References
- S. Le Guellec, S. Ehrmann and L. Vecellio, In vitro – in vivo correlation of intranasal drug deposition, Adv. Drug Deliv. Rev. 170 (2021) 340–352; https://doi.org/10.1016/j.addr.2020.09.002
- K. Bentley and R. Stanton, Hydroxypropyl methylcellulose-based nasal sprays effectively inhibit in vitro SARS-CoV-2 infection and spread, Viruses 13(12) (2021) Article ID 2345 (10 pages); https://doi.org/10.3390/v13122345
- D. Schütz, C. Conzelmann, G. Fois, R. Groß, T. Weil, L. Wettstein, S. Stenger, A. Zelikin, T. K. Hoffmann, M. Frick, J. A. Müller and J. Münch, Carrageenan-containing over-the-counter nasal and oral sprays inhibit SARS-CoV-2 infection of airway epithelial cultures, Am. J. Physiol. Lung Cell Mol. Physiol. 320(5) (2021) 750–766; https://doi.org/10.1152/ajplung.00552.2020
- D. Hull, P. Rennie, A. Noronha, C. Poore, N. Harrington, V. Fearnley and D. Passàli, Effects of creating a non-specific, virus-hostile environment in the nasopharynx on symptoms and duration of common cold, Acta Otorhinolaryngol. Ital. 27(2) (2007) 73–77.
- M. Morokutti-Kurz, M. Fröba, P. Graf, M. Große, A. Grassauer, J. Auth, U. Schubert and E. Prieschl-Grassauer, Iota-carrageenan neutralizes SARS-CoV-2 and inhibits viral replication in vitro, PLoS One 16(2) (2021) e0237480 (13 pages); https://doi.org/https://doi.org/10.1371/journal.pone.0237480
- Y. Jang, H. Shin, M. K. Lee, O. S. Kwon, J. S. Shin, Y. I. Kim, C. W. Kim, H. R. Lee and M. Kim, Antiviral activity of lambda-carrageenan against influenza viruses and severe acute respiratory syndrome coronavirus 2, Sci. Rep. 11(1) (2021) Article ID 821 (12 pages); https://doi.org/10.1038/s41598-020-80896-9
- A. Leibbrandt, C. Meier, M. König-Schuster, R. Weinmüllner, D. Kalthoff, B. Pflugfelder, P. Graf, B. Frank-Gehrke, M. Beer, T. Fazekas, H. Unger, E. Prieschl-Grassauer and A. Grassauer, Iota-carrageenan is a potent inhibitor of influenza A virus infection, PLoS One 5(12) (2010) e14320 (11 pages); https://doi.org/10.1371%2Fjournal.pone.0014320
- A. J. Hickey and S. R. da Rocha, Pharmaceutical Inhalation Aerosol Technology, CRC Press, Boca Raton 2019; https://doi.org/10.1201/9780429055201
- T. Imsuwansri, T. Jongthitinon, N. Pojdoung, N. Meesiripan, S. Sakarin, C. Boonkrai, T. Wong-tangprasert, T. Phakham, T. Audomsun, C. Attakitbancha, P. Saelao, P. Muanwien, M. T. Tian, S. Tongchusak, B. Sangruji, D. L. Wannigama, C. Sawangmake, W. Rodprasert, Q. D. Le, S. D. Purbantoro, K. Vasuntrarak, S. Nantavisai, S. Sirilak, B. Uppapong, S. Sapsutthipas, S. Trisiriwanich, T. Somporn, A. Usoo, N. Mingngamsup, S. Phumiamorn, P. Aumklad, K. Arunprasert, P. Patrojanasophon, P. Opanasopit, N. Pesirikan, L. Nitisaporn, J. Pitchayakorn, T. Narkthong, B. Mahong, K. Chaiyo, K. Srisutthisamphan, R. Viriyakitkosol, S. Aeumjaturapat, A. Jongkaewwattana, S. Bunnag and T. Pisitkun, Assessment of safety and intranasal neutralizing antibodies of HPMC-based human anti-SARS-CoV-2 IgG1 nasal spray in healthy volunteers, Sci. Rep. 13 (2023) Article ID 15648 (12 pages); https://doi.org10.1038/s41598-023-42539-7
- T. A. Popov, J. Emberlin, P. Josling and A. Seifalian, In vitro and in vivo evaluation of the efficacy and safety of powder hydroxypropylmethylcellulose as nasal mucosal barrier, Med. Devices 13 (2020) 107–113; https://doi.org/10.2147%2FMDER.S236104
- N. Hunt, L. Suleman, P. D. Josling and T. A. Popov, Virucidal activity of Nasaleze® Cold & Flu Blocker and Nasaleze® Travel in cell cultures infected with human pathogenic coronavirus 229-E, bioRxiv 23 (2021) (16 pages); https://doi.org/10.1101/2021.09.23.461483
- S. Perez-Robles, C. Carotenuto and M. Minale, HPMC hydrogel formation mechanisms unveiled by the evaluation of the activation energy, Polymers 14(3) (2022) Article ID 635 (10 pages); https://doi.org/10.3390/polym14030635
