Have a personal or library account? Click to login

Application of network pharmacology, bioinformatics, computational molecular docking, and experimental validation to study the anticancer effects of oleanolic acid in oral squamous carcinoma cells

By:
Ting YinORCID,  Hao WangORCID and  Yaqin ZouORCID  
Open Access
|Apr 2025

References

  1. E. Gudoityte, O. Arandarcikaite, I. Mazeikiene, V. Bendokas and J. Liobikas, Ursolic and oleanolic acids: Plant metabolites with neuroprotective potential, Int. J. Mol. Sci. 22(9) (2021) Article ID 4599 (15 pages); https://doi.org/10.3390/ijms22094599
  2. T. Shan, J. Ye, J. Jia, Z. Wang, Y. Jiang, Y. Wang, Y. Wang, K. Zheng, and Z. Ren, Viral UL8 is involved in the antiviral activity of oleanolic acid against HSV-1 infection, Front. Microbiol. 12 (2021) Article ID 689607 (12 pages); https://doi.org/10.3389/fmicb.2021.689607
  3. N. Gupta, A review on recent developments in the anticancer potential of oleanolic acid and its analogs (2017-2020), Mini Rev. Med. Chem. 22(4) (2022) 600–616; https://doi.org/10.2174/1389557521666210810153627
  4. Y. Han, C. Wang, X. Li and G. Liang, Oleanolic acid reduces oxidative stress and neuronal apoptosis after experimental subarachnoid hemorrhage by regulating Nrf2/HO-1 pathway, Drug Dev. Res. 83(3) (2022) 680–687; https://doi.org/10.1002/ddr.21899
  5. E. Saberian, A. Jenča, A. Petrášová, J. Jenčová, R. A. Jahromi and R. Seiffadini, Oral cancer at a Glance, Asian Pac. J. Cancer Biol. 8(4) (2023) 379–386; https://doi.org/10.31557/apjcb.2023.8.4.379-386
  6. D. Jagadeesan, K. V. Sathasivam, N. K. Fuloria, V. Balakrishnan, G. H. Khor, M. Ravichandran, M. Solyappan, S. Fuloria, G. Gupta and G. Yadav, Comprehensive insights into oral squamous cell carcinoma: Diagnosis, pathogenesis, and therapeutic advances, Pathol. Res. Pract. 261 (2024) Article ID 155489; https://doi.org/10.1016/j.prp.2024.155489
  7. A. Capote-Moreno, P. Brabyn, M. F. Muñoz-Guerra, J. Sastre-Pérez, V. Escorial-Hernandez, F. J. Rodríguez-Campo, T. García and L. Naval-Gías, Oral squamous cell carcinoma: epidemiological study and risk factor assessment based on a 39-year series, Int. J. Oral Maxillofac. Surg. 49(12) (2020) 1525–1534; https://doi.org/10.1016/j.ijom.2020.03.009
  8. D. Vemula, P. Jayasurya, V. Sushmitha, Y. N. Kumar and V. Bhandari, CADD, AI and ML in drug discovery: A comprehensive review, Eur. J. Pharm. Sci. 181 (2023) Article ID 106324 (23 pages); https://doi.org/10.1016/j.ejps.2022.106324
  9. M. T. Muhammed and E. Aki-Yalcin, Molecular docking: principles, advances, and its applications in drug discovery, Lett. Drug Des. Discov. 21(3) (2024) 480–495; https://doi.org/10.2174/1570180819666220922103109
  10. L. Zhao, H. Zhang, N. Li, J. Chen, H. Xu, Y. Wang and Q. Liang, Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula, J. Ethnopharmacol. 309 (2023) Article ID 116306; https://doi.org/10.1016/j.jep.2023.116306
  11. P. H. Patel, A. Jha and G. S. Chakraborthy, Role of Bioinformatics in Drug Design and Discovery, in CADD and Informatics in Drug Discovery (Part of the book series: Interdisciplinary Biotechnological Advances (IBA)), Springer Nature Singapore, Singapore 2023, pp. 1–33.
