References
- J. M. Al-Khayri, G. R. Sahana, P. Nagella, B. V. Joseph, F. M. Alessa and M. Q. Al-Mssallem, Flavonoids as potential anti-inflammatory molecules: A review, Molecules 27(9) (2022) Article ID 2901 (24 pages); https://doi.org/10.3390/molecules27092901
- L. F. de Melo Alcantara, P. T. da Silva, Q. M. De Oliveira, T. G. Dos Santos Souza, M. M. da Silva, G. S. Feitoza, W. K. Costa, M. A. da Conceição de Lira, C. A. Chagas, F. C. A. de Aguiar Júnior, M. T. Dos Santos Correia and M. V. da Silva, Toxicological safety, antioxidant activity and phyto-chemical characterization of leaf and bark aqueous extracts of Commiphora leptophloeos (Mart.) J.B. Gillett, J. Toxicol. Environ. Health A 86(16) (2023) 557−574; https://doi.org/10.1080/15287394.2023.2224827
- P. M. P. Ferreira, D. D. R. Arcanjo and A. P. Peron, Drug development, Brazilian biodiversity and political choices: Where are we heading?, J. Toxicol. Environ. Health B 26(5) (2023) 257−274; https://doi.org/10.1080/10937404.2023.2193762
- M. Gorzynik-Debicka, P. Przychodzen, F. Cappello, A. Kuban-Jankowska, A. Marino Gammazza, N. Knap, M. Wozniak and M. Gorska-Ponikowska, Potential health benefits of olive oil and plant polyphenols, Int. J. Mol. Sci. 19(3) (2018) Article ID 686 (13 pages); https://doi.org/10.3390/ijms19030686
- F. S. Li and J. K. Weng, Demystifying traditional herbal medicine with modern approach, Nat. Plants 3 (2017) Article ID 17109 (17 pages); https://doi.org/10.1038/nplants.2017.109
- B. B. Petrovska, Historical review of medicinal plants’ usage, Pharmacogn. Rev. 6(11) (2012) 1−5; https://doi.org/10.4103%2F0973-7847.95849
- D. J. Newman and G. M. Cragg, Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019, J. Nat. Prod. 83(3) (2020) 770−803; https://doi.org/10.1021/acs.jnatprod.9b01285
- M. Zhang, M. Moalin aand G. R. M. M. Haenen, Connecting West and East, Int. J. Mol. Sci. 20(9) (2019) Article ID 2333 (5 pages); https://doi.org/10.3390/ijms20092333
- M. A. Salem, L. Perez de Souza, A. Serag, A. R. Fernie, M. A. Farag, S. M. Ezzat and S. Alseekh, Metabolomics in the context of plant natural products research: From sample preparation to meta-bolite analysis, Metabolites 10(1) (2020) Article ID 37 (30 pages); https://doi.org/10.3390/meta-bo10010037
- M. DiBello, A. R. Healy, H. Nikolayevskiy, Z. Xu and S. B. Herzon, Structure elucidation of secondary metabolites: Current frontiers and lingering pitfalls, Acc. Chem. Res. 56(12) (2023) 1656−1668; https://doi.org/10.1021/acs.accounts.3c00183
- M. Fitzgerald, M. Heinrich and A. Booker, Medicinal plant analysis: A historical and regional discussion of emergent complex techniques, Front. Pharmacol. 10 (2020) Article ID 1480 (14 pages); https://doi.org/10.3389/fphar.2019.01480
- D. G. Cox, J. Oh, A. Keasling, K. L. Colson and M. T. Hamann, The utility of metabolomics in natural product and biomarker characterization, Biochim. Biophys. Acta 1840(12) (2014) 3460−3474; https://doi.org/10.1016/j.bbagen.2014.08.007
- L. Xu, F. Lao, Z. Xu, X. Wang, F. Chen, X. Liao, A. Chen and S. Yang, Use of liquid chromatography quadrupole time-of-flight mass spectrometry and metabolomic approach to discriminate coffee brewed by different methods, Food Chem. 286 (2019) 106−112; https://doi.org/10.1016/j.food-chem.2019.01.154
- G. S. de Jesus, D. Silva Trentin, T. F. Barros, A. M. T. Ferreira, B. C. de Barros, P. de Oliveira Figueiredo, F. Rodrigues Garcez, É. L. Dos Santos, A. C. Micheletti and N. C. Yoshida, Medicinal plant Miconia albicans synergizes with ampicillin and ciprofloxacin against multi-drug resistant Acinetobacter baumannii and Staphylococcus aureus, BMC Complement. Med. Ther. 23(1) (2023) Article ID 374 (18 pages); https://doi.org/10.1186/s12906-023-04147-w
