Have a personal or library account? Click to login

Cloning, expression, and purification of recombinant AKR1D1 for therapeutic applications

Open Access
|Apr 2025

References

  1. T. L. Rižner and T. M. Penning, Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism, Steroids 79 (2014) 49–63; https://doi.org/10.1016/j.steroids.2013.10.012
  2. O. A. Barski, S. M. Tipparaju and A. Bhatnagar, The aldo-keto reductase superfamily and its role in drug metabolism and detoxification, Drug Metab. Rev. 40(4) (2008) 553–624; https://doi.org/10.1080/036025308024314393.
  3. V. S. Langlois, D. Zhang, G. M. Cooke and V. L. Trudeau, Evolution of steroid-5α-reductases and comparison of their function with 5β-reductase, Gen. Comp. Endocrinol. 166(3) (2010) 489–497; https://doi.org/10.1016/j.ygcen.2009.08.004
  4. N. Appanna, H. Gibson, E. Gangitano, N. J. Dempster, K. Morris, S. George, A. Arvaniti, L. L. Gather-cole, B. Keevil, T. M. Penning, K-H. Storbeck, J. W. Tomlinson and N. Nikolaou, Differential activity and expression of human 5β-reductase (AKR1D1) splice variants, J. Mol. Endocrinol. 66(3) (2021) 181–194; https://doi.org/10.1530/JME-20-0160
  5. N. Nikolaou, A. Arvaniti, N. Appanna, A. Sharp, B. A. Hughes, D. Digweed, M. J. Whitaker, R. Ross, W. Arlt, T. M. Penning, K. Morris, S. George, B. G. Keevil, L. Hodson, L. L. Gathercole and J. W. Tomlinson, Glucocorticoids regulate AKR1D1 activity in human liver in vitro and in vivo, J. Endocrinol. 245(2) (2020) 207–218; https://doi.org/10.1530/JOE-19-0473
  6. N. Nikolaou, L. L. Gathercole, L. Marchand, S. Althari, N. J. Dempster, C. J. Green, M. Van De Bunt, C. McNeil, A. Arvaniti, B. A. Hughes, B. Sgromo, R. S. Gillies, H-U. Marschall, T. M. Penning, J. Ryan, W. Arlt, L. Hodson and J. W. Tomlinson, AKR1D1 is a novel regulator of metabolic phenotype in human hepatocytes and is dysregulated in non-alcoholic fatty liver disease, Metabolism 99 (2019) 67–80; https://doi.org/10.1016/j.metabol.2019.153947
  7. M. Chen and T. M. Penning, 5β-Reduced steroids and human Δ4-3-ketosteroid 5β-reductase (AKR1D1), Steroids 83 (2014) 17–26; https://doi.org/10.1016/j.steroids.2014.01.013
  8. Y. Jin, M. Chen and T. M. Penning, Rate of steroid double-bond reduction catalysed by the human steroid 5β-reductase (AKR1D1) is sensitive to steroid structure: implications for steroid metabolism and bile acid synthesis, Biochem. J. 462(1) (2014) 163–171; https://doi.org/10.1042/BJ20140220
  9. A.-H. N. Pham, K.-O. B. Thi, M.-H. N. Thi, D.-N. Ngo, N. Naritaka, H. Nittono, H. Hayashi, T. T. Dao, K.-H. T. Nguyen, H.-N. Nguyen, H. Giang, H.-S. Tang, T.-T. Nguyen, D.-K. Truong and M.-D. Tran, Clinical and genetic features of congenital bile acid synthesis defect with a novel mutation in AKR1D1 gene sequencing, Medicine (Baltimore) 101(25) (2022) e29476 (6 pages); https://doi.org/10.1097/MD.0000000000029476
  10. L. L. Gathercole, N. Nikolaou, S. E. Harris, A. Arvaniti, T. M. Poolman, J. M. Hazlehurst, D. V. Kratschmar, M. Todorčević, A. Moolla, N. Dempster, R. C. Pink, M. F. Saikali, L. Bentley, T. M. Penning, C. Ohlsson, C. L. Cummins, M. Poutanen, A. Odermatt, R. D. Cox and J. W. Tomlinson, AKR1D1 knockout mice develop a sex-dependent metabolic phenotype, J. Endocrinol. 253(3) (2022) 97–113; https://doi.org/10.1530/JOE-21-0280
  11. F. H. Gardner, Androgen therapy of aplastic anaemia, Clin. Haematol. 7(3) (1978) 571–585.
  12. C. L. Kussius, N. Kaur and G. K. Popescu, Pregnanolone sulfate promotes desensitization of activated NMDA receptors, J. Neurosci. 29(21) (2009) 6819–6827; https://doi.org/10.1523/JNEUROSCI.0281-09.2009
  13. P. M. Sheehan, G. E. Rice, E. K. Moses and S. P. Brennecke, 5 Beta-dihydroprogesterone and steroid 5 beta-reductase decrease in association with human parturition at term, Mol. Hum. Reprod. 11(7) (2005) 495–501; https://doi.org/10.1093/molehr/gah201
  14. S. Astle, R. N. Khan and S. Thornton, The effects of a progesterone metabolite, 5 beta-dihydroprogesterone, on oxytocin receptor binding in human myometrial membranes, BJOG 110(6) (2003) 589–592; https://doi.org/10.1046/j.1471-0528.2003.02041.x
  15. D. Gorshein, E. H. Reisner and F. Gardner, Tissue culture of bone marrow. V. Effect of 5β(H) steroids and cyclic AMP on heme synthesis, Am. J. Physiol. 228(4) (1975) 1024–1028; https://doi.org/10.1152/ajplegacy.1975.228.4.1024
