Have a personal or library account? Click to login

FOXD2-AS1 is modulated by METTL3 with the assistance of YTHDF1 to affect proliferation and apoptosis in esophageal cancer

Open Access
|Apr 2025

References

  1. K. Liu, T. Zhao, J. Wang, Y. Chen, R. Zhang, X. Lan and J. Que, Etiology, cancer stem cells and potential diagnostic biomarkers for esophageal cancer, Cancer Lett. 458(28) (2019) 21–28; https://doi.org/10.1016/j.canlet.2019.05.018
  2. Y. Baba, D. Nomoto, K. Okadome, T. Ishimoto, M. Iwatsuki, Y. Miyamoto, N. Yoshida and H. Baba, Tumor immune microenvironment and immune checkpoint inhibitors in esophageal squamous cell carcinoma, Cancer Sci. 111(9) (2020) 3132–3141; https://doi.org/10.1111/cas.14541
  3. K. Harada, J. E. Rogers, M. Iwatsuki, K. Yamashita, H. Baba and J. A. Ajani, Recent advances in treating oesophageal cancer, F1000. Res. 10(1) (2020) 1180–11891; https://doi.org/10.12688/f1000research.22926.1
  4. T. M. Godefa, S. Derks and V. L. J. L. Thijssen, Galectins in esophageal cancer: Current knowledge and future perspectives, Cancers (Basel) 14(23) (2022) Article ID 5790; https://doi.org/10.3390/cancers14235790
  5. P. Thuss-Patience and S. Stein, Immunotherapy in squamous cell cancer of the esophagus, Curr. Oncol. 29(4) (2022) 2461–2471; https://doi.org/10.3390/curroncol29040200
  6. K. Kato, Y. Ito, I. Nozaki, H. Daiko, T. Kojima, M. Yano, M. Ueno, S. Nakagawa, M. Takagi, S. Tsunoda, T. Abe, T. Nakamura, M. Okada, Y. Toh, Y. Shibuya, S. Yamamoto, H. Katayama, K. Nakamura and Y. Kitagawa, Japan Esophageal Oncology Group of the Japan Clinical Oncology Group, Parallel-group controlled trial of surgery versus chemoradiotherapy in patients with stage I esophageal squamous cell carcinoma, Gastroenterology 161(6) (2021) 1878–1886; https://doi.org/10.1053/j.gastro.2021.08.007
  7. R. Li, L. Zeng, H. Zhao, J. Deng, L. Pan, S. Zhang, G. Wu, Y. Ye, J. Zhang, J. Su, Y. Zheng, S. Deng, R. Bai, L. Zhuang, M. Li, Z. Zuo, D. Lin, J. Zheng and X. Huang, ATXN2-mediated translation of TNFR1 promotes esophageal squamous cell carcinoma via m6A-dependent manner, Mol. Ther. 30(3) (2022) 1089–1103; https://doi.org/10.1016/J.YMTHE.2022.01.006
  8. J. Xu, W. Cao, A. Shao, M. Yang, V. Andoh, Q. Ge, H. W. Pan and K. P. Chen, Metabolomics of esophageal squamous cell carcinoma tissues: Potential biomarkers for diagnosis and promising targets for therapy, Biomed. Res. Int. 23 (2022) Article ID 7819235 (24 pages); https://doi.org/10.1155/2022/7819235
  9. J. Venkatesh, M. D. Wasson, J. M. Brown, W. Fernando and P. Marcato, LncRNA-miRNA axes in breast cancer: Novel points of interaction for strategic attack, Cancer Lett. 509(1) (2021) 81–88; https://doi.org/10.1016/j.canlet.2021.04.002
  10. Y. Chi, D. Wang, J. Wang, W. Yu and J. Yang, Long non-coding RNA in the pathogenesis of cancers, Cells 8(9) (2021) 1015; https://doi.org/10.3390/cells8091015
  11. Y. Lan, B. Liu and H. Guo, The role of M6A modification in the regulation of tumor-related lncRNAs, Mol. Ther. Nucleic Acids 24 (2021) 768–779; https://doi.org/10.1016/j.omtn.2021.04.002
  12. L. Chen, C. H. Qiu, Y. Chen, Y. Wang, J. J. Zhao and M. Zhang, LncRNA SNHG16 drives proliferation, migration, and invasion of lung cancer cell through modulation of miR-520/VEGF axis, Eur. Rev. Med. Pharmacol. 24(18) (2020) 9522–9531; https://doi.org/10.26355/eurrev_202009_23037
  13. X. Chen, Y. Liu, D. Sun, R. Sun, X. Wang, M. Li, N. Song, J. Ying, T. Guo and Y. Jiang, Long noncoding RNA lnc-H2AFV-1 promotes cell growth by regulating aberrant m6A RNA modification in head and neck squamous cell carcinoma, Cancer Sci. 113(6) (2022) 2071–2084; https://doi.org/10.1111/CAS.15366
