References
- K. Liu, T. Zhao, J. Wang, Y. Chen, R. Zhang, X. Lan and J. Que, Etiology, cancer stem cells and potential diagnostic biomarkers for esophageal cancer, Cancer Lett. 458(28) (2019) 21–28; https://doi.org/10.1016/j.canlet.2019.05.018
- Y. Baba, D. Nomoto, K. Okadome, T. Ishimoto, M. Iwatsuki, Y. Miyamoto, N. Yoshida and H. Baba, Tumor immune microenvironment and immune checkpoint inhibitors in esophageal squamous cell carcinoma, Cancer Sci. 111(9) (2020) 3132–3141; https://doi.org/10.1111/cas.14541
- K. Harada, J. E. Rogers, M. Iwatsuki, K. Yamashita, H. Baba and J. A. Ajani, Recent advances in treating oesophageal cancer, F1000. Res. 10(1) (2020) 1180–11891; https://doi.org/10.12688/f1000research.22926.1
- T. M. Godefa, S. Derks and V. L. J. L. Thijssen, Galectins in esophageal cancer: Current knowledge and future perspectives, Cancers (Basel) 14(23) (2022) Article ID 5790; https://doi.org/10.3390/cancers14235790
- P. Thuss-Patience and S. Stein, Immunotherapy in squamous cell cancer of the esophagus, Curr. Oncol. 29(4) (2022) 2461–2471; https://doi.org/10.3390/curroncol29040200
- K. Kato, Y. Ito, I. Nozaki, H. Daiko, T. Kojima, M. Yano, M. Ueno, S. Nakagawa, M. Takagi, S. Tsunoda, T. Abe, T. Nakamura, M. Okada, Y. Toh, Y. Shibuya, S. Yamamoto, H. Katayama, K. Nakamura and Y. Kitagawa, Japan Esophageal Oncology Group of the Japan Clinical Oncology Group, Parallel-group controlled trial of surgery versus chemoradiotherapy in patients with stage I esophageal squamous cell carcinoma, Gastroenterology 161(6) (2021) 1878–1886; https://doi.org/10.1053/j.gastro.2021.08.007
- R. Li, L. Zeng, H. Zhao, J. Deng, L. Pan, S. Zhang, G. Wu, Y. Ye, J. Zhang, J. Su, Y. Zheng, S. Deng, R. Bai, L. Zhuang, M. Li, Z. Zuo, D. Lin, J. Zheng and X. Huang, ATXN2-mediated translation of TNFR1 promotes esophageal squamous cell carcinoma via m6A-dependent manner, Mol. Ther. 30(3) (2022) 1089–1103; https://doi.org/10.1016/J.YMTHE.2022.01.006
- J. Xu, W. Cao, A. Shao, M. Yang, V. Andoh, Q. Ge, H. W. Pan and K. P. Chen, Metabolomics of esophageal squamous cell carcinoma tissues: Potential biomarkers for diagnosis and promising targets for therapy, Biomed. Res. Int. 23 (2022) Article ID 7819235 (24 pages); https://doi.org/10.1155/2022/7819235
- J. Venkatesh, M. D. Wasson, J. M. Brown, W. Fernando and P. Marcato, LncRNA-miRNA axes in breast cancer: Novel points of interaction for strategic attack, Cancer Lett. 509(1) (2021) 81–88; https://doi.org/10.1016/j.canlet.2021.04.002
- Y. Chi, D. Wang, J. Wang, W. Yu and J. Yang, Long non-coding RNA in the pathogenesis of cancers, Cells 8(9) (2021) 1015; https://doi.org/10.3390/cells8091015
- Y. Lan, B. Liu and H. Guo, The role of M6A modification in the regulation of tumor-related lncRNAs, Mol. Ther. Nucleic Acids 24 (2021) 768–779; https://doi.org/10.1016/j.omtn.2021.04.002
- L. Chen, C. H. Qiu, Y. Chen, Y. Wang, J. J. Zhao and M. Zhang, LncRNA SNHG16 drives proliferation, migration, and invasion of lung cancer cell through modulation of miR-520/VEGF axis, Eur. Rev. Med. Pharmacol. 24(18) (2020) 9522–9531; https://doi.org/10.26355/eurrev_202009_23037
- X. Chen, Y. Liu, D. Sun, R. Sun, X. Wang, M. Li, N. Song, J. Ying, T. Guo and Y. Jiang, Long noncoding RNA lnc-H2AFV-1 promotes cell growth by regulating aberrant m6A RNA modification in head and neck squamous cell carcinoma, Cancer Sci. 113(6) (2022) 2071–2084; https://doi.org/10.1111/CAS.15366
