Have a personal or library account? Click to login
From in vitro studies to product information useful for patients: Evaluation of physical properties and the stability of nasal spray devices containing hydroxypropyl methylcellulose-based liquid and powder formulations Cover

From in vitro studies to product information useful for patients: Evaluation of physical properties and the stability of nasal spray devices containing hydroxypropyl methylcellulose-based liquid and powder formulations

Open Access
|Oct 2025

References

  1. S. Le Guellec, S. Ehrmann and L. Vecellio, <em>In vitro – in vivo</em> correlation of intranasal drug deposition, <em>Adv. Drug Deliv. Rev.</em> <bold>170</bold> (2021) 340–352; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.addr.2020.09.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.addr.2020.09.002</a>">https://doi.org/10.1016/j.addr.2020.09.002</ext-link>
  2. K. Bentley and R. Stanton, Hydroxypropyl methylcellulose-based nasal sprays effectively inhibit in vitro SARS-CoV-2 infection and spread, <em>Viruses</em> <bold>13</bold>(12) (2021) Article ID 2345 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/v13122345" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/v13122345</a>">https://doi.org/10.3390/v13122345</ext-link>
  3. D. Schütz, C. Conzelmann, G. Fois, R. Groß, T. Weil, L. Wettstein, S. Stenger, A. Zelikin, T. K. Hoffmann, M. Frick, J. A. Müller and J. Münch, Carrageenan-containing over-the-counter nasal and oral sprays inhibit SARS-CoV-2 infection of airway epithelial cultures, <em>Am. J. Physiol. Lung Cell Mol. Physiol.</em> <bold>320</bold>(5) (2021) 750–766; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1152/ajplung.00552.2020" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1152/ajplung.00552.2020</a>">https://doi.org/10.1152/ajplung.00552.2020</ext-link>
  4. D. Hull, P. Rennie, A. Noronha, C. Poore, N. Harrington, V. Fearnley and D. Passàli, Effects of creating a non-specific, virus-hostile environment in the nasopharynx on symptoms and duration of common cold, <em>Acta Otorhinolaryngol. Ital.</em> <bold>27</bold>(2) (2007) 73–77.
  5. M. Morokutti-Kurz, M. Fröba, P. Graf, M. Große, A. Grassauer, J. Auth, U. Schubert and E. Prieschl-Grassauer, Iota-carrageenan neutralizes SARS-CoV-2 and inhibits viral replication in vitro, <em>PLoS One</em> <bold>16</bold>(2) (2021) e0237480 (13 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/https://doi.org/10.1371/journal.pone.0237480">https://doi.org/https://doi.org/10.1371/journal.pone.0237480</ext-link>
  6. Y. Jang, H. Shin, M. K. Lee, O. S. Kwon, J. S. Shin, Y. I. Kim, C. W. Kim, H. R. Lee and M. Kim, Antiviral activity of lambda-carrageenan against influenza viruses and severe acute respiratory syndrome coronavirus 2, <em>Sci. Rep</em>. <bold>11</bold>(1) (2021) Article ID 821 (12 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41598-020-80896-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-020-80896-9</a>">https://doi.org/10.1038/s41598-020-80896-9</ext-link>
  7. A. Leibbrandt, C. Meier, M. König-Schuster, R. Weinmüllner, D. Kalthoff, B. Pflugfelder, P. Graf, B. Frank-Gehrke, M. Beer, T. Fazekas, H. Unger, E. Prieschl-Grassauer and A. Grassauer, Iota-carrageenan is a potent inhibitor of influenza A virus infection, <em>PLoS One</em> <bold>5</bold>(12) (2010) e14320 (11 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1371%2Fjournal.pone.0014320">https://doi.org/10.1371%2Fjournal.pone.0014320</ext-link>
  8. A. J. Hickey and S. R. da Rocha, <em>Pharmaceutical Inhalation Aerosol Technology,</em> CRC Press, Boca Raton 2019; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1201/9780429055201" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1201/9780429055201</a>">https://doi.org/10.1201/9780429055201</ext-link>