- U.S. Department of Health and Human Services FaDA, Center for Drug Evaluation and Research (CDER) (2002) Guidance for Industry: Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products – Chemistry, Manufacturing, and Controls Documentation
- A. Baldelli, C. Y. J. Wong, H. Oguzlu, H. Gholizadeh, Y. Guo, H. X. Ong, A. Singh, D. Traini and A. Pratap-Singh, Nasal delivery of encapsulated recombinant ACE2 as a prophylactic drug for SARS-CoV-2, Int. J. Pharm. 655 (2024) Article ID 124009 (13 pages); https://doi.org/10.1016/j.ijpharm.2024.124009
- C. Y. J. Wong, A. Baldelli, O. Tietz, J. van der Hoven, J. Suman, H. X. Ong and D. Traini, An overview of in vitro and in vivo techniques for characterization of intranasal protein and peptide formulations for brain targeting, Int. J. Pharm. 654 (2024) Article ID 123922 (12 pages); https://doi.org/10.1016/j.ijpharm.2024.123922
- B. Sipos, I. Csóka, N. Szivacski, M. Budai-Szűcs, Z. Schelcz, I. Zupkó, P. Szabó-Révész, B. Volk and G. Katona, Mucoadhesive meloxicam-loaded nanoemulsions: Development, characterization and nasal applicability studies, Eur. J. Pharm. Sci. 175 (2022) Article ID 106229 (10 pages); https://doi.org/10.1016/j.ejps.2022.106229
- S. Trows, K. Wuchner, R. Spycher and H. Steckel, Analytical challenges and regulatory requirements for nasal drug products in europe and the U.S., Pharmaceutics 6(2) (2014) 195–219; https://doi.org/10.3390/pharmaceutics6020195
- F. Laffleur and B. Bauer, Progress in nasal drug delivery systems, Int. J. Pharm. 607 (2021) Article ID 120994; https://doi.org/10.1016/j.ijpharm.2021.120994
- Y. Shin, R. Kokate, V. Desai, A. Bhushan and G. Kaushal, D-cycloserine nasal formulation development for anxiety disorders by using polymeric gels, JDDT 12 (2018) 142–153; https://doi.org/10.5582/ddt.2018.01017
- P. Rennie, P. Bowtell, D. Hull, D. Charbonneau, R. Lambkin-Williams and J. Oxford, Low pH gel intranasal sprays inactivate influenza viruses in vitro and protect ferrets against influenza infection, Respir. Res. 8 (2007) Article ID 38 (7 pages); https://doi.org/10.1186/1465-9921-8-38
- M. E. Darnell, K. Subbarao, S. M. Feinstone and D. R. Taylor, Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV, J. Virol. Methods 121 (2004) 85–89; https://doi.org/10.1016/j.jviromet.2004.06.006
- K. Shmuel, M. Dalia, L. Tair and N. Yaakov, Low pH Hypromellose (Taffix) nasal powder spray could reduce SARS-CoV-2 infection rate post mass-gathering event at a highly endemic community: An observational prospective open label user survey, Expert. Rev. Anti. Infect. Ther. 19(10) (2021) 1325–1330; https://doi.org/10.1080/14787210.2021.1908127
- T. L. Meister, D. Todt, Y. Brüggemann, J. Steinmann, S. Banava, F. H. H. Brill, J. Steinmann, S. Pfaender and E. Steinmann, Virucidal activity of nasal sprays against severe acute respiratory syndrome coronavirus-2, J. Hosp. Infect. 120 (2022) 9–13; https://doi.org/10.1016/j.jhin.2021.10.019
- A. Santomaso, P. Lazzaro and P. Canu, Powder flowability and density ratios: The impact of granules packing, Chem. Eng. Sci. 58(13) (2003) 2857–2874; https://doi.org/10.1016/S0009-2509(03)00137-4
- Y. Pu, A. Goodey, X. Fang and K. Jacob, A comparison of the deposition patterns of different nasal spray formulations using a nasal cast, Aerosol. Sci. Technol. 48 (2014) 930–938; https://doi.org/10.1080/02786826.2014.931566
- R. J. A. Moakes, S. P. Davies, Z. Stamataki and L. M. Grover, Formulation of a composite nasal spray enabling enhanced surface coverage and prophylaxis of SARS-COV-2, Adv. Mater. 33(26) (2021) Article ID 2008304 (11 pages); https://doi.org/10.1002/adma.202008304
- P. Yimsiri and M. Mackley, Spin and dip coating of light-emitting polymer solutions: Matching experiment with modelling, Chem. Eng. Sci. 61 (2006) 3496–505; https://doi.org/10.1016/j.ces.2005.12.018
- A. Ghauri, I. Ghauri, A. M. A. Elhissi and W. Ahmed, Advances in Medical and Surgical Engineering, University of Central Lancashire, UK, Preston 2020.