  12. A. Daina, O. Michielin and V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7(1) (2017) Article ID 42717 (13 pages); https://doi.org/10.1038/srep42717
  13. M. Gupta, H. J. Lee, C. J. Barden and D. F. Weaver, The blood–brain barrier (BBB) score, J. Med. Chem. 62(21) (2019) 9824–9836; https://doi.org/10.1021/acs.jmedchem.9b01220
  14. A. Daina, O. Michielin and V. Zoete, SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules, Nucleic Acids Res. 47(W1) (2019) W357–W364; https://doi.org/10.1093/nar/gkz382
  15. Y. Liu, X. Yang, J. Gan, S. Chen, Z. X. Xiao and Y. Cao, CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking, and homologous template fitting, Nucleic Acids Res. 50(W1) (2022) W159–W164; https://doi.org/10.1093/nar/gkac394
  16. C. M. McBride, B. Levine, Y. Xia, C. Bellamacina, T. Machajewski, Z. Gao, P. Renhowe, W. Antonios-McCrea, P. Barsanti, K. Brinner and A. Costales, Design, structure-activity relationship, and in vivo characterization of the development candidate NVP-HSP990, J. Med. Chem. 57(21) (2014) 9124–9129; https://doi.org/10.1021/jm501107q
  17. T. Hu, J. E. Yeh, L. Pinello, J. Jacob, S. Chakravarthy, G. C. Yuan, R. Chopra and D. A. Frank, Impact of the N-terminal domain of STAT3 in STAT3-dependent transcriptional activity, Mol. Cell. Biol. 35(19) (2015) 3284–3300; https://doi.org/10.1128/MCB.00060-15
  18. G. Q. Gong, B. Bilanges, B. Allsop, G. R. Masson, V. Roberton, T. Askwith, S. Oxenford, R. R. Madsen, S. E. Conduit, D. Bellini and M. Fitzek, A small-molecule PI3Kα activator for cardioprotection and neuroregeneration, Nature 618(7963) (2023) 159–168; https://doi.org/10.1038/s41586-023-05972-2
  19. J. R. López-Blanco, J. I. Aliaga, E. S. Quintana-Ortí and P. Chacón, iMODS: internal coordinates normal mode analysis server, Nucleic Acids Res. 42(W1) (2014) W271–W276; https://doi.org/10.1093/nar/gku339
  20. A. Kuriata, A. M. Gierut, T. Oleniecki, M. P. Ciemny, A. Kolinski, M. Kurcinski and S. Kmiecik, CABS-flex 2.0: A web server for fast simulations of flexibility of protein structures, Nucleic Acids Res. 46(W1) (2018) W338–W343; https://doi.org/10.1093/nar/gky356
  21. A. Maharati and M. Moghbeli, PI3K/AKT signaling pathway as a critical regulator of epithelial--mesenchymal transition in colorectal tumor cells, Cell Commun. Signal. 21(1) (2023) Article ID 201 (15 pages); https://doi.org/10.1186/s12964-023-01225-x
  22. Y. Cheng, J. Chen, Y. Shi, X. Fang and Z. Tang, MAPK signaling pathway in oral squamous cell carcinoma: biological function and targeted therapy, Cancers 14(19) (2022) Article ID 4625; https://doi.org/10.3390/cancers14194625
  23. D. B. Doroshow, S. Bhalla, M. B. Beasley, L. M. Sholl, K. M. Kerr, S. Gnjatic, I. I. Wistuba, D. L. Rimm, M. S. Tsao and F. R. Hirsch, PD-L1 as a biomarker of response to immune-checkpoint inhibitors, Nat. Rev. Clin. Oncol. 18(6) (2021) 345–362; https://doi.org/10.1038/s41571-021-00473-5
  24. M. E. Youssef, S. Cavalu, A. M. Hasan, G. Yahya, M. A. Abd-Eldayem and S. A. Saber, Role of ganetespib, an HSP90 inhibitor, in cancer therapy: from molecular mechanisms to clinical practice, Int. J. Mol. Sci. 24(5) (2023) Article ID 5014; https://doi.org/10.3390/ijms24055014