  9. T. Imsuwansri, T. Jongthitinon, N. Pojdoung, N. Meesiripan, S. Sakarin, C. Boonkrai, T. Wong-tangprasert, T. Phakham, T. Audomsun, C. Attakitbancha, P. Saelao, P. Muanwien, M. T. Tian, S. Tongchusak, B. Sangruji, D. L. Wannigama, C. Sawangmake, W. Rodprasert, Q. D. Le, S. D. Purbantoro, K. Vasuntrarak, S. Nantavisai, S. Sirilak, B. Uppapong, S. Sapsutthipas, S. Trisiriwanich, T. Somporn, A. Usoo, N. Mingngamsup, S. Phumiamorn, P. Aumklad, K. Arunprasert, P. Patrojanasophon, P. Opanasopit, N. Pesirikan, L. Nitisaporn, J. Pitchayakorn, T. Narkthong, B. Mahong, K. Chaiyo, K. Srisutthisamphan, R. Viriyakitkosol, S. Aeumjaturapat, A. Jongkaewwattana, S. Bunnag and T. Pisitkun, Assessment of safety and intranasal neutralizing antibodies of HPMC-based human anti-SARS-CoV-2 IgG1 nasal spray in healthy volunteers, <em>Sci. Rep</em>. <bold>13</bold> (2023) Article ID 15648 (12 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org10.1038/s41598-023-42539-7">https://doi.org10.1038/s41598-023-42539-7</ext-link>
  10. T. A. Popov, J. Emberlin, P. Josling and A. Seifalian, In vitro and in vivo evaluation of the efficacy and safety of powder hydroxypropylmethylcellulose as nasal mucosal barrier, <em>Med. Devices</em> <bold>13</bold> (2020) 107–113; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.2147%2FMDER.S236104">https://doi.org/10.2147%2FMDER.S236104</ext-link>
  11. N. Hunt, L. Suleman, P. D. Josling and T. A. Popov, Virucidal activity of Nasaleze<sup>®</sup> Cold &amp; Flu Blocker and Nasaleze<sup>®</sup> Travel in cell cultures infected with human pathogenic coronavirus 229-E, <em>bioRxiv</em> 23 (2021) (16 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1101/2021.09.23.461483" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1101/2021.09.23.461483</a>">https://doi.org/10.1101/2021.09.23.461483</ext-link>
  12. S. Perez-Robles, C. Carotenuto and M. Minale, HPMC hydrogel formation mechanisms unveiled by the evaluation of the activation energy, <em>Polymers</em> <bold>14</bold>(3) (2022) Article ID 635 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/polym14030635" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/polym14030635</a>">https://doi.org/10.3390/polym14030635</ext-link>
  13. U.S. Department of Health and Human Services FaDA, Center for Drug Evaluation and Research (CDER) (2002) Guidance for Industry: Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products – Chemistry, Manufacturing, and Controls Documentation
  14. A. Baldelli, C. Y. J. Wong, H. Oguzlu, H. Gholizadeh, Y. Guo, H. X. Ong, A. Singh, D. Traini and A. Pratap-Singh, Nasal delivery of encapsulated recombinant ACE2 as a prophylactic drug for SARS-CoV-2, <em>Int. J. Pharm</em>. <bold>655</bold> (2024) Article ID 124009 (13 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijpharm.2024.124009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijpharm.2024.124009</a>">https://doi.org/10.1016/j.ijpharm.2024.124009</ext-link>
  15. C. Y. J. Wong, A. Baldelli, O. Tietz, J. van der Hoven, J. Suman, H. X. Ong and D. Traini, An overview of in vitro and in vivo techniques for characterization of intranasal protein and peptide formulations for brain targeting, <em>Int. J. Pharm</em>. <bold>654</bold> (2024) Article ID 123922 (12 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijpharm.2024.123922" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijpharm.2024.123922</a>">https://doi.org/10.1016/j.ijpharm.2024.123922</ext-link>
  16. B. Sipos, I. Csóka, N. Szivacski, M. Budai-Szűcs, Z. Schelcz, I. Zupkó, P. Szabó-Révész, B. Volk and G. Katona, Mucoadhesive meloxicam-loaded nanoemulsions: Development, characterization and nasal applicability studies, <em>Eur. J. Pharm. Sci.</em> <bold>175</bold> (2022) Article ID 106229 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ejps.2022.106229" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ejps.2022.106229</a>">https://doi.org/10.1016/j.ejps.2022.106229</ext-link>
  17. S. Trows, K. Wuchner, R. Spycher and H. Steckel, Analytical challenges and regulatory requirements for nasal drug products in europe and the U.S., <em>Pharmaceutics</em> <bold>6</bold>(2) (2014) 195–219; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/pharmaceutics6020195" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/pharmaceutics6020195</a>">https://doi.org/10.3390/pharmaceutics6020195</ext-link>
  18. F. Laffleur and B. Bauer, Progress in nasal drug delivery systems, <em>Int. J. Pharm.</em> <bold>607</bold> (2021) Article ID 120994; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijpharm.2021.120994" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijpharm.2021.120994</a>">https://doi.org/10.1016/j.ijpharm.2021.120994</ext-link>
