsurfa.2019.123604</a>">https://doi.org/10.1016/j.colsurfa.2019.123604</ext-link>
  18. S. Ganguly, P. Das, E. Itzhaki, E. Hadad, A. Gedanken and S. Margel, Microwave-synthesized polysaccharide-derived carbon dots as therapeutic cargoes and toughening agents for elastomeric gels, <em>ACS Appl. Mater. Interfaces</em> <bold>12</bold>(46) (2020) 51940–51951; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acsami.0c14527" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acsami.0c14527</a>">https://doi.org/10.1021/acsami.0c14527</ext-link>
  19. S. K. Debnath and R. Srivastava, Drug delivery with carbon-based nanomaterials as versatile nano-carriers: Progress and prospects, <em>Front. Nanotechnol.</em> <bold>3</bold> (2021) Article ID 644564 (22 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fnano.2021.644564" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fnano.2021.644564</a>">https://doi.org/10.3389/fnano.2021.644564</ext-link>
  20. Q. Wang, X. Huang, Y. Long, X. Wang, H. Zhang, R. Zhu, L. Liang, P. Teng and H. Zheng, Hollow luminescent carbon dots for drug delivery, <em>Carbon</em> <bold>59</bold> (2013) 192–199; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.carbon.2013.03.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.carbon.2013.03.009</a>">https://doi.org/10.1016/j.carbon.2013.03.009</ext-link>
  21. X. Jia, M. Pei, X. Zhao, K. Tian, T. Zhou and P. Liu, PEGylated oxidized alginate-DOX prodrug conjugate nanoparticles cross-linked with fluorescent carbon dots for tumor theranostics, <em>ACS Biomater. Sci. Eng.</em> <bold>2</bold>(9) (2016) 1641–1648; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acsbiomaterials.6b00443" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acsbiomaterials.6b00443</a>">https://doi.org/10.1021/acsbiomaterials.6b00443</ext-link>
  22. D. Guimarães, A. Cavaco-Paulo and E. Nogueira, Design of liposomes as drug delivery system for therapeutic applications, <em>Int. J. Pharm.</em> <bold>601</bold> (2021) Article ID 120571; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijpharm.2021.120571" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijpharm.2021.120571</a>">https://doi.org/10.1016/j.ijpharm.2021.120571</ext-link>
  23. S. Yasamineh, P. Yasamineh, H. G. Kalajahi, O. Gholizadeh, Z. Yekanipour, H. Afkhami, M. Eslami, A. H. Kheirkhah, M. Taghizadeh and Y. Yazdani, A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system, <em>Int. J. Pharm</em>. <bold>624</bold> (2022) Article ID 121878; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijpharm.2022.121878" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijpharm.2022.121878</a>">https://doi.org/10.1016/j.ijpharm.2022.121878</ext-link>
  24. G. Shim, S. Jeong, J. L. Oh and Y. Kang, Lipid-based nanoparticles for photosensitive drug delivery systems, <em>J. Pharm. Investig.</em> <bold>52</bold> (2022) 151–160; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s40005-021-00553-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s40005-021-00553-9</a>">https://doi.org/10.1007/s40005-021-00553-9</ext-link>
  25. M. Zu, Y. Ma, B. Cannup, D. Xie, Y. Jung, J. Zhang, C. Yang, F. Gao, D. Merlin and B. Xiao, Oral delivery of natural active small molecules by polymeric nanoparticles for the treatment of inflammatory bowel diseases, <em>Adv. Drug Deliv. Rev.</em> <bold>176</bold> (2021) Article ID 113887; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.addr.2021.113887" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.addr.2021.113887</a>">https://doi.org/10.1016/j.addr.2021.113887</ext-link>
  26. S. Karimi and H. Namazi, A photoluminescent folic acid-derived carbon dot functionalized magnetic dendrimer as a pH-responsive carrier for targeted doxorubicin delivery, <em>New J. Chem.</em> <bold>45</bold>(14) (2021) 6397–6405; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/D0NJ06261H" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/D0NJ06261H</a>">https://doi.org/10.1039/D0NJ06261H</ext-link>