  25. M. Niu, B. Zhang, L. Li, Z. Su, W. Pu, C. Zhao, L. Wei, P. Lian, R. Lu, R. Wang and J. Wazir, Q. Gao, S. Song and H. Wang, Targeting HSP90 inhibits proliferation and induces apoptosis through AKT1/ERK pathway in lung cancer, Front. Pharmacol. 12 (2022) Article ID 724192 (13 pages); https://doi.org/10.3389/fphar.2021.724192
  26. H. A. Amissah, S. E. Combs and M. Shevtsov, Tumor dormancy and reactivation: the role of heat shock proteins, Cells 13(13) (2024) Article ID 1087; https://doi.org/10.3390/cells13131087
  27. A. Bahmei, F. Karimi, S. M. Mahini, H. Irandoost, P. Tandel, H. Niknam and G. Tamaddon, Targeting telomerase with MST-312 leads to downregulation of CCND1, MDM2, MYC, and HSP90AA1 and induce apoptosis in Jurkat cell line, Med. Oncol. 41(11) (2024) Article ID 267; https://doi.org/10.1007/s12032-024-02412-7
  28. M. Tolomeo and A. Cascio, The multifaceted role of STAT3 in cancer and its implication for anticancer therapy, Int. J. Mol. Sci. 22(2) (2021) Article ID 603; https://doi.org/10.3390/ijms22020603
  29. Y. Hu, Z. Dong and K. Liu, Unraveling the complexity of STAT3 in cancer: Molecular understanding and drug discovery, J. Exp. Clin. Cancer Res. 43(1) (2024) Article ID 23 (29 pages); https://doi.org/10.1186/s13046-024-02949-5
  30. S. Zou, Q. Tong, B. Liu, W. Huang, Y. Tian and X. Fu, Targeting STAT3 in cancer immunotherapy, Mol. Cancer 19 (2020) Article ID 145 (19 pages); https://doi.org/10.1186/s12943-020-01258-7
  31. A. Jha, M. Alam, T. Kashyap, N. Nath, A. Kumari, K. K. Pramanik, S. Nagini and R. Mishra, Crosstalk between PD-L1 and Jak2-Stat3/MAPK-AP1 signaling promotes oral cancer progression, invasion, and therapy resistance, Int. Immunopharmacol. 124(Part A) (2023) Article ID 110894; https://doi.org/10.1016/j.intimp.2023.110894
  32. S. Sharma and P. Kumar, Dissecting the functional significance of HSP90AB1 and other heat shock proteins in countering glioblastomas and ependymomas using omics analysis and drug prediction using virtual screening, Neuropeptides 102 (2023) Article ID 102383; https://doi.org/10.1016/j.npep.2023.102383
  33. Y. J. Zhang and D. H. Yi, CDK1-SRC Interaction-dependent transcriptional activation of HSP90AB1 promotes antitumor immunity in hepatocellular carcinoma, J. Proteome Res. 22(12) (2023) 3714–3729; https://doi.org/10.1021/acs.jproteome.3c00379
  34. X. Sun, K. Li, M. Hase, R. Zha, Y. Feng, B.-Y. Li and H. Yokota, Suppression of breast cancer-associated bone loss with osteoblast proteomes via Hsp90ab1/moesin-mediated inhibition of TGFβ/FN1/CD44 signaling, Theranostics 12(2) (2022) 929–943; https://doi.org/10.7150/thno.66148
  35. P. Castel, E. Toska, J. A. Engelman and M. Scaltriti, The present and future of PI3K inhibitors for cancer therapy, Nat. Cancer 2(6) (2021) 587–597; https://doi.org/10.1038/s43018-021-00218-4
  36. M. Zhang, H. Jang and R. Nussinov, PI3K inhibitors: review and new strategies, Chem. Sci. 11(23) (2020) 5855–5865; https://doi.org/10.1039/d0sc01676d
DOI: https://doi.org/10.2478/acph-2025-0005 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 41 - 68
Accepted on: Feb 12, 2025
Published on: Apr 10, 2025
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2025 Ting Yin, Hao Wang, Yaqin Zou, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.