Have a personal or library account? Click to login

References

  1. J. M. Al-Khayri, G. R. Sahana, P. Nagella, B. V. Joseph, F. M. Alessa and M. Q. Al-Mssallem, Flavonoids as potential anti-inflammatory molecules: A review, Molecules 27(9) (2022) Article ID 2901 (24 pages); https://doi.org/10.3390/molecules27092901
  2. L. F. de Melo Alcantara, P. T. da Silva, Q. M. De Oliveira, T. G. Dos Santos Souza, M. M. da Silva, G. S. Feitoza, W. K. Costa, M. A. da Conceição de Lira, C. A. Chagas, F. C. A. de Aguiar Júnior, M. T. Dos Santos Correia and M. V. da Silva, Toxicological safety, antioxidant activity and phyto-chemical characterization of leaf and bark aqueous extracts of Commiphora leptophloeos (Mart.) J.B. Gillett, J. Toxicol. Environ. Health A 86(16) (2023) 557−574; https://doi.org/10.1080/15287394.2023.2224827
  3. P. M. P. Ferreira, D. D. R. Arcanjo and A. P. Peron, Drug development, Brazilian biodiversity and political choices: Where are we heading?, J. Toxicol. Environ. Health B 26(5) (2023) 257−274; https://doi.org/10.1080/10937404.2023.2193762
  4. M. Gorzynik-Debicka, P. Przychodzen, F. Cappello, A. Kuban-Jankowska, A. Marino Gammazza, N. Knap, M. Wozniak and M. Gorska-Ponikowska, Potential health benefits of olive oil and plant polyphenols, Int. J. Mol. Sci. 19(3) (2018) Article ID 686 (13 pages); https://doi.org/10.3390/ijms19030686
  5. F. S. Li and J. K. Weng, Demystifying traditional herbal medicine with modern approach, Nat. Plants 3 (2017) Article ID 17109 (17 pages); https://doi.org/10.1038/nplants.2017.109
  6. B. B. Petrovska, Historical review of medicinal plants’ usage, Pharmacogn. Rev. 6(11) (2012) 1−5; https://doi.org/10.4103%2F0973-7847.95849
  7. D. J. Newman and G. M. Cragg, Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019, J. Nat. Prod. 83(3) (2020) 770−803; https://doi.org/10.1021/acs.jnatprod.9b01285
  8. M. Zhang, M. Moalin aand G. R. M. M. Haenen, Connecting West and East, Int. J. Mol. Sci. 20(9) (2019) Article ID 2333 (5 pages); https://doi.org/10.3390/ijms20092333
  9. M. A. Salem, L. Perez de Souza, A. Serag, A. R. Fernie, M. A. Farag, S. M. Ezzat and S. Alseekh, Metabolomics in the context of plant natural products research: From sample preparation to meta-bolite analysis, Metabolites 10(1) (2020) Article ID 37 (30 pages); https://doi.org/10.3390/meta-bo10010037
  10. M. DiBello, A. R. Healy, H. Nikolayevskiy, Z. Xu and S. B. Herzon, Structure elucidation of secondary metabolites: Current frontiers and lingering pitfalls, Acc. Chem. Res. 56(12) (2023) 1656−1668; https://doi.org/10.1021/acs.accounts.3c00183
  11. M. Fitzgerald, M. Heinrich and A. Booker, Medicinal plant analysis: A historical and regional discussion of emergent complex techniques, Front. Pharmacol. 10 (2020) Article ID 1480 (14 pages); https://doi.org/10.3389/fphar.2019.01480
  12. D. G. Cox, J. Oh, A. Keasling, K. L. Colson and M. T. Hamann, The utility of metabolomics in natural product and biomarker characterization, Biochim. Biophys. Acta 1840(12) (2014) 3460−3474; https://doi.org/10.1016/j.bbagen.2014.08.007
  13. L. Xu, F. Lao, Z. Xu, X. Wang, F. Chen, X. Liao, A. Chen and S. Yang, Use of liquid chromatography quadrupole time-of-flight mass spectrometry and metabolomic approach to discriminate coffee brewed by different methods, Food Chem. 286 (2019) 106−112; https://doi.org/10.1016/j.food-chem.2019.01.154
  14. G. S. de Jesus, D. Silva Trentin, T. F. Barros, A. M. T. Ferreira, B. C. de Barros, P. de Oliveira Figueiredo, F. Rodrigues Garcez, É. L. Dos Santos, A. C. Micheletti and N. C. Yoshida, Medicinal plant Miconia albicans synergizes with ampicillin and ciprofloxacin against multi-drug resistant Acinetobacter baumannii and Staphylococcus aureus, BMC Complement. Med. Ther. 23(1) (2023) Article ID 374 (18 pages); https://doi.org/10.1186/s12906-023-04147-w