  27. B. Rani, M. Ahmad, K. Alam, F. Seidi, S. Shakeel, J. Song, Y. Jin and H. Xiao, Recent advances in magnetic nanoparticles: Key applications, environmental insights and future strategies, Sustain. <em>Mater. Technol.</em> <bold>40</bold> (2024) e00985; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.susmat.2024.e00985" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.susmat.2024.e00985</a>">https://doi.org/10.1016/j.susmat.2024.e00985</ext-link>
  28. M. Colombo, S. C. Romero, M. F. Casula, L. Gutiérrez, M. P. Morales, I. B. Böhm, J. T. Heverhagen, D. Prosperi and W. J. Parak, Biological applications of magnetic nanoparticles, <em>Chem. Soc. Rev.</em> <bold>41</bold>(11) (2012) 4306–4334; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/C2CS15337H" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/C2CS15337H</a>">https://doi.org/10.1039/C2CS15337H</ext-link>
  29. C. V. Fernandes, A. Francesko, C. Ribeiro, M. B. López, P. Martins and S. L. Mendez, Advances in magnetic nanoparticles for biomedical applications, <em>Adv. Healthc. Mater.</em> <bold>7</bold>(5) (2018) Article ID 1700845; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/adhm.201700845" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/adhm.201700845</a>">https://doi.org/10.1002/adhm.201700845</ext-link>
  30. S. K. Kailasa and J. R. Koduru, Perspectives of magnetic nature carbon dots in analytical chemistry: From separation to detection and bioimaging, <em>TrAC Trends Environ. Anal. Chem.</em> <bold>33</bold> (2022) e00153; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.teac.2021.e00153" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.teac.2021.e00153</a>">https://doi.org/10.1016/j.teac.2021.e00153</ext-link>
  31. J. T. John, E. F. Nwude, S. Singh, B. G. Prajapati, D. U. Kapoor and N. Muangsin, Sustainable synthesis of gold nanoparticles for drug delivery and cosmeceutical applications: a review, <em>BioNanoScience</em> <bold>14</bold> (2024) 3355–3384; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s12668-024-01436-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12668-024-01436-7</a>">https://doi.org/10.1007/s12668-024-01436-7</ext-link>
  32. M. Yoosefian and H. Sabaghian, Silver nanoparticle-based drug delivery systems in the fight against COVID-19: Enhancing efficacy, reducing toxicity and improving drug bioavailability, <em>J. Drug Target.</em> <bold>32</bold>(7) (2024) 794–806; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/1061186X.2024.2356147" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/1061186X.2024.2356147</a>">https://doi.org/10.1080/1061186X.2024.2356147</ext-link>
  33. N. S. Thakur, N. Saleh, A. F. Khan, B. Chakrabarty and V. Agrahari, Progress and promise of photoresponsive nanocarriers for precision drug delivery in cancer, <em>J. Photochem. Photobiol. C: Photochem. Rev.</em> <bold>59</bold> (2024) Article ID 100665; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jphotochemrev.2024.100665" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jphotochemrev.2024.100665</a>">https://doi.org/10.1016/j.jphotochemrev.2024.100665</ext-link>
  34. Z. Zhu, R. Cheng, L. Ling, Q. Li and S. Chen, Rapid and large-scale production of multi-fluorescence carbon dots by a magnetic hyperthermia method, <em>Angew. Chem. Int. Ed.</em> <bold>59</bold>(8) (2020) 3099–3105; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/anie.201914331" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/anie.201914331</a>">https://doi.org/10.1002/anie.201914331</ext-link>
  35. S. Li, Q. Zhou, Z. Li, M. Liu, Y. Li and C. Chen, Sensitive fluorescent probe based on combination of magnetic molecularly imprinted materials and carbon dots derived from Prussian blue for <em>p</em>-amino-azobenzene in environmental samples, <em>J. Clean. Prod.</em> <bold>402</bold> (2023) Article ID 136827; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jclepro.2023.136827" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jclepro.2023.136827</a>">https://doi.org/10.1016/j.jclepro.2023.136827</ext-link>
  36. X. Li, Y. Fu, S. Zhao, J. Xiao, M. Lan, B. Wang, K. Zhang, X. Song and L. Zeng, Metal ions-doped carbon dots: Synthesis, properties and applications, <em>Chem. Eng. J.</em> <bold>430</bold> (2022) Article ID 133101; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cej.2021.133101" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cej.2021.133101</a>">https://doi.org/10.1016/j.cej.2021.133101</ext-link>
