T. L. Rižner and T. M. Penning, Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism, Steroids79 (2014) 49–63; https://doi.org/10.1016/j.steroids.2013.10.012
O. A. Barski, S. M. Tipparaju and A. Bhatnagar, The aldo-keto reductase superfamily and its role in drug metabolism and detoxification, Drug Metab. Rev.40(4) (2008) 553–624; https://doi.org/10.1080/036025308024314393.
V. S. Langlois, D. Zhang, G. M. Cooke and V. L. Trudeau, Evolution of steroid-5α-reductases and comparison of their function with 5β-reductase, Gen. Comp. Endocrinol.166(3) (2010) 489–497; https://doi.org/10.1016/j.ygcen.2009.08.004
N. Appanna, H. Gibson, E. Gangitano, N. J. Dempster, K. Morris, S. George, A. Arvaniti, L. L. Gather-cole, B. Keevil, T. M. Penning, K-H. Storbeck, J. W. Tomlinson and N. Nikolaou, Differential activity and expression of human 5β-reductase (AKR1D1) splice variants, J. Mol. Endocrinol.66(3) (2021) 181–194; https://doi.org/10.1530/JME-20-0160
N. Nikolaou, A. Arvaniti, N. Appanna, A. Sharp, B. A. Hughes, D. Digweed, M. J. Whitaker, R. Ross, W. Arlt, T. M. Penning, K. Morris, S. George, B. G. Keevil, L. Hodson, L. L. Gathercole and J. W. Tomlinson, Glucocorticoids regulate AKR1D1 activity in human liver in vitro and in vivo, J. Endocrinol.245(2) (2020) 207–218; https://doi.org/10.1530/JOE-19-0473
N. Nikolaou, L. L. Gathercole, L. Marchand, S. Althari, N. J. Dempster, C. J. Green, M. Van De Bunt, C. McNeil, A. Arvaniti, B. A. Hughes, B. Sgromo, R. S. Gillies, H-U. Marschall, T. M. Penning, J. Ryan, W. Arlt, L. Hodson and J. W. Tomlinson, AKR1D1 is a novel regulator of metabolic phenotype in human hepatocytes and is dysregulated in non-alcoholic fatty liver disease, Metabolism99 (2019) 67–80; https://doi.org/10.1016/j.metabol.2019.153947
Y. Jin, M. Chen and T. M. Penning, Rate of steroid double-bond reduction catalysed by the human steroid 5β-reductase (AKR1D1) is sensitive to steroid structure: implications for steroid metabolism and bile acid synthesis, Biochem. J.462(1) (2014) 163–171; https://doi.org/10.1042/BJ20140220
A.-H. N. Pham, K.-O. B. Thi, M.-H. N. Thi, D.-N. Ngo, N. Naritaka, H. Nittono, H. Hayashi, T. T. Dao, K.-H. T. Nguyen, H.-N. Nguyen, H. Giang, H.-S. Tang, T.-T. Nguyen, D.-K. Truong and M.-D. Tran, Clinical and genetic features of congenital bile acid synthesis defect with a novel mutation in AKR1D1 gene sequencing, Medicine (Baltimore) 101(25) (2022) e29476 (6 pages); https://doi.org/10.1097/MD.0000000000029476
L. L. Gathercole, N. Nikolaou, S. E. Harris, A. Arvaniti, T. M. Poolman, J. M. Hazlehurst, D. V. Kratschmar, M. Todorčević, A. Moolla, N. Dempster, R. C. Pink, M. F. Saikali, L. Bentley, T. M. Penning, C. Ohlsson, C. L. Cummins, M. Poutanen, A. Odermatt, R. D. Cox and J. W. Tomlinson, AKR1D1 knockout mice develop a sex-dependent metabolic phenotype, J. Endocrinol.253(3) (2022) 97–113; https://doi.org/10.1530/JOE-21-0280
C. L. Kussius, N. Kaur and G. K. Popescu, Pregnanolone sulfate promotes desensitization of activated NMDA receptors, J. Neurosci.29(21) (2009) 6819–6827; https://doi.org/10.1523/JNEUROSCI.0281-09.2009
P. M. Sheehan, G. E. Rice, E. K. Moses and S. P. Brennecke, 5 Beta-dihydroprogesterone and steroid 5 beta-reductase decrease in association with human parturition at term, Mol. Hum. Reprod.11(7) (2005) 495–501; https://doi.org/10.1093/molehr/gah201
S. Astle, R. N. Khan and S. Thornton, The effects of a progesterone metabolite, 5 beta-dihydroprogesterone, on oxytocin receptor binding in human myometrial membranes, BJOG110(6) (2003) 589–592; https://doi.org/10.1046/j.1471-0528.2003.02041.x