- B. N. Moiketsi, K. P. P. Makale, G. Rantong, T. O. Rahube and A. Makhzoum, Potential of selected African medicinal plants as alternative therapeutics against multi-drug-resistant bacteria, Biomedicines 11(10) (2023) Article ID 2605 (30 pages); https://doi.org/10.3390/biomedicines11102605
- H. Yuan, Q. Ma, H. Cui, G. Liu, X. Zhao, W. Li and G. Piao, How can synergism of traditional medicines benefit from network pharmacology? Molecules 22(7) (2017) Article ID 1135 (19 pages); https://doi.org/10.3390/molecules22071135
- B. K. Singh, Y. Ramakrishna and S. V. Ngachan, Spiny coriander (Eryngium foetidum L.): A commonly used, neglected spicing-culinary herb of Mizoram, India, Genet Resour. Crop Evol. 61(6) 1085−1090; https://doi.org/10.1007/s10722-014-0130-5
- J. H. Paul, C. E. Seaforth and T. Tikasingh, Eryngium foetidum L.: A review, Fitoterapia 82(3) (2011) 302−308; https://doi.org/10.1016/j.fitote.2010.11.010
- T. L. M. Rodrigues, M. E. P. Silva, E. S. C. Gurgel, M. S. Oliveira and F. C. A. Lucas, Eryngium foetidum L. (Apiaceae): A literature review of traditional uses, chemical composition, and pharmacological activities, Evid. Based Complement. Alternat. Med. 2022 (2022) Article ID 2896895 (15 pages); https://doi.org/10.1155/2022/2896895
- M. D. García, M. T. Sáenz, M. A. Gómez and M. A. Fernández, Topical antiinflammatory activity of phytosterols isolated from Eryngium foetidum on chronic and acute inflammation models, Phytother. Res. 13(1) (1999) 78−80; https://doi.org/10.1002/(sici)1099-1573(199902)13:1%3C78::aidptr384%3E3.0.co;2-f
- D. D. S. T. C. Leitão, A. P. P. Barbosa-Carvalho, F. C. de Siqueira, R. P. E. Sousa, A. S. Lopes and R. C. Chisté, Extracts of Eryngium foetidum leaves from the Amazonia were efficient scavengers of ROS and RNS, Antioxidants 12(5) (2023) Article ID 1112 (13 pages); https://doi.org/10.3390/anti-ox12051112
- S. Singh, D. R. Singh, K. M. Salim, A. Srivastava, L. B. Singh and R. C. Srivastava, Estimation of proximate composition, micronutrients and phytochemical compounds in traditional vegetables from Andaman and Nicobar islands, Int. J. Food Sci. Nutr. 62(7) (2011) 765−773; https://doi.org/10.3109/09637486.2011.585961
- P. S. Thomas, E. E. Essien, S. J. Ntuk and M. I. Choudhary, Eryngium foetidum L. essential oils: Chemical composition and antioxidant capacity, Medicines (Basel) 4(2) (2017) Article ID 24 (7 pages); https://doi.org/10.3390/medicines4020024
- X. Zhang, J. Chen, S. Zhou and H. Zhao, Ethanol extract of Eryngium foetidum leaves induces mitochondrial associated apoptosis via ROS generation in human gastric cancer cells, Nutr. Cancer 74(8) (2022) 2996−3006; https://doi.org/10.1080/01635581.2022.2028864
- O. Hernández-Abreu, P. Castillo-España, I. León-Rivera, M. Ibarra-Barajas, R. Villalobos-Molina, J. González-Christen, J. Vergara-Galicia, S. Estrada-Soto, Antihypertensive and vasorelaxant effects of tilianin isolated from Agastache mexicana are mediated by NO/cGMP pathway and potassium channel opening, Biochem. Pharmacol. 78(1) (2009) 54−61; https://doi.org/10.1016/j.bcp.2009.03.016
- C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann and T. F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn. 203(3) (1995) 203−253; https://doi.org/10.1002/aja.1002030302
- B. V. Yesudhason, J. R. S. Selvan Christyraj, M. Ganesan, K. Subbiahanadar Chelladurai, S. Venkatachalam, A. Ramalingam, J. Benedict, V. D. Paulraj and J. D. Selvan Christyraj, Developmental stages of zebrafish (Danio rerio) embryos and toxicological studies using foldscope microscope, Cell. Biol. Int. 44(10) (2020) 1968−1980; https://doi.org/10.1002/cbin.11412
- Organization for Economic Co-operation and Development, Test No. 203: Fish, Acute Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, 2019; https://doi.org/10.1787/9789264069961-en; last access date November 29, 2024.