  14. B. Xiu, Y. Chi, L. Liu, W. Chi, Q. Zhang, J. Chen, R. Guo, J. Si, L. Li, J. Xue, Z. M. Shao, Z. H. Wu, S. Huang and J. Wu, LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription, Mol. Cancer 18(1) (2019) Article ID 187 (20 pages); https://doi.org/10.1186/s12943-019-1115-y
  15. W. Xue, Z. Shen, L. Li, Y. Zheng, D. Yan, Q. Kan and J. Zhao, Long non-coding RNAs MACC1-AS1 and FOXD2-AS1 mediate NSD2-induced cisplatin resistance in esophageal squamous cell carcinoma, Mol. Ther. Nucleic Acids 10(23) (2020) 592–602; https://doi.org/10.1016/j.omtn.2020.12.007
  16. H. Liu, J. Zhang, X. Luo, M. Zeng, L. Xu, Q. Zhang, H. Liu, J. Guo and L. Xu, Overexpression of the long noncoding RNA FOXD2-AS1 promotes cisplatin resistance in esophageal squamous cell carcinoma through the miR-195/Akt/mTOR axis, Oncol. Res. 28(1) (2020) 65–73; https://doi.org/10.3727/096504019X15656904013079
  17. W. Shi, Z. Gao, J. Song and W. Wang, Silence of FOXD2-AS1 inhibited the proliferation and invasion of esophagus cells by regulating miR-145-5p/CDK6 axis, Histol. Histopathol. 35(9) (2020) 1013–1021; https://doi.org/10.14670/HH-18-232
  18. T. Sun, R. Wu and L. Ming, The role of m6A RNA methylation in cancer, Biomed. Pharmacother. 4(112) (2019) Article ID 108613 (9 pages); https://doi.org/10.1016/j.biopha.2019.108613
  19. S. Ma, C. Chen, X. Ji, J. Liu, Q. Zhou, G. Wang, W. Yuan, Q. Kan and Z. Sun, The interplay between m6A RNA methylation and noncoding RNA in cancer, J. Hematol. Oncol. 12(1) (2019) Article ID 121 (15 pages); https://doi.org/10.1186/s13045-019-0805-7
  20. L. Rowe and A. L. Rockwell, Ubiquitous knockdown of Mettl3 using TRiP.GL01126 results in spermatid mislocalization during Drosophila spermatogenesis, MicroPubl. Biol. l7(18) (2022) 17912–17918; https://doi.org/10.17912/micropub.biology.000511
  21. K. I. Zhou and T. Pan, Structures of the m(6) A methyltransferase complex: Two subunits with distinct but coordinated roles, Mol. Cell 63(2) (2016) 183–185; https://doi:10.1016/j.molcel.2016.07.005
  22. H. Zhou, K. Yin, Y. Zhang, J. Tian and S. Wang, The RNA m6A writer METTL14 in cancers: Roles, structures, and applications, Biochim. Biophys. Acta. Rev. Cancer 1876(2) (2021) Article ID 188609; https://doi.org/10.1016/j.bbcan.2021.188609
  23. Z. Chen, X. Zhong, M. Xia and J. Zhong, The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases, Mol. Ther. Nucleic Acids 26(9) (2021) 1270–1279; https://doi.org/10.1016/J.OMTN.2021.10.023
  24. S. Li, F. Jiang, F. Chen, Y. Deng and X. Pan, Effect of m6A methyltransferase METTL3-mediated MALAT1/E2F1/AGR2 axis on adriamycin resistance in breast cancer, J. Biochem. Mol. Toxicol. 36 (2022) Article ID e22922 (12 pages); https://doi.org/10.1002/jbt.22922
  25. H. Chen, Y. Yu, M. Yang, H. Huang, S. Ma, J. Hu, Z. Xi, H. Guo, G. Yao, L. Yang, X. Huang, F. Zhang, G. Tan, H. Wu, W. Zheng and L. Li, YTHDF1 promotes breast cancer progression by facilitating FOXM1 translation in an m6A-dependent manner, Cell Biosci. 12(1) (2022) Article ID 19 (16 pages); https://doi.org/10.1186/S13578-022-00759-w
  26. J.-H. Li, S. Liu, H. Zhou, L.-H. Qu and J. H. Yang, Starbase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data, Nucleic Acids Res. 42(D1) (2014) D92-D97; https://doi.org/10.1093/nar/gkt1248
  27. D. S. Chandrashekar, S. K. Karthikeyan, P. K. Korla, H. Patel, A. R. Shovon, M Athar, G. J. Netto, Z. S. Qin, S. Kumar, U. Manne, C. J. Creighton and S. Varambally, UALCAN: An update to the integrated cancer data analysis platform, Neoplasia 25 (2022) 18–27; https://doi.org/10.1016/j.neo.2022.01.001