- C. M. Muntu, C. Avanti, H. Hayun and S. Surini, Stability study of spray freeze-dried insulin dry powder formulations used for nose-to-brain delivery, J. Appl. Pharm. Sci. 10(13) (2023) 225–237; https://doi.org/10.7324/JAPS.2023.148983
- R. Popescu, M. V. Ghica, C. E. Dinu-Pîrvu, V. Anuta, D. Lupuleasa and L. Popa, New opportunity to formulate intranasal vaccines and drug delivery systems based on chitosan, Int. J. Mol. Sci. 21(14) (2020) Article ID 5016 (23 pages); https://doi.org/10.3390/ijms21145016
- A. G. Beule, Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses, GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 9 (2010) Article ID 7 (24 pages); https://doi.org/10.3205/cto000071
- R. Ghadermazi, S. Hamdipour, K. Sadeghi, R. Ghadermazi and A. Khosrowshahi Asl, Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose – A review, Food. Sci. Nutr. 13(7) (2019) 3363–3377; https://doi.org/10.1002/fsn3.1206
- T. R. Sosnowski, P. Rapiejko, J. Sova and K. Dobrowolska, Impact of physicochemical properties of nasal spray products on drug deposition and transport in the pediatric nasal cavity model, Int. J. Pharm. 574 (2020) Article ID 118911; https://doi.org/10.1016/j.ijpharm.2019.118911
- S. Fang, X. Rui, Y. Zhang, Z. Yang and W. Wang, Comparative study of nasal cavity drug delivery efficiency with different nozzles in a 3D printed model, PeerJ. 12 (2024) e17227 (17 pages); https://doi.org/10.7717/peerj.17227
- Y. Pu, A. P. Goodey, X. Fang and K. Jacob, A comparison of the deposition patterns of different nasal spray formulations using a nasal cast, AS&T 48(9) (2014) 930–938; https://doi.org/10.1080/02786826.2014.931566
- M. Gao, X. Shen and S. Mao, Factors influencing drug deposition in thenasal cavity upon delivery via nasal sprays, J. Pharm. Investig. 50(3) (2020) 251–259; https://doi.org/10.1007/s40005-020-00482-z
- X. A. Si, M. Sami and J. Xi, Liquid film translocation significantly enhances nasal spray delivery to olfactory region: A numerical simulation study, Pharmaceutics 13(6) (2021) Article ID 903 (19 pages); https://doi.org/10.3390/pharmaceutics13060903
- J. Siu, J. van Strien, R. Campbell, P. Roberts, M. D. Tingle, K. Inthavong and R. G. Douglas, Comparison of sinus deposition from an aqueous nasal spray and pressurised MDI in a post-endoscopic sinus surgery nasal replica, Pharm. Res. 39(2) (2022) 317–327; https://doi.org/10.1007/s11095-021-03129-2
- Q. Zhang, X. Li and B. R. Jasti, Role of physicochemical properties of some grades of hydroxypropyl methylcellulose on in vitro mucoadhesion, Int. J. Pharm. 609 (2021) Article ID 121218; https://doi.org/10.1016/j.ijpharm.2021.121218
- A. Utkarshini, F. Tiam and U. A. Remigius, Recent Advances in Novel Drug Carrier Systems, IntechO-pen, Rijeka 2012; https://doi/org/10.5772/2889
- J. Ehrick, S. Shah, C. Shaw, V. Kulkarni, I. Coowanitwong, S. De and J. Suman, Sterile product development, formulation, Process, Quality and Regulatory Considerations AAPSPress 6 (2013) 99–144.
- P. G. Djupesland, Nasal drug delivery devices: characteristics and performance in a clinical perspective – A review, Drug Deliv. Transl. Res. 3 (2013) 42–62; https://doi.org/10.1007/s13346-012-0108-9
- Y. Qin, J. Ye, P. Ohno, T. Nah and S. Martin, Temperature-dependent viscosity of organic materials characterized by atomic force microscope, Atmosphere 12(11) (2021) Article ID 1476 (10 pages); https://doi.org/10.3390/atmos12111476