- Organization for Economic Co-operation and Development, ANNEX II: In Vitro Models – Detailed Description of Methods and Generated Data, Series on Testing and Assessment No. 325: ENV/JM/MONO(2020)21/ANN2; 24 September2020, 1−186; https://one.oecd.org/document/ENV/JM/MONO(2020)21/ANN2/en/pdf; last access date November 29, 2024
- R. von Hellfeld, K. Brotzmann, L. Baumann, R Strecker and T. Braunbeck, Adverse effects in the fish embryo acute toxicity (FET) test: a catalogue of unspecific morphological changes versus more specific effects in zebrafish (Danio rerio) embryos, Environ. Sci. Eur. 32 (2020) Article ID 122 (18 pages); https://enveurope.springeropen.com/articles/10.1186/s12302-020-00398-3
- S. Rodríguez-Morales, B. Ocampo-Medina, N. Romero-Ceronio, C. Alvarado-Sánchez, M. Á. Vilchis-Reyes, L. F. Roa de la Fuente, R. Ortiz-Andrade and O. Hernández-Abreu, Metabolic profiling of vasorelaxant extract from Malvaviscus arboreus by LC/QTOF-MS, Chem. Biodivers. 18(4) (2021) e2000820 (8 pages); https://doi.org/10.1002/cbdv.202000820
- D. D. Wang, J. Liang, W. Z. J. J. Yang, Hou, M. Yang, J. Da, Y. Wang, B. H. Jiang, X. Liu, W. Y. Wu and D. A. Guo, HPLC/qTOF-MS-oriented characteristic components data set and chemometric analysis for the holistic quality control of complex TCM preparations: Niuhuang Shangqing pill as an example, J. Pharm. Biomed. Anal. 89 (2014) 130−141; https://doi.org/10.1016/j.jpba.2013.10.042
- S. Murugesu, A. Khatib, Q. U. Ahmed, Z. Ibrahim, B. F. Uzir, K. Benchoula, N. I. N. Yusoff, V. Perumal, M. F. Alajmi, S. Salamah and H. R. El-Seedi, Toxicity study on Clinacanthus nutans leaf hexane fraction using Danio rerio embryos, Toxicol. Rep. 6 (2019) 1148−1154; https://doi.org/10.1016/j.toxrep.2019.10.020
- A. R. Abubakar and M. Haque, Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes, J. Pharm. Bioallied Sci. 12(1) (2020) 1−10; https://doi.org/10.4103%2Fjpbs.JPBS_175_19
- K. A. Horzmann and J. L. Freeman, Making waves: New developments in toxicology with the zebrafish, Toxicol. Sci. 163(1) (2018) 5−12; https://doi.org/10.1038/nrd4627
- C. A. MacRae and R. T. Peterson, Zebrafish as tools for drug discovery, Nat. Rev. Drug Discov. 14(10) (2015) 721−731; https://doi.org/10.1038/nrd4627
- D. C. H. Metzger and P. M. Schulte, Epigenomics in marine fishes, Mar. Genomics 30 (2016) 43−54; https://doi.org/10.1016/j.margen.2016.01.004
- K. N. Yamamoto, K. Hirota, K. Kono, S. Takeda, S. Sakamuru, M. Xia, R. Huang, C. P. Austin, K. L. Witt and R. R. Tice, Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines, Environ. Mol. Mutagen. 52(7) (2011) 547−561; https://doi.org/10.1002/em.20656
- A. S. Krishna Murthy, E. E. McConnell, J. E. Huff, A. B. Russfield and A. E. Good, Forestomach neoplasms in Fischer F344/N rats and B6C3F1 mice exposed to diglycidyl resorcinol ether – an epoxy resin, Food Chem. Toxicol. 28(10) (1990) 723−729; https://doi.org/10.1016/0278-6915(90)90149-h
- A. Serrà, E. Gómez, G. Calderó, J. Esquena, C. Solans and E. Vallés, Conductive microemulsions for template CoNi electrodeposition, Phys. Chem. Chem. Phys. 15(35) (2013) 14653−14659; https://doi.org/10.1039/C3CP52021H
- K. Takahashi, H. Sakano, N. Numata, S. Kuroda and N. Mizuno, Effect of fatty acid diesters on permeation of anti-inflammatory drugs through rat skin, Drug Dev. Ind. Pharm. 28(10) (2002) 1285−1294; https://doi.org/10.1081/ddc-120015362