D. Gorshein, E. H. Reisner and F. Gardner, Tissue culture of bone marrow. V. Effect of 5β(H) steroids and cyclic AMP on heme synthesis, Am. J. Physiol.228(4) (1975) 1024–1028; https://doi.org/10.1152/ajplegacy.1975.228.4.1024
L. B. Moore, D. J. Parks, S. A. Jones, R. K. Bledsoe, T. G. Consler, J. B. Stimmel, B. Goodwin, C. Liddle, S. G. Blanchard, T. M. Willson, J. L. Collins and S. A. Kliewer, Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands, J. Biol. Chem.275(20) (2000) 15122–15127; https://doi.org/10.1074/jbc.M001215200
J. Chen, K.-N. Zhao and C. Chen, The role of CYP3A4 in the biotransformation of bile acids and therapeutic implication for cholestasis, Ann. Transl. Med.2(1) (2014) Article ID 7 (9 pages); https://doi.org/10.3978/j.issn.2305-5839.2013.03.02
M. Chen, J. E. Drury and T. M. Penning, Substrate specificity and inhibitor analyses of human steroid 5β-reductase (AKR1D1), Steroids76(5) (2011) 484–490; https://doi.org/10.1016/j.steroids.2011.01.003
J. Kędzierski, J. A. Allard, A. Odermatt and M. Smieško, Assessment of the inhibitory potential of anabolic steroids towards human AKR1D1 by computational methods and in vitro evaluation, Toxicol. Lett.384 (2023) 1–13; https://doi.org/10.1016/j.toxlet.2023.07.006
A. S. Chaudhry, R. K. Thirumaran, K. Yasuda, X. Yang, Y. Fan, S. C. Strom and E. G. Schuetz, Genetic variation in aldo-keto reductase 1D1 (AKR1D1) affects the expression and activity of multiple cytochrome P450s, Drug Metab. Dispos.41(8) (2013) 1538–1547; https://doi.org/10.1124/dmd.113.051672
A. Kapedanovska-Nestorovska, A. J. Dimovski, Z. Sterjev, N. Matevska Geskovska, L. Suturkova, P. Ugurov, Z. Mitrev and R. Rosalia, The AKR1D1*36 (rs1872930) allelic variant is independently associated with clopidogrel treatment outcome, Pharmgenomics Pers. Med.12 (2019) 287–295; https://doi.org/10.2147/PGPM.S222212
A. Kapedanovska Nestorovska, K. Jakjovski, Z. Naumovska, Z. Sterjev, N. M. Geskovska, K. Mladenovska, L. Suturkova and A. Dimovski, AKR1D1*36 C>T (rs1872930) allelic variant is associated with variability of the CYP2C9 genotype predicted pharmacokinetics of ibuprofen enantiomers – a pilot study in healthy volunteers, Acta Pharm.69(3) (2019) 399–412; https://doi.org/10.2478/acph-2019-0032
J. Huang, C. Wu, D. Liu, X. Yang, R. Wu, J. Zhang, C. Ma and H. He, C-terminal domains of bacterial proteases: Structure, function and the biotechnological applications, J. Appl. Microbiol.122(1) (2017) 12–22; https://doi.org/10.1111/jam.13317
S. Trazzi, G. Perini, R. Bernardoni, M. Zoli, J. C. Reese, A. Musacchio and G. D. Valle, The C-terminal domain of CENP-C displays multiple and critical functions for mammalian centromere formation, PLoS One4(6) (2009) e5832 (13 pages); https://doi.org/10.1371/journal.pone.0005832
S. Lykkemark, O. A. Mandrup, N. A. Friis and P. Kristensen, Degradation of C-terminal tag sequences on domain antibodies purified from E. coli supernatant, mAbs6(6) (2014) 1551–1559; https://doi.org/10.4161/mabs.36211
W.-J. Park, S.-H. You, H.-A. Choi, Y.-J. Chu and G.-J. Kim, Over-expression of recombinant proteins with N-terminal His-tag via subcellular uneven distribution in Escherichia coli, Acta Biochim. Biophys. Sin.47(7) (2015) 488–495; https://doi.org/10.1093/abbs/gmv036
G. L. Rosano and E. A. Ceccarelli, Recombinant protein expression in Escherichia coli: advances and challenges, Front. Microbiol.5 (2014) Article ID 172 (17 pages); https://doi.org/10.3389/fmicb.2014.00172