- B. Xiu, Y. Chi, L. Liu, W. Chi, Q. Zhang, J. Chen, R. Guo, J. Si, L. Li, J. Xue, Z. M. Shao, Z. H. Wu, S. Huang and J. Wu, LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription, Mol. Cancer 18(1) (2019) Article ID 187 (20 pages); https://doi.org/10.1186/s12943-019-1115-y
- W. Xue, Z. Shen, L. Li, Y. Zheng, D. Yan, Q. Kan and J. Zhao, Long non-coding RNAs MACC1-AS1 and FOXD2-AS1 mediate NSD2-induced cisplatin resistance in esophageal squamous cell carcinoma, Mol. Ther. Nucleic Acids 10(23) (2020) 592–602; https://doi.org/10.1016/j.omtn.2020.12.007
- H. Liu, J. Zhang, X. Luo, M. Zeng, L. Xu, Q. Zhang, H. Liu, J. Guo and L. Xu, Overexpression of the long noncoding RNA FOXD2-AS1 promotes cisplatin resistance in esophageal squamous cell carcinoma through the miR-195/Akt/mTOR axis, Oncol. Res. 28(1) (2020) 65–73; https://doi.org/10.3727/096504019X15656904013079
- W. Shi, Z. Gao, J. Song and W. Wang, Silence of FOXD2-AS1 inhibited the proliferation and invasion of esophagus cells by regulating miR-145-5p/CDK6 axis, Histol. Histopathol. 35(9) (2020) 1013–1021; https://doi.org/10.14670/HH-18-232
- T. Sun, R. Wu and L. Ming, The role of m6A RNA methylation in cancer, Biomed. Pharmacother. 4(112) (2019) Article ID 108613 (9 pages); https://doi.org/10.1016/j.biopha.2019.108613
- S. Ma, C. Chen, X. Ji, J. Liu, Q. Zhou, G. Wang, W. Yuan, Q. Kan and Z. Sun, The interplay between m6A RNA methylation and noncoding RNA in cancer, J. Hematol. Oncol. 12(1) (2019) Article ID 121 (15 pages); https://doi.org/10.1186/s13045-019-0805-7
- L. Rowe and A. L. Rockwell, Ubiquitous knockdown of Mettl3 using TRiP.GL01126 results in spermatid mislocalization during Drosophila spermatogenesis, MicroPubl. Biol. l7(18) (2022) 17912–17918; https://doi.org/10.17912/micropub.biology.000511
- K. I. Zhou and T. Pan, Structures of the m(6) A methyltransferase complex: Two subunits with distinct but coordinated roles, Mol. Cell 63(2) (2016) 183–185; https://doi:10.1016/j.molcel.2016.07.005
- H. Zhou, K. Yin, Y. Zhang, J. Tian and S. Wang, The RNA m6A writer METTL14 in cancers: Roles, structures, and applications, Biochim. Biophys. Acta. Rev. Cancer 1876(2) (2021) Article ID 188609; https://doi.org/10.1016/j.bbcan.2021.188609
- Z. Chen, X. Zhong, M. Xia and J. Zhong, The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases, Mol. Ther. Nucleic Acids 26(9) (2021) 1270–1279; https://doi.org/10.1016/J.OMTN.2021.10.023
- S. Li, F. Jiang, F. Chen, Y. Deng and X. Pan, Effect of m6A methyltransferase METTL3-mediated MALAT1/E2F1/AGR2 axis on adriamycin resistance in breast cancer, J. Biochem. Mol. Toxicol. 36 (2022) Article ID e22922 (12 pages); https://doi.org/10.1002/jbt.22922
- H. Chen, Y. Yu, M. Yang, H. Huang, S. Ma, J. Hu, Z. Xi, H. Guo, G. Yao, L. Yang, X. Huang, F. Zhang, G. Tan, H. Wu, W. Zheng and L. Li, YTHDF1 promotes breast cancer progression by facilitating FOXM1 translation in an m6A-dependent manner, Cell Biosci. 12(1) (2022) Article ID 19 (16 pages); https://doi.org/10.1186/S13578-022-00759-w
- J.-H. Li, S. Liu, H. Zhou, L.-H. Qu and J. H. Yang, Starbase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data, Nucleic Acids Res. 42(D1) (2014) D92-D97; https://doi.org/10.1093/nar/gkt1248
- D. S. Chandrashekar, S. K. Karthikeyan, P. K. Korla, H. Patel, A. R. Shovon, M Athar, G. J. Netto, Z. S. Qin, S. Kumar, U. Manne, C. J. Creighton and S. Varambally, UALCAN: An update to the integrated cancer data analysis platform, Neoplasia 25 (2022) 18–27; https://doi.org/10.1016/j.neo.2022.01.001