  15. B. N. Moiketsi, K. P. P. Makale, G. Rantong, T. O. Rahube and A. Makhzoum, Potential of selected African medicinal plants as alternative therapeutics against multi-drug-resistant bacteria, Biomedicines 11(10) (2023) Article ID 2605 (30 pages); https://doi.org/10.3390/biomedicines11102605
  16. H. Yuan, Q. Ma, H. Cui, G. Liu, X. Zhao, W. Li and G. Piao, How can synergism of traditional medicines benefit from network pharmacology? Molecules 22(7) (2017) Article ID 1135 (19 pages); https://doi.org/10.3390/molecules22071135
  17. B. K. Singh, Y. Ramakrishna and S. V. Ngachan, Spiny coriander (Eryngium foetidum L.): A commonly used, neglected spicing-culinary herb of Mizoram, India, Genet Resour. Crop Evol. 61(6) 1085−1090; https://doi.org/10.1007/s10722-014-0130-5
  18. J. H. Paul, C. E. Seaforth and T. Tikasingh, Eryngium foetidum L.: A review, Fitoterapia 82(3) (2011) 302−308; https://doi.org/10.1016/j.fitote.2010.11.010
  19. T. L. M. Rodrigues, M. E. P. Silva, E. S. C. Gurgel, M. S. Oliveira and F. C. A. Lucas, Eryngium foetidum L. (Apiaceae): A literature review of traditional uses, chemical composition, and pharmacological activities, Evid. Based Complement. Alternat. Med. 2022 (2022) Article ID 2896895 (15 pages); https://doi.org/10.1155/2022/2896895
  20. M. D. García, M. T. Sáenz, M. A. Gómez and M. A. Fernández, Topical antiinflammatory activity of phytosterols isolated from Eryngium foetidum on chronic and acute inflammation models, Phytother. Res. 13(1) (1999) 78−80; https://doi.org/10.1002/(sici)1099-1573(199902)13:1%3C78::aidptr384%3E3.0.co;2-f
  21. D. D. S. T. C. Leitão, A. P. P. Barbosa-Carvalho, F. C. de Siqueira, R. P. E. Sousa, A. S. Lopes and R. C. Chisté, Extracts of Eryngium foetidum leaves from the Amazonia were efficient scavengers of ROS and RNS, Antioxidants 12(5) (2023) Article ID 1112 (13 pages); https://doi.org/10.3390/anti-ox12051112
  22. S. Singh, D. R. Singh, K. M. Salim, A. Srivastava, L. B. Singh and R. C. Srivastava, Estimation of proximate composition, micronutrients and phytochemical compounds in traditional vegetables from Andaman and Nicobar islands, Int. J. Food Sci. Nutr. 62(7) (2011) 765−773; https://doi.org/10.3109/09637486.2011.585961
  23. P. S. Thomas, E. E. Essien, S. J. Ntuk and M. I. Choudhary, Eryngium foetidum L. essential oils: Chemical composition and antioxidant capacity, Medicines (Basel) 4(2) (2017) Article ID 24 (7 pages); https://doi.org/10.3390/medicines4020024
  24. X. Zhang, J. Chen, S. Zhou and H. Zhao, Ethanol extract of Eryngium foetidum leaves induces mitochondrial associated apoptosis via ROS generation in human gastric cancer cells, Nutr. Cancer 74(8) (2022) 2996−3006; https://doi.org/10.1080/01635581.2022.2028864
  25. O. Hernández-Abreu, P. Castillo-España, I. León-Rivera, M. Ibarra-Barajas, R. Villalobos-Molina, J. González-Christen, J. Vergara-Galicia, S. Estrada-Soto, Antihypertensive and vasorelaxant effects of tilianin isolated from Agastache mexicana are mediated by NO/cGMP pathway and potassium channel opening, Biochem. Pharmacol. 78(1) (2009) 54−61; https://doi.org/10.1016/j.bcp.2009.03.016
  26. C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann and T. F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn. 203(3) (1995) 203−253; https://doi.org/10.1002/aja.1002030302
  27. B. V. Yesudhason, J. R. S. Selvan Christyraj, M. Ganesan, K. Subbiahanadar Chelladurai, S. Venkatachalam, A. Ramalingam, J. Benedict, V. D. Paulraj and J. D. Selvan Christyraj, Developmental stages of zebrafish (Danio rerio) embryos and toxicological studies using foldscope microscope, Cell. Biol. Int. 44(10) (2020) 1968−1980; https://doi.org/10.1002/cbin.11412
  28. Organization for Economic Co-operation and Development, Test No. 203: Fish, Acute Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, 2019; https://doi.org/10.1787/9789264069961-en; last access date November 29, 2024.