  19. Y. Shin, R. Kokate, V. Desai, A. Bhushan and G. Kaushal, D-cycloserine nasal formulation development for anxiety disorders by using polymeric gels, <em>JDDT</em> <bold>12</bold> (2018) 142–153; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5582/ddt.2018.01017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5582/ddt.2018.01017</a>">https://doi.org/10.5582/ddt.2018.01017</ext-link>
  20. P. Rennie, P. Bowtell, D. Hull, D. Charbonneau, R. Lambkin-Williams and J. Oxford, Low pH gel intranasal sprays inactivate influenza viruses in vitro and protect ferrets against influenza infection, <em>Respir. Res.</em> <bold>8</bold> (2007) Article ID 38 (7 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/1465-9921-8-38" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/1465-9921-8-38</a>">https://doi.org/10.1186/1465-9921-8-38</ext-link>
  21. M. E. Darnell, K. Subbarao, S. M. Feinstone and D. R. Taylor, Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV, <em>J. Virol. Methods</em> <bold>121</bold> (2004) 85–89; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jviromet.2004.06.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jviromet.2004.06.006</a>">https://doi.org/10.1016/j.jviromet.2004.06.006</ext-link>
  22. K. Shmuel, M. Dalia, L. Tair and N. Yaakov, Low pH Hypromellose (Taffix) nasal powder spray could reduce SARS-CoV-2 infection rate post mass-gathering event at a highly endemic community: An observational prospective open label user survey, <em>Expert. Rev. Anti. Infect. Ther.</em> <bold>19</bold>(10) (2021) 1325–1330; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/14787210.2021.1908127" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/14787210.2021.1908127</a>">https://doi.org/10.1080/14787210.2021.1908127</ext-link>
  23. T. L. Meister, D. Todt, Y. Brüggemann, J. Steinmann, S. Banava, F. H. H. Brill, J. Steinmann, S. Pfaender and E. Steinmann, Virucidal activity of nasal sprays against severe acute respiratory syndrome coronavirus-2, <em>J. Hosp. Infect</em>. <bold>120</bold> (2022) 9–13; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jhin.2021.10.019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2021.10.019</a>">https://doi.org/10.1016/j.jhin.2021.10.019</ext-link>
  24. A. Santomaso, P. Lazzaro and P. Canu, Powder flowability and density ratios: The impact of granules packing, <em>Chem. Eng. Sci.</em> <bold>58</bold>(13) (2003) 2857–2874; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0009-2509(03)00137-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0009-2509(03)00137-4</a>">https://doi.org/10.1016/S0009-2509(03)00137-4</ext-link>
  25. Y. Pu, A. Goodey, X. Fang and K. Jacob, A comparison of the deposition patterns of different nasal spray formulations using a nasal cast, <em>Aerosol. Sci. Technol.</em> <bold>48</bold> (2014) 930–938; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/02786826.2014.931566" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/02786826.2014.931566</a>">https://doi.org/10.1080/02786826.2014.931566</ext-link>
  26. R. J. A. Moakes, S. P. Davies, Z. Stamataki and L. M. Grover, Formulation of a composite nasal spray enabling enhanced surface coverage and prophylaxis of SARS-COV-2, <em>Adv. Mater.</em> <bold>33</bold>(26) (2021) Article ID 2008304 (11 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/adma.202008304" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/adma.202008304</a>">https://doi.org/10.1002/adma.202008304</ext-link>
  27. P. Yimsiri and M. Mackley, Spin and dip coating of light-emitting polymer solutions: Matching experiment with modelling, <em>Chem. Eng. Sci.</em> <bold>61</bold> (2006) 3496–505; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ces.2005.12.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ces.2005.12.018</a>">https://doi.org/10.1016/j.ces.2005.12.018</ext-link>
  28. A. Ghauri, I. Ghauri, A. M. A. Elhissi and W. Ahmed, <em>Advances in Medical and Surgical Engineering</em>, University of Central Lancashire, UK, Preston 2020.
