K. Liu, T. Zhao, J. Wang, Y. Chen, R. Zhang, X. Lan and J. Que, Etiology, cancer stem cells and potential diagnostic biomarkers for esophageal cancer, Cancer Lett.458(28) (2019) 21–28; https://doi.org/10.1016/j.canlet.2019.05.018
Y. Baba, D. Nomoto, K. Okadome, T. Ishimoto, M. Iwatsuki, Y. Miyamoto, N. Yoshida and H. Baba, Tumor immune microenvironment and immune checkpoint inhibitors in esophageal squamous cell carcinoma, Cancer Sci.111(9) (2020) 3132–3141; https://doi.org/10.1111/cas.14541
K. Harada, J. E. Rogers, M. Iwatsuki, K. Yamashita, H. Baba and J. A. Ajani, Recent advances in treating oesophageal cancer, F1000. Res.10(1) (2020) 1180–11891; https://doi.org/10.12688/f1000research.22926.1
T. M. Godefa, S. Derks and V. L. J. L. Thijssen, Galectins in esophageal cancer: Current knowledge and future perspectives, Cancers (Basel) 14(23) (2022) Article ID 5790; https://doi.org/10.3390/cancers14235790
P. Thuss-Patience and S. Stein, Immunotherapy in squamous cell cancer of the esophagus, Curr. Oncol. 29(4) (2022) 2461–2471; https://doi.org/10.3390/curroncol29040200
K. Kato, Y. Ito, I. Nozaki, H. Daiko, T. Kojima, M. Yano, M. Ueno, S. Nakagawa, M. Takagi, S. Tsunoda, T. Abe, T. Nakamura, M. Okada, Y. Toh, Y. Shibuya, S. Yamamoto, H. Katayama, K. Nakamura and Y. Kitagawa, Japan Esophageal Oncology Group of the Japan Clinical Oncology Group, Parallel-group controlled trial of surgery versus chemoradiotherapy in patients with stage I esophageal squamous cell carcinoma, Gastroenterology161(6) (2021) 1878–1886; https://doi.org/10.1053/j.gastro.2021.08.007
R. Li, L. Zeng, H. Zhao, J. Deng, L. Pan, S. Zhang, G. Wu, Y. Ye, J. Zhang, J. Su, Y. Zheng, S. Deng, R. Bai, L. Zhuang, M. Li, Z. Zuo, D. Lin, J. Zheng and X. Huang, ATXN2-mediated translation of TNFR1 promotes esophageal squamous cell carcinoma via m6A-dependent manner, Mol. Ther.30(3) (2022) 1089–1103; https://doi.org/10.1016/J.YMTHE.2022.01.006
J. Xu, W. Cao, A. Shao, M. Yang, V. Andoh, Q. Ge, H. W. Pan and K. P. Chen, Metabolomics of esophageal squamous cell carcinoma tissues: Potential biomarkers for diagnosis and promising targets for therapy, Biomed. Res. Int.23 (2022) Article ID 7819235 (24 pages); https://doi.org/10.1155/2022/7819235
J. Venkatesh, M. D. Wasson, J. M. Brown, W. Fernando and P. Marcato, LncRNA-miRNA axes in breast cancer: Novel points of interaction for strategic attack, Cancer Lett.509(1) (2021) 81–88; https://doi.org/10.1016/j.canlet.2021.04.002
Y. Chi, D. Wang, J. Wang, W. Yu and J. Yang, Long non-coding RNA in the pathogenesis of cancers, Cells8(9) (2021) 1015; https://doi.org/10.3390/cells8091015
Y. Lan, B. Liu and H. Guo, The role of M6A modification in the regulation of tumor-related lncRNAs, Mol. Ther. Nucleic Acids24 (2021) 768–779; https://doi.org/10.1016/j.omtn.2021.04.002
L. Chen, C. H. Qiu, Y. Chen, Y. Wang, J. J. Zhao and M. Zhang, LncRNA SNHG16 drives proliferation, migration, and invasion of lung cancer cell through modulation of miR-520/VEGF axis, Eur. Rev. Med. Pharmacol.24(18) (2020) 9522–9531; https://doi.org/10.26355/eurrev_202009_23037
X. Chen, Y. Liu, D. Sun, R. Sun, X. Wang, M. Li, N. Song, J. Ying, T. Guo and Y. Jiang, Long noncoding RNA lnc-H2AFV-1 promotes cell growth by regulating aberrant m6A RNA modification in head and neck squamous cell carcinoma, Cancer Sci.113(6) (2022) 2071–2084; https://doi.org/10.1111/CAS.15366