- C. A. Bondi, J. L. Marks, L. B. Wroblewski, H. S. Raatikainen, S. R. Lenox and K. E. Gebhardt, Human and environmental toxicity of sodium lauryl sulfate (SLS): Evidence for safe use in household cleaning products, Environ. Health Insights 9 (2015) 27−32; https://doi.org/10.4137/ehi.s31765
- R. Freitas, S. Silvestro, F. Coppola, S. Costa, V. Meucci, F. Battaglia, L. Intorre, A. M. V. M. Soares, C. Pretti and C. Faggio, Toxic impacts induced by sodium lauryl sulfate in Mytilus galloprovincialis, Comp. Biochem. Physiol. A 242 (2020) Article ID 110656 (8 pages); https://doi.org/10.1016/j.cbpa.2020.110656
- H. Löffler and R. Happle, Profile of irritant patch testing with detergents: sodium lauryl sulfate, sodium laureth sulfate and alkyl polyglucoside, Contact Dermatitis 48(1) (2003) 26−32; https://doi.org/10.1034/j.1600-0536.2003.480105.x
- R. M. G. da Silva, V. M. de Oliveira Moraes, F. O. Granero, C. C. Malaguti Figueiredo, V. H. M. Dos Santos, L. P. Machado and L. Pereira Silva, Cytogenotoxicity evaluation of heavy metals detected in extracts and infusion of Baccharis trimera, potential bioaccumulator plant, J. Toxicol. Environ. Health A 87(3) (2024) 108−119; https://doi.org/10.1080/15287394.2023.2279120
- M. Kebert, S. Kostić, V. Vuksanović, A. Gavranović Markić, B. Kiprovski, M. Zorić and S. Orlović, Metal- and organ-specific response to heavy metal-induced stress mediated by antioxidant enzymes’ activities, polyamines, and plant hormones levels in Populus deltoids, Plants (Basel) 11(23) (2022) Article ID 3246 (23 pages); https://doi.org/10.3390/plants11233246
- S. Papazian and J. D. Blande, Dynamics of plant responses to combinations of air pollutants, Plant Biol. (Stuttgart) 22(1) (2020) 68−83; https://doi.org/10.1111/plb.12953
- M. Uchimiya, D. Bannon, H. Nakanishi, M. B. McBride, M. A. Williams and T. Yoshihara, Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils, J. Agric. Food Chem. 68(46) (2020) 12856−12869; https://doi.org/10.1021/acs.jafc.0c00183
- R. Kumar, N. Ivy, S. Bhattacharya, A. Dey and P. Sharma, Coupled effects of microplastics and heavy metals on plants: Uptake, bioaccumulation, and environmental health perspectives, Sci. Total Environ. 836 (2022) Article ID 155619 (1 page); https://doi.org/10.1016/j.scitotenv.2022.155619
- A. J. Pais-Costa, M. I. Sánchez, M. A. Taggart, A. J. Green, F. Hortas, P. A. Vinagre, J. C. Marques and M. Martinez-Haro, Trace element bioaccumulation in hypersaline ecosystems and implications of a global invasion, Sci. Total Environ. 800 (2021) Article ID 149349 (1 page); https://doi.org/10.1016/j.scitotenv.2021.149349
- T. F. D. Castro, W. F. Carneiro, T. F. Reichel, S. Lacerda, M. R. F. Machado, K. K. C. de Souza, L. V. Resende and L. D. S. Murgas, The toxicological effects of Eryngium foetidum extracts on zebrafish embryos and larvae depend on the type of extract, dose, and exposure time, Toxicol. Res. 11(5) (2004) 891−899; https://doi.org/10.1093/toxres/tfac067
- K. Janwitthayanuchit, P. Kupradinun, A. Rungsipipat, A. Kettawan and C. Butryee, A 24-weeks toxicity study of Eryngium foetidum Linn. leaves in mice, Toxicol. Res. 32(3) (2016) 231−237; https://doi.org/10.5487/tr.2016.32.3.231