  29. Organization for Economic Co-operation and Development, ANNEX II: In Vitro Models – Detailed Description of Methods and Generated Data, Series on Testing and Assessment No. 325: ENV/JM/MONO(2020)21/ANN2; 24 September2020, 1−186; https://one.oecd.org/document/ENV/JM/MONO(2020)21/ANN2/en/pdf; last access date November 29, 2024
  30. R. von Hellfeld, K. Brotzmann, L. Baumann, R Strecker and T. Braunbeck, Adverse effects in the fish embryo acute toxicity (FET) test: a catalogue of unspecific morphological changes versus more specific effects in zebrafish (Danio rerio) embryos, Environ. Sci. Eur. 32 (2020) Article ID 122 (18 pages); https://enveurope.springeropen.com/articles/10.1186/s12302-020-00398-3
  31. S. Rodríguez-Morales, B. Ocampo-Medina, N. Romero-Ceronio, C. Alvarado-Sánchez, M. Á. Vilchis-Reyes, L. F. Roa de la Fuente, R. Ortiz-Andrade and O. Hernández-Abreu, Metabolic profiling of vasorelaxant extract from Malvaviscus arboreus by LC/QTOF-MS, Chem. Biodivers. 18(4) (2021) e2000820 (8 pages); https://doi.org/10.1002/cbdv.202000820
  32. D. D. Wang, J. Liang, W. Z. J. J. Yang, Hou, M. Yang, J. Da, Y. Wang, B. H. Jiang, X. Liu, W. Y. Wu and D. A. Guo, HPLC/qTOF-MS-oriented characteristic components data set and chemometric analysis for the holistic quality control of complex TCM preparations: Niuhuang Shangqing pill as an example, J. Pharm. Biomed. Anal. 89 (2014) 130−141; https://doi.org/10.1016/j.jpba.2013.10.042
  33. S. Murugesu, A. Khatib, Q. U. Ahmed, Z. Ibrahim, B. F. Uzir, K. Benchoula, N. I. N. Yusoff, V. Perumal, M. F. Alajmi, S. Salamah and H. R. El-Seedi, Toxicity study on Clinacanthus nutans leaf hexane fraction using Danio rerio embryos, Toxicol. Rep. 6 (2019) 1148−1154; https://doi.org/10.1016/j.toxrep.2019.10.020
  34. A. R. Abubakar and M. Haque, Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes, J. Pharm. Bioallied Sci. 12(1) (2020) 1−10; https://doi.org/10.4103%2Fjpbs.JPBS_175_19
  35. K. A. Horzmann and J. L. Freeman, Making waves: New developments in toxicology with the zebrafish, Toxicol. Sci. 163(1) (2018) 5−12; https://doi.org/10.1038/nrd4627
  36. C. A. MacRae and R. T. Peterson, Zebrafish as tools for drug discovery, Nat. Rev. Drug Discov. 14(10) (2015) 721−731; https://doi.org/10.1038/nrd4627
  37. D. C. H. Metzger and P. M. Schulte, Epigenomics in marine fishes, Mar. Genomics 30 (2016) 43−54; https://doi.org/10.1016/j.margen.2016.01.004
  38. K. N. Yamamoto, K. Hirota, K. Kono, S. Takeda, S. Sakamuru, M. Xia, R. Huang, C. P. Austin, K. L. Witt and R. R. Tice, Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines, Environ. Mol. Mutagen. 52(7) (2011) 547−561; https://doi.org/10.1002/em.20656
  39. A. S. Krishna Murthy, E. E. McConnell, J. E. Huff, A. B. Russfield and A. E. Good, Forestomach neoplasms in Fischer F344/N rats and B6C3F1 mice exposed to diglycidyl resorcinol ether – an epoxy resin, Food Chem. Toxicol. 28(10) (1990) 723−729; https://doi.org/10.1016/0278-6915(90)90149-h
  40. A. Serrà, E. Gómez, G. Calderó, J. Esquena, C. Solans and E. Vallés, Conductive microemulsions for template CoNi electrodeposition, Phys. Chem. Chem. Phys. 15(35) (2013) 14653−14659; https://doi.org/10.1039/C3CP52021H
  41. K. Takahashi, H. Sakano, N. Numata, S. Kuroda and N. Mizuno, Effect of fatty acid diesters on permeation of anti-inflammatory drugs through rat skin, Drug Dev. Ind. Pharm. 28(10) (2002) 1285−1294; https://doi.org/10.1081/ddc-120015362
  42. C. A. Bondi, J. L. Marks, L. B. Wroblewski, H. S. Raatikainen, S. R. Lenox and K. E. Gebhardt, Human and environmental toxicity of sodium lauryl sulfate (SLS): Evidence for safe use in household cleaning products, Environ. Health Insights 9 (2015) 27−32; https://doi.org/10.4137/ehi.s31765