  37. Y. Zhong, L. Chen, S. Yu, Y. Yang and X. Liu, Advances in magnetic carbon dots: A theranostics platform for fluorescence/magnetic resonance bimodal imaging and therapy for tumors, <em>ACS Bio-mater. Sci. Eng.</em> <bold>9</bold>(12) (2023) 6548–6566; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acsbiomaterials.3c00988" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acsbiomaterials.3c00988</a>">https://doi.org/10.1021/acsbiomaterials.3c00988</ext-link>
  38. T. Rezaei, M. Rezaei, S. Karimifard, F. M. Beram, M. S. Dakkali, M. Heydari, S. A. Behbahanizadeh, E. Mostafavi, D. Olegovich Bokov, M. J. Ansari, B. F. Far, I. Akbarzadeh and C. Chaiyasut, Folic acid-decorated pH-responsive nanoniosomes with enhanced endocytosis for breast cancer therapy: In vitro studies, <em>Front. Pharmacol.</em> <bold>13</bold> (2022) Article ID 851242 (17 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fphar.2022.851242" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fphar.2022.851242</a>">https://doi.org/10.3389/fphar.2022.851242</ext-link>
  39. N. Choi, C. Tang, Y. Park, A. Du, G. A. Ayoko, Y. Hwang and S. Chae, Visible-light-driven photo-catalytic degradation of tetracycline using citric acid and lemon juice-derived carbon quantum dots incorporated TiO₂ nanocomposites, <em>Sep. Purif. Technol.</em> <bold>350</bold> (2024) Article ID 127836; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.seppur.2024.127836" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.seppur.2024.127836</a>">https://doi.org/10.1016/j.seppur.2024.127836</ext-link>
  40. M. O. Besenhard, A. P. LaGrow, A. Hodzic, M. Kriechbaum, L. Panariello, G. Bais, K. Loizou, S. Damilos, M. M. Cruz, N. T. K. Thanh and A. Gavriilidis, Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry, <em>Chem. Eng. J.</em> <bold>399</bold> (2020) Article ID 125740; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cej.2020.125740" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cej.2020.125740</a>">https://doi.org/10.1016/j.cej.2020.125740</ext-link>
  41. S. Ganguly, Neelam, I. Grinberg and S. Margel, Layer-by-layer controlled synthesis at room temperature of tri-modal (MRI, fluorescence and CT) core/shell superparamagnetic IO/human serum albumin nanoparticles for diagnostic applications, <em>Polym. Adv. Technol.</em> <bold>32</bold>(10) (2021) 3909–3921; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/pat.5344" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/pat.5344</a>">https://doi.org/10.1002/pat.5344</ext-link>
  42. D. Amara and S. Margel, Synthesis and characterization of superparamagnetic core-shell micro-metre-sized particles of narrow size distribution by a swelling process, <em>J. Mater. Chem.</em> <bold>22</bold> (2012) 9268–9276; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/C2JM00021K" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/C2JM00021K</a>">https://doi.org/10.1039/C2JM00021K</ext-link>
  43. R. Mohammad-Rezaei, H. Razmi, V. Abdollahi and A. A. Matin, Preparation and characterization of Fe₃O₄/graphene quantum dots nanocomposite as an efficient adsorbent in magnetic solid phase extraction: Application to determination of bisphenol A in water samples, <em>Anal. Methods</em> <bold>6</bold>(20) (2014) 8413–8419; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/C4AY01633E" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/C4AY01633E</a>">https://doi.org/10.1039/C4AY01633E</ext-link>
  44. S. Ganguly and S. Margel, Design of magnetic hydrogels for hyperthermia and drug delivery, <em>Polymers</em> <bold>13</bold>(23) (2021) Article ID 4259 (22 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/polym13234259" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/polym13234259</a>">https://doi.org/10.3390/polym13234259</ext-link>