  28. D. S. Chandrashekar, B. Bashel, S. A. H. Balasubramanya, C. J. Creighton, I. Ponce-Rodriguez, V. S. K. Chakravarthi and S. Varambally. UALCAN: A Portal for facilitating tumor subgroup gene expression and survival analyses, Neoplasia 19(8) (2017) 649–658; https://doi.org/10.1016/j.neo.2017.05.002
  29. Y. Zhou, P. Zeng, Y. H. Li, Z. Zhang and Q. Cui, SRAMP: Prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features, Nucleic Acids Res. 44(10) (2016) Article ID e91; https://doi.org/10.1093/nar/gkw104
  30. R. Fan, C. Cui, B. Kang, Z. Chang, G. Wang and Q. Cui, A combined deep learning framework for mammalian m6A site prediction, Cell Genomic 4(12) (2024) Article ID 100697 (13 pages); https://doi.org/10.1016/j.xgen.2024.100697
  31. Z. Tang, C. Li, B. Kang, G. Gao, C. Li and Z. Zhang, GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses, Nucleic Acids Res. 45(W1) (2017) W98-W102; https://doi.org/10.1093/nar/gkx247
  32. The Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma, Nature 541(7636) (2017) 169–175; https://doi.org/10.1038/nature20805
  33. K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods 25(4) (2001) 402–408; https://doi.org/10.1006/meth.2001.1262
  34. J. Ye, G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen and T. L. Madden, Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction, BMC Bioinformatics 13 (2012) Article 134 (11 pages); https://doi.org/10.1186/1471-2105-13-134
  35. C. A. Schneider, W. S. Rasband and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods 9(7) (2012) 671–675; https://doi.org/10.1038/nmeth.2089
  36. J. Cai, Z. Chen, J. Wang, X. Chen, L. Liang, M. Huang, Z. Zhang and X. Zuo, circHECTD1 facilitates glutaminolysis to promote gastric cancer progression by targeting miR-1256 and activating β-catenin/c-Myc signaling, Cell Death Dis. 10(8) (2019) Article ID 576 (15 pages); https://doi.org/10.1038/s41419-019-1814-8
  37. X.-Y. Chen, J. Zhang and J.-S. Zhu, The role of m6A RNA methylation in human cancer, Mol. Cancer 18(1) (2019) Article ID 103 (9 pages); https://doi.org/10.1186/s12943-019-1033-z
  38. C. Zhang, J.-H. Liu, H. Guo, D. Hong, J. Ji, Q. Zhang, Q. Guan and Q. Ren, m6A RNA methylation regulators were associated with the malignancy and prognosis of ovarian cancer, Bioengineered 12(1) (2021) 3159–3176; https://doi.org/10.1080/21655979.2021.1946305
  39. L. Xue, J. Li, Y. Lin, D. Liu, Q. Yang, J. Jian and J. Peng, m6A transferase METTL3-induced lncRNA ABHD11-AS1 promotes the Warburg effect of non-small-cell lung cancer, J. Cell Physiol. 236(4) (2012) 2649–2658; https://doi.org/10.1002/jcp.30023
  40. L. Liu, J.-F. Yuan and Y.-Z. Wang, METTL3-stabilized lncRNA SNHG7 accelerates glycolysis in prostate cancer via SRSF1/c-Myc axis, Exp. Cell Res. 416(1) (2022) Article ID 113149; https://doi.org/10.1016/j.yexcr.2022.113149
  41. R. Anita, A. Paramasivam, J. V. Priyadharsini and S. Chitra, The m6A readers YTHDF1 and YTHDF3 aberrations associated with metastasis and predict poor prognosis in breast cancer patients, Am. J. Cancer Res. 10(8) (2020) 2546–2554.
  42. C. Zhang, S. Huang, H. Zhuang, S. Ruan, Z. Zhou, K. Huang, F. Ji, Z. Ma, B. Hou and X. He, YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation, Oncogene 39(23) (2020) 4507–4518; https://doi.org/10.1038/s41388-020-1303-7
DOI: https://doi.org/10.2478/acph-2025-0009 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 69 - 86
Accepted on: Mar 19, 2025
Published on: Apr 10, 2025
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Zijin Wang, Xing Chen Liu, Zhen Gya Gao, Wo Da Shi, Wen Cai Wang, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.