B. Xiu, Y. Chi, L. Liu, W. Chi, Q. Zhang, J. Chen, R. Guo, J. Si, L. Li, J. Xue, Z. M. Shao, Z. H. Wu, S. Huang and J. Wu, LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription, Mol. Cancer18(1) (2019) Article ID 187 (20 pages); https://doi.org/10.1186/s12943-019-1115-y
W. Xue, Z. Shen, L. Li, Y. Zheng, D. Yan, Q. Kan and J. Zhao, Long non-coding RNAs MACC1-AS1 and FOXD2-AS1 mediate NSD2-induced cisplatin resistance in esophageal squamous cell carcinoma, Mol. Ther. Nucleic Acids10(23) (2020) 592–602; https://doi.org/10.1016/j.omtn.2020.12.007
H. Liu, J. Zhang, X. Luo, M. Zeng, L. Xu, Q. Zhang, H. Liu, J. Guo and L. Xu, Overexpression of the long noncoding RNA FOXD2-AS1 promotes cisplatin resistance in esophageal squamous cell carcinoma through the miR-195/Akt/mTOR axis, Oncol. Res.28(1) (2020) 65–73; https://doi.org/10.3727/096504019X15656904013079
W. Shi, Z. Gao, J. Song and W. Wang, Silence of FOXD2-AS1 inhibited the proliferation and invasion of esophagus cells by regulating miR-145-5p/CDK6 axis, Histol. Histopathol.35(9) (2020) 1013–1021; https://doi.org/10.14670/HH-18-232
T. Sun, R. Wu and L. Ming, The role of m6A RNA methylation in cancer, Biomed. Pharmacother.4(112) (2019) Article ID 108613 (9 pages); https://doi.org/10.1016/j.biopha.2019.108613
S. Ma, C. Chen, X. Ji, J. Liu, Q. Zhou, G. Wang, W. Yuan, Q. Kan and Z. Sun, The interplay between m6A RNA methylation and noncoding RNA in cancer, J. Hematol. Oncol. 12(1) (2019) Article ID 121 (15 pages); https://doi.org/10.1186/s13045-019-0805-7
L. Rowe and A. L. Rockwell, Ubiquitous knockdown of Mettl3 using TRiP.GL01126 results in spermatid mislocalization during Drosophila spermatogenesis, MicroPubl. Biol.l7(18) (2022) 17912–17918; https://doi.org/10.17912/micropub.biology.000511
K. I. Zhou and T. Pan, Structures of the m(6) A methyltransferase complex: Two subunits with distinct but coordinated roles, Mol. Cell63(2) (2016) 183–185; https://doi:10.1016/j.molcel.2016.07.005
H. Zhou, K. Yin, Y. Zhang, J. Tian and S. Wang, The RNA m6A writer METTL14 in cancers: Roles, structures, and applications, Biochim. Biophys. Acta. Rev. Cancer1876(2) (2021) Article ID 188609; https://doi.org/10.1016/j.bbcan.2021.188609
Z. Chen, X. Zhong, M. Xia and J. Zhong, The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases, Mol. Ther. Nucleic Acids26(9) (2021) 1270–1279; https://doi.org/10.1016/J.OMTN.2021.10.023
S. Li, F. Jiang, F. Chen, Y. Deng and X. Pan, Effect of m6A methyltransferase METTL3-mediated MALAT1/E2F1/AGR2 axis on adriamycin resistance in breast cancer, J. Biochem. Mol. Toxicol.36 (2022) Article ID e22922 (12 pages); https://doi.org/10.1002/jbt.22922
H. Chen, Y. Yu, M. Yang, H. Huang, S. Ma, J. Hu, Z. Xi, H. Guo, G. Yao, L. Yang, X. Huang, F. Zhang, G. Tan, H. Wu, W. Zheng and L. Li, YTHDF1 promotes breast cancer progression by facilitating FOXM1 translation in an m6A-dependent manner, Cell Biosci.12(1) (2022) Article ID 19 (16 pages); https://doi.org/10.1186/S13578-022-00759-w
J.-H. Li, S. Liu, H. Zhou, L.-H. Qu and J. H. Yang, Starbase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data, Nucleic Acids Res.42(D1) (2014) D92-D97; https://doi.org/10.1093/nar/gkt1248