  45. Y. Köseoğlu, F. Yıldız, D. K. Kim, M. Muhammed and B. Aktaş, EPR studies on Na-oleate coated Fe₃O₄ nanoparticles, <em>Phys. Status Solidi C</em> <bold>1</bold>(12) (2004) 3511–3515; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/pssc.200405493" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/pssc.200405493</a>">https://doi.org/10.1002/pssc.200405493</ext-link>
  46. S. Zhuo, Y. Guan, H. Li, J. Fang, P. Zhang, J. Du and C. Zhu, Facile fabrication of fluorescent Fe-doped carbon quantum dots for dopamine sensing and bioimaging application, <em>Analyst</em> <bold>144</bold>(2) (2019) 656–662; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/C8AN01741G" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/C8AN01741G</a>">https://doi.org/10.1039/C8AN01741G</ext-link>
  47. Y. Guo, D. Tang, L. Zhang, B. Li, A. Iqbal, W. Liu and W. Qin, Synthesis of ultrathin carbon dots-coated iron oxide nanocubes decorated with silver nanoparticles and their excellent catalytic properties, <em>Ceram. Int.</em> <bold>43</bold>(9) (2017) 7311–7320; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ceramint.2017.03.033" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ceramint.2017.03.033</a>">https://doi.org/10.1016/j.ceramint.2017.03.033</ext-link>
  48. B. Li, X. Wang, Y. Guo, A. Iqbal, Y. Dong, W. Li, W. Liu, W. Qin, S. Chen and X. Zhou, One-pot synthesis of polyamines improved magnetism and fluorescence Fe₃O₄-carbon dots hybrid NPs for dual modal imaging, <em>Dalton Trans.</em> <bold>45</bold>(13) (2016) 5484–5491; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/C5DT04488J" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/C5DT04488J</a>">https://doi.org/10.1039/C5DT04488J</ext-link>
  49. C. Han, A. Zhang, Y. Kong, N. Yu, T. Xie, B. Dou, K. Li, Y. Wang, J. Li and K. Xu, Multifunctional iron oxide-carbon hybrid nanoparticles for targeted fluorescent/MR dual-modal imaging and detection of breast cancer cells, <em>Anal. Chim. Acta</em> <bold>1067</bold> (2019) 115–128; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.aca.2019.03.054" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.aca.2019.03.054</a>">https://doi.org/10.1016/j.aca.2019.03.054</ext-link>
  50. E. R. Monazam, R. W. Breault and R. Siriwardane, Kinetics of magnetite (Fe₃O₄) oxidation to hematite (Fe₂O₃) in air for chemical looping combustion, <em>Ind. Eng. Chem. Res.</em> <bold>53</bold>(34) (2014) 13320–13328; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/ie501536s" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/ie501536s</a>">https://doi.org/10.1021/ie501536s</ext-link>
  51. G. Gnanaprakash, S. Ayyappan, T. Jayakumar, J. Philip and B. Raj, Magnetic nanoparticles with enhanced γ-Fe₂O₃ to α-Fe₂O₃ phase transition temperature, <em>Nanotechnology</em> <bold>17</bold>(23) (2006) Article ID 5851; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1088/0957-4484/17/23/023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/0957-4484/17/23/023</a>">https://doi.org/10.1088/0957-4484/17/23/023</ext-link>
  52. X. Hu, X.-Y. Ma, J. Tian and Z. Huang, Rapid and facile synthesis of graphene quantum dots with high antioxidant activity, <em>Inorg. Chem. Commun.</em> <bold>122</bold> (2020) Article ID 108288; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.inoche.2020.108288" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.inoche.2020.108288</a>">https://doi.org/10.1016/j.inoche.2020.108288</ext-link>
  53. D. Li, X. Na, H. Wang, Y. Xie, S. Cong, Y. Song, X. Xu, B.-W. Zhu and M. Tan, Fluorescent carbon dots derived from Maillard reaction products: Their properties, biodistribution, cytotoxicity and antioxidant activity, <em>J. Agric. Food Chem.</em> <bold>66</bold>(6) (2018) 1569–1575; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acs.jafc.7b05643" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acs.jafc.7b05643</a>">https://doi.org/10.1021/acs.jafc.7b05643</ext-link>
  54. P. Das, S. Ganguly, S. Margel and A. Gedanken, Tailor-made magnetic nanolights: Fabrication to cancer theranostics applications, <em>Nanoscale Adv.</em> <bold>3</bold>(24) (2021) 6762–6796; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/D1NA00447F" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/D1NA00447F</a>">https://doi.org/10.1039/D1NA00447F</ext-link>