- D. S. Chandrashekar, B. Bashel, S. A. H. Balasubramanya, C. J. Creighton, I. Ponce-Rodriguez, V. S. K. Chakravarthi and S. Varambally. UALCAN: A Portal for facilitating tumor subgroup gene expression and survival analyses, Neoplasia 19(8) (2017) 649–658; https://doi.org/10.1016/j.neo.2017.05.002
- Y. Zhou, P. Zeng, Y. H. Li, Z. Zhang and Q. Cui, SRAMP: Prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features, Nucleic Acids Res. 44(10) (2016) Article ID e91; https://doi.org/10.1093/nar/gkw104
- R. Fan, C. Cui, B. Kang, Z. Chang, G. Wang and Q. Cui, A combined deep learning framework for mammalian m6A site prediction, Cell Genomic 4(12) (2024) Article ID 100697 (13 pages); https://doi.org/10.1016/j.xgen.2024.100697
- Z. Tang, C. Li, B. Kang, G. Gao, C. Li and Z. Zhang, GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses, Nucleic Acids Res. 45(W1) (2017) W98-W102; https://doi.org/10.1093/nar/gkx247
- The Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma, Nature 541(7636) (2017) 169–175; https://doi.org/10.1038/nature20805
- K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods 25(4) (2001) 402–408; https://doi.org/10.1006/meth.2001.1262
- J. Ye, G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen and T. L. Madden, Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction, BMC Bioinformatics 13 (2012) Article 134 (11 pages); https://doi.org/10.1186/1471-2105-13-134
- C. A. Schneider, W. S. Rasband and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods 9(7) (2012) 671–675; https://doi.org/10.1038/nmeth.2089
- J. Cai, Z. Chen, J. Wang, X. Chen, L. Liang, M. Huang, Z. Zhang and X. Zuo, circHECTD1 facilitates glutaminolysis to promote gastric cancer progression by targeting miR-1256 and activating β-catenin/c-Myc signaling, Cell Death Dis. 10(8) (2019) Article ID 576 (15 pages); https://doi.org/10.1038/s41419-019-1814-8
- X.-Y. Chen, J. Zhang and J.-S. Zhu, The role of m6A RNA methylation in human cancer, Mol. Cancer 18(1) (2019) Article ID 103 (9 pages); https://doi.org/10.1186/s12943-019-1033-z
- C. Zhang, J.-H. Liu, H. Guo, D. Hong, J. Ji, Q. Zhang, Q. Guan and Q. Ren, m6A RNA methylation regulators were associated with the malignancy and prognosis of ovarian cancer, Bioengineered 12(1) (2021) 3159–3176; https://doi.org/10.1080/21655979.2021.1946305
- L. Xue, J. Li, Y. Lin, D. Liu, Q. Yang, J. Jian and J. Peng, m6A transferase METTL3-induced lncRNA ABHD11-AS1 promotes the Warburg effect of non-small-cell lung cancer, J. Cell Physiol. 236(4) (2012) 2649–2658; https://doi.org/10.1002/jcp.30023
- L. Liu, J.-F. Yuan and Y.-Z. Wang, METTL3-stabilized lncRNA SNHG7 accelerates glycolysis in prostate cancer via SRSF1/c-Myc axis, Exp. Cell Res. 416(1) (2022) Article ID 113149; https://doi.org/10.1016/j.yexcr.2022.113149
- R. Anita, A. Paramasivam, J. V. Priyadharsini and S. Chitra, The m6A readers YTHDF1 and YTHDF3 aberrations associated with metastasis and predict poor prognosis in breast cancer patients, Am. J. Cancer Res. 10(8) (2020) 2546–2554.
- C. Zhang, S. Huang, H. Zhuang, S. Ruan, Z. Zhou, K. Huang, F. Ji, Z. Ma, B. Hou and X. He, YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation, Oncogene 39(23) (2020) 4507–4518; https://doi.org/10.1038/s41388-020-1303-7