D. S. Chandrashekar, S. K. Karthikeyan, P. K. Korla, H. Patel, A. R. Shovon, M Athar, G. J. Netto, Z. S. Qin, S. Kumar, U. Manne, C. J. Creighton and S. Varambally, UALCAN: An update to the integrated cancer data analysis platform, Neoplasia25 (2022) 18–27; https://doi.org/10.1016/j.neo.2022.01.001
D. S. Chandrashekar, B. Bashel, S. A. H. Balasubramanya, C. J. Creighton, I. Ponce-Rodriguez, V. S. K. Chakravarthi and S. Varambally. UALCAN: A Portal for facilitating tumor subgroup gene expression and survival analyses, Neoplasia19(8) (2017) 649–658; https://doi.org/10.1016/j.neo.2017.05.002
Y. Zhou, P. Zeng, Y. H. Li, Z. Zhang and Q. Cui, SRAMP: Prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features, Nucleic Acids Res.44(10) (2016) Article ID e91; https://doi.org/10.1093/nar/gkw104
R. Fan, C. Cui, B. Kang, Z. Chang, G. Wang and Q. Cui, A combined deep learning framework for mammalian m6A site prediction, Cell Genomic4(12) (2024) Article ID 100697 (13 pages); https://doi.org/10.1016/j.xgen.2024.100697
Z. Tang, C. Li, B. Kang, G. Gao, C. Li and Z. Zhang, GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses, Nucleic Acids Res.45(W1) (2017) W98-W102; https://doi.org/10.1093/nar/gkx247
The Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma, Nature541(7636) (2017) 169–175; https://doi.org/10.1038/nature20805
K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods25(4) (2001) 402–408; https://doi.org/10.1006/meth.2001.1262
J. Ye, G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen and T. L. Madden, Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction, BMC Bioinformatics13 (2012) Article 134 (11 pages); https://doi.org/10.1186/1471-2105-13-134
C. A. Schneider, W. S. Rasband and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods9(7) (2012) 671–675; https://doi.org/10.1038/nmeth.2089
J. Cai, Z. Chen, J. Wang, X. Chen, L. Liang, M. Huang, Z. Zhang and X. Zuo, circHECTD1 facilitates glutaminolysis to promote gastric cancer progression by targeting miR-1256 and activating β-catenin/c-Myc signaling, Cell Death Dis.10(8) (2019) Article ID 576 (15 pages); https://doi.org/10.1038/s41419-019-1814-8
X.-Y. Chen, J. Zhang and J.-S. Zhu, The role of m6A RNA methylation in human cancer, Mol. Cancer18(1) (2019) Article ID 103 (9 pages); https://doi.org/10.1186/s12943-019-1033-z
C. Zhang, J.-H. Liu, H. Guo, D. Hong, J. Ji, Q. Zhang, Q. Guan and Q. Ren, m6A RNA methylation regulators were associated with the malignancy and prognosis of ovarian cancer, Bioengineered12(1) (2021) 3159–3176; https://doi.org/10.1080/21655979.2021.1946305
L. Xue, J. Li, Y. Lin, D. Liu, Q. Yang, J. Jian and J. Peng, m6A transferase METTL3-induced lncRNA ABHD11-AS1 promotes the Warburg effect of non-small-cell lung cancer, J. Cell Physiol.236(4) (2012) 2649–2658; https://doi.org/10.1002/jcp.30023
L. Liu, J.-F. Yuan and Y.-Z. Wang, METTL3-stabilized lncRNA SNHG7 accelerates glycolysis in prostate cancer via SRSF1/c-Myc axis, Exp. Cell Res.416(1) (2022) Article ID 113149; https://doi.org/10.1016/j.yexcr.2022.113149
R. Anita, A. Paramasivam, J. V. Priyadharsini and S. Chitra, The m6A readers YTHDF1 and YTHDF3 aberrations associated with metastasis and predict poor prognosis in breast cancer patients, Am. J. Cancer Res.10(8) (2020) 2546–2554.
C. Zhang, S. Huang, H. Zhuang, S. Ruan, Z. Zhou, K. Huang, F. Ji, Z. Ma, B. Hou and X. He, YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation, Oncogene39(23) (2020) 4507–4518; https://doi.org/10.1038/s41388-020-1303-7