  55. Y. Zou, Z. Sun, Q. Wang, Y. Ju, N. Sun, Q. Yue, Y. Deng, S. Liu, S. Yang, Z. Wang, F. Li, Y. Hou, C. Deng, D. Ling and Y. Deng, Core-shell magnetic particles: Tailored synthesis and applications, <em>Chem. Rev.</em> <bold>125</bold>(2) (2024) 972–1048; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acs.chemrev.4c00710" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acs.chemrev.4c00710</a>">https://doi.org/10.1021/acs.chemrev.4c00710</ext-link>
  56. R. Y. Mushtaq, N. R. Naveen, K. J. Rolla, H. A. Shmrany, S. Alshehri, A. Salawi, M. Kurakula, M. A. Alghamdi, W. Y. Rizg, R. B. Bakhaidar, W. A. Abualsunun, K. M. Hosny and A. J. Alamoudi, Design and evaluation of magnetic-targeted bilosomal gel for rheumatoid arthritis: flurbiprofen delivery using superparamagnetic iron oxide nanoparticles, <em>Front. Pharmacol.</em> <bold>15</bold> (2024) Article ID 1433734 (14 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fphar.2024.1433734" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fphar.2024.1433734</a>">https://doi.org/10.3389/fphar.2024.1433734</ext-link>
  57. M. R. Brophy and P. Deasy, Application of the Higuchi model for drug release from dispersed matrices to particles of general shape, <em>Int. J. Pharm.</em> <bold>37</bold>(1–2) (1987) 41–47; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/0378-5173(87)90008-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0378-5173(87)90008-1</a>">https://doi.org/10.1016/0378-5173(87)90008-1</ext-link>
  58. S. Kim, S. Philippot, S. Fontanay, R. E. Duval, E. Lamouroux, N. Canilho and A. Pasc, pH- and glutathione-responsive release of curcumin from mesoporous silica nanoparticles coated using tannic acid-Fe(III) complex, <em>RSC Adv.</em> <bold>5</bold>(110) (2015) 90550–90558; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/C5RA16004A" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/C5RA16004A</a>">https://doi.org/10.1039/C5RA16004A</ext-link>
  59. E. Aram, H. S. Abandansari, F. Radmanesh, H. R. Khorasani, M. R. Nowroozi, A. Hassanpour, H. Baharvand and D. Sabour, Shell-sheddable and charge-switchable magnetic nanoparticle as pH-sensitive nanocarrier for targeted drug delivery applications, <em>Polym. Adv. Technol.</em> <bold>35</bold>(4) (2024) e6366; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/pat.6366" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/pat.6366</a>">https://doi.org/10.1002/pat.6366</ext-link>
  60. M. Ayubi, M. Karimi, S. Abdpour, K. Rostamizadeh, M. Parsa, M. Zamani and A. Saedi, Magnetic nanoparticles decorated with PEGylated curcumin as dual-targeted drug delivery: Synthesis, toxi-city and biocompatibility study, <em>Mater. Sci. Eng. C</em> <bold>104</bold> (2019) Article ID 109810; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.msec.2019.109810" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.msec.2019.109810</a>">https://doi.org/10.1016/j.msec.2019.109810</ext-link>
  61. N. A. Travlou, D. A. Giannakoudakis, M. Algarra, A. M. Labella, E. Rodríguez-Castellón and T. J. Bandosz, S- and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity, <em>Carbon</em> <bold>135</bold> (2018) 104–111; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.carbon.2018.04.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.carbon.2018.04.018</a>">https://doi.org/10.1016/j.carbon.2018.04.018</ext-link>
  62. B. C. Chung, E. H. Mashalidis, T. Tanino, M. Kim, A. Matsuda, J. Hong, S. Ichikawa and S. Y. Lee, Structural insights into inhibition of lipid I production in bacterial cell wall synthesis, <em>Nature</em> <bold>533</bold> (2016) 557–560; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/nature17636" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nature17636</a>">https://doi.org/10.1038/nature17636</ext-link>
DOI: https://doi.org/10.2478/acph-2025-0017 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 383 - 406
Accepted on: May 28, 2025
Published on: Oct 10, 2025
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2025 Hayat Alzahrani, Mohammed S. Alkaltham, Tawfiq Alsulami, Abdulhakeem Alzahrani, Suleiman A Althawab, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.