  43. R. Freitas, S. Silvestro, F. Coppola, S. Costa, V. Meucci, F. Battaglia, L. Intorre, A. M. V. M. Soares, C. Pretti and C. Faggio, Toxic impacts induced by sodium lauryl sulfate in Mytilus galloprovincialis, Comp. Biochem. Physiol. A 242 (2020) Article ID 110656 (8 pages); https://doi.org/10.1016/j.cbpa.2020.110656
  44. H. Löffler and R. Happle, Profile of irritant patch testing with detergents: sodium lauryl sulfate, sodium laureth sulfate and alkyl polyglucoside, Contact Dermatitis 48(1) (2003) 26−32; https://doi.org/10.1034/j.1600-0536.2003.480105.x
  45. R. M. G. da Silva, V. M. de Oliveira Moraes, F. O. Granero, C. C. Malaguti Figueiredo, V. H. M. Dos Santos, L. P. Machado and L. Pereira Silva, Cytogenotoxicity evaluation of heavy metals detected in extracts and infusion of Baccharis trimera, potential bioaccumulator plant, J. Toxicol. Environ. Health A 87(3) (2024) 108−119; https://doi.org/10.1080/15287394.2023.2279120
  46. M. Kebert, S. Kostić, V. Vuksanović, A. Gavranović Markić, B. Kiprovski, M. Zorić and S. Orlović, Metal- and organ-specific response to heavy metal-induced stress mediated by antioxidant enzymes’ activities, polyamines, and plant hormones levels in Populus deltoids, Plants (Basel) 11(23) (2022) Article ID 3246 (23 pages); https://doi.org/10.3390/plants11233246
  47. S. Papazian and J. D. Blande, Dynamics of plant responses to combinations of air pollutants, Plant Biol. (Stuttgart) 22(1) (2020) 68−83; https://doi.org/10.1111/plb.12953
  48. M. Uchimiya, D. Bannon, H. Nakanishi, M. B. McBride, M. A. Williams and T. Yoshihara, Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils, J. Agric. Food Chem. 68(46) (2020) 12856−12869; https://doi.org/10.1021/acs.jafc.0c00183
  49. R. Kumar, N. Ivy, S. Bhattacharya, A. Dey and P. Sharma, Coupled effects of microplastics and heavy metals on plants: Uptake, bioaccumulation, and environmental health perspectives, Sci. Total Environ. 836 (2022) Article ID 155619 (1 page); https://doi.org/10.1016/j.scitotenv.2022.155619
  50. A. J. Pais-Costa, M. I. Sánchez, M. A. Taggart, A. J. Green, F. Hortas, P. A. Vinagre, J. C. Marques and M. Martinez-Haro, Trace element bioaccumulation in hypersaline ecosystems and implications of a global invasion, Sci. Total Environ. 800 (2021) Article ID 149349 (1 page); https://doi.org/10.1016/j.scitotenv.2021.149349
  51. T. F. D. Castro, W. F. Carneiro, T. F. Reichel, S. Lacerda, M. R. F. Machado, K. K. C. de Souza, L. V. Resende and L. D. S. Murgas, The toxicological effects of Eryngium foetidum extracts on zebrafish embryos and larvae depend on the type of extract, dose, and exposure time, Toxicol. Res. 11(5) (2004) 891−899; https://doi.org/10.1093/toxres/tfac067
  52. K. Janwitthayanuchit, P. Kupradinun, A. Rungsipipat, A. Kettawan and C. Butryee, A 24-weeks toxicity study of Eryngium foetidum Linn. leaves in mice, Toxicol. Res. 32(3) (2016) 231−237; https://doi.org/10.5487/tr.2016.32.3.231
DOI: https://doi.org/10.2478/acph-2025-0008 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 133 - 146
Accepted on: Mar 14, 2025
Published on: Apr 10, 2025
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Romario Vázquez-Cancino, Sergio Rodríguez-Morales, Nelly Del Carmen Jiménez-Pérez, Omar Aristeo Peña-Morán, Litzia Cerón-Romero, Irma Sánchez-Lombardo, Alam Yair-Hidalgo, Nancy Romero Ceronio, Cuauhtémoc Alvarado-Sánchez, Oswaldo Hernández-Abreu, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.