  16. L. B. Moore, D. J. Parks, S. A. Jones, R. K. Bledsoe, T. G. Consler, J. B. Stimmel, B. Goodwin, C. Liddle, S. G. Blanchard, T. M. Willson, J. L. Collins and S. A. Kliewer, Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands, J. Biol. Chem. 275(20) (2000) 15122–15127; https://doi.org/10.1074/jbc.M001215200
  17. J. Chen, K.-N. Zhao and C. Chen, The role of CYP3A4 in the biotransformation of bile acids and therapeutic implication for cholestasis, Ann. Transl. Med. 2(1) (2014) Article ID 7 (9 pages); https://doi.org/10.3978/j.issn.2305-5839.2013.03.02
  18. M. Chen, J. E. Drury and T. M. Penning, Substrate specificity and inhibitor analyses of human steroid 5β-reductase (AKR1D1), Steroids 76(5) (2011) 484–490; https://doi.org/10.1016/j.steroids.2011.01.003
  19. J. Kędzierski, J. A. Allard, A. Odermatt and M. Smieško, Assessment of the inhibitory potential of anabolic steroids towards human AKR1D1 by computational methods and in vitro evaluation, Toxicol. Lett. 384 (2023) 1–13; https://doi.org/10.1016/j.toxlet.2023.07.006
  20. A. S. Chaudhry, R. K. Thirumaran, K. Yasuda, X. Yang, Y. Fan, S. C. Strom and E. G. Schuetz, Genetic variation in aldo-keto reductase 1D1 (AKR1D1) affects the expression and activity of multiple cytochrome P450s, Drug Metab. Dispos. 41(8) (2013) 1538–1547; https://doi.org/10.1124/dmd.113.051672
  21. A. Kapedanovska-Nestorovska, A. J. Dimovski, Z. Sterjev, N. Matevska Geskovska, L. Suturkova, P. Ugurov, Z. Mitrev and R. Rosalia, The AKR1D1*36 (rs1872930) allelic variant is independently associated with clopidogrel treatment outcome, Pharmgenomics Pers. Med. 12 (2019) 287–295; https://doi.org/10.2147/PGPM.S222212
  22. A. Kapedanovska Nestorovska, K. Jakjovski, Z. Naumovska, Z. Sterjev, N. M. Geskovska, K. Mladenovska, L. Suturkova and A. Dimovski, AKR1D1*36 C>T (rs1872930) allelic variant is associated with variability of the CYP2C9 genotype predicted pharmacokinetics of ibuprofen enantiomers – a pilot study in healthy volunteers, Acta Pharm. 69(3) (2019) 399–412; https://doi.org/10.2478/acph-2019-0032
  23. T. M. Penning, Steroid 5β-reductase (AKR1D1): Purification and characterization, Methods Enzymol. 689 (2023) 277–301; https://doi.org/10.1016/bs.mie.2023.04.012
  24. M. R. Green and J. Sambrook, Molecular Cloning: A Laboratory Manual, 4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor 2012.
  25. J. Huang, C. Wu, D. Liu, X. Yang, R. Wu, J. Zhang, C. Ma and H. He, C-terminal domains of bacterial proteases: Structure, function and the biotechnological applications, J. Appl. Microbiol. 122(1) (2017) 12–22; https://doi.org/10.1111/jam.13317
  26. S. Trazzi, G. Perini, R. Bernardoni, M. Zoli, J. C. Reese, A. Musacchio and G. D. Valle, The C-terminal domain of CENP-C displays multiple and critical functions for mammalian centromere formation, PLoS One 4(6) (2009) e5832 (13 pages); https://doi.org/10.1371/journal.pone.0005832
  27. S. Lykkemark, O. A. Mandrup, N. A. Friis and P. Kristensen, Degradation of C-terminal tag sequences on domain antibodies purified from E. coli supernatant, mAbs 6(6) (2014) 1551–1559; https://doi.org/10.4161/mabs.36211
  28. W.-J. Park, S.-H. You, H.-A. Choi, Y.-J. Chu and G.-J. Kim, Over-expression of recombinant proteins with N-terminal His-tag via subcellular uneven distribution in Escherichia coli, Acta Biochim. Biophys. Sin. 47(7) (2015) 488–495; https://doi.org/10.1093/abbs/gmv036
  29. G. L. Rosano and E. A. Ceccarelli, Recombinant protein expression in Escherichia coli: advances and challenges, Front. Microbiol. 5 (2014) Article ID 172 (17 pages); https://doi.org/10.3389/fmicb.2014.00172
  30. T. A. Brown, Gene Cloning and DNA Analysis: An Introduction, 8th ed., Wiley-Blackwell, Hoboken 2020.
  31. P. T. Wingfield, Overview of the purification of recombinant proteins, Curr. Protoc. Protein Sci. 80 (2015) 6.1.1–6.1.35; https://doi.org/10.1002/0471140864.ps0601s80
DOI: https://doi.org/10.2478/acph-2025-0003 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 147 - 157
Accepted on: Nov 23, 2024
Published on: Apr 10, 2025
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Kristina Shutevska, Aleksandra Kapedanovska Nestorovska, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.