  29. C. M. Muntu, C. Avanti, H. Hayun and S. Surini, Stability study of spray freeze-dried insulin dry powder formulations used for nose-to-brain delivery, <em>J. Appl. Pharm. Sci.</em> <bold>10</bold>(13) (2023) 225–237; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.7324/JAPS.2023.148983" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.7324/JAPS.2023.148983</a>">https://doi.org/10.7324/JAPS.2023.148983</ext-link>
  30. R. Popescu, M. V. Ghica, C. E. Dinu-Pîrvu, V. Anuta, D. Lupuleasa and L. Popa, New opportunity to formulate intranasal vaccines and drug delivery systems based on chitosan, <em>Int. J. Mol. Sci.</em> <bold>21</bold>(14) (2020) Article ID 5016 (23 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms21145016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms21145016</a>">https://doi.org/10.3390/ijms21145016</ext-link>
  31. A. G. Beule, Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses, <em>GMS Curr. Top. Otorhinolaryngol. Head Neck Surg.</em> <bold>9</bold> (2010) Article ID 7 (24 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3205/cto000071" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3205/cto000071</a>">https://doi.org/10.3205/cto000071</ext-link>
  32. R. Ghadermazi, S. Hamdipour, K. Sadeghi, R. Ghadermazi and A. Khosrowshahi Asl, Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose – A review, <em>Food. Sci. Nutr</em>. <bold>13</bold>(7) (2019) 3363–3377; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/fsn3.1206" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/fsn3.1206</a>">https://doi.org/10.1002/fsn3.1206</ext-link>
  33. T. R. Sosnowski, P. Rapiejko, J. Sova and K. Dobrowolska, Impact of physicochemical properties of nasal spray products on drug deposition and transport in the pediatric nasal cavity model, <em>Int. J. Pharm.</em> <bold>574</bold> (2020) Article ID 118911; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijpharm.2019.118911" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijpharm.2019.118911</a>">https://doi.org/10.1016/j.ijpharm.2019.118911</ext-link>
  34. S. Fang, X. Rui, Y. Zhang, Z. Yang and W. Wang, Comparative study of nasal cavity drug delivery efficiency with different nozzles in a 3D printed model, <em>PeerJ</em>. <bold>12</bold> (2024) e17227 (17 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.7717/peerj.17227" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.7717/peerj.17227</a>">https://doi.org/10.7717/peerj.17227</ext-link>
  35. Y. Pu, A. P. Goodey, X. Fang and K. Jacob, A comparison of the deposition patterns of different nasal spray formulations using a nasal cast, <em>AS&amp;T</em> <bold>48</bold>(9) (2014) 930–938; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/02786826.2014.931566" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/02786826.2014.931566</a>">https://doi.org/10.1080/02786826.2014.931566</ext-link>
  36. M. Gao, X. Shen and S. Mao, Factors influencing drug deposition in thenasal cavity upon delivery via nasal sprays, <em>J. Pharm. Investig.</em> <bold>50</bold>(3) (2020) 251–259; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s40005-020-00482-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s40005-020-00482-z</a>">https://doi.org/10.1007/s40005-020-00482-z</ext-link>
  37. X. A. Si, M. Sami and J. Xi, Liquid film translocation significantly enhances nasal spray delivery to olfactory region: A numerical simulation study, <em>Pharmaceutics</em> <bold>13</bold>(6) (2021) Article ID 903 (19 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/pharmaceutics13060903" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/pharmaceutics13060903</a>">https://doi.org/10.3390/pharmaceutics13060903</ext-link>
  38. J. Siu, J. van Strien, R. Campbell, P. Roberts, M. D. Tingle, K. Inthavong and R. G. Douglas, Comparison of sinus deposition from an aqueous nasal spray and pressurised MDI in a post-endoscopic sinus surgery nasal replica, <em>Pharm. Res.</em> <bold>39</bold>(2) (2022) 317–327; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11095-021-03129-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11095-021-03129-2</a>">https://doi.org/10.1007/s11095-021-03129-2</ext-link>
  39. Q. Zhang, X. Li and B. R. Jasti, Role of physicochemical properties of some grades of hydroxypropyl methylcellulose on in vitro mucoadhesion, <em>Int. J. Pharm.</em> <bold>609</bold> (2021) Article ID 121218; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijpharm.2021.121218" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijpharm.2021.121218</a>">https://doi.org/10.1016/j.ijpharm.2021.121218</ext-link>
  40. A. Utkarshini, F. Tiam and U. A. Remigius, <em>Recent Advances in Novel Drug Carrier Systems</em>, IntechO-pen, Rijeka 2012; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi/org/10.5772/2889">https://doi/org/10.5772/2889</ext-link>
  41. J. Ehrick, S. Shah, C. Shaw, V. Kulkarni, I. Coowanitwong, S. De and J. Suman, Sterile product development, formulation, Process, Quality and Regulatory Considerations <em>AAPSPress</em> <bold>6</bold> (2013) 99–144.
  42. P. G. Djupesland, Nasal drug delivery devices: characteristics and performance in a clinical perspective – A review, <em>Drug Deliv. Transl. Res.</em> <bold>3</bold> (2013) 42–62; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13346-012-0108-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13346-012-0108-9</a>">https://doi.org/10.1007/s13346-012-0108-9</ext-link>
  43. Y. Qin, J. Ye, P. Ohno, T. Nah and S. Martin, Temperature-dependent viscosity of organic materials characterized by atomic force microscope, <em>Atmosphere</em> <bold>12</bold>(11) (2021) Article ID 1476 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/atmos12111476" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/atmos12111476</a>">https://doi.org/10.3390/atmos12111476</ext-link>
DOI: https://doi.org/10.2478/acph-2025-0015 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 469 - 487
Accepted on: May 16, 2025
Published on: Oct 10, 2025
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2025 Peerawas Kopongpanich, Veerakiet Boonkanokwong, Varin Titapiwatanakun, Rutthapol Sritharadol, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.