References
- T. L. Rižner and T. M. Penning, Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism, Steroids 79 (2014) 49–63; https://doi.org/10.1016/j.steroids.2013.10.012
- O. A. Barski, S. M. Tipparaju and A. Bhatnagar, The aldo-keto reductase superfamily and its role in drug metabolism and detoxification, Drug Metab. Rev. 40(4) (2008) 553–624; https://doi.org/10.1080/036025308024314393.
- V. S. Langlois, D. Zhang, G. M. Cooke and V. L. Trudeau, Evolution of steroid-5α-reductases and comparison of their function with 5β-reductase, Gen. Comp. Endocrinol. 166(3) (2010) 489–497; https://doi.org/10.1016/j.ygcen.2009.08.004
- N. Appanna, H. Gibson, E. Gangitano, N. J. Dempster, K. Morris, S. George, A. Arvaniti, L. L. Gather-cole, B. Keevil, T. M. Penning, K-H. Storbeck, J. W. Tomlinson and N. Nikolaou, Differential activity and expression of human 5β-reductase (AKR1D1) splice variants, J. Mol. Endocrinol. 66(3) (2021) 181–194; https://doi.org/10.1530/JME-20-0160
- N. Nikolaou, A. Arvaniti, N. Appanna, A. Sharp, B. A. Hughes, D. Digweed, M. J. Whitaker, R. Ross, W. Arlt, T. M. Penning, K. Morris, S. George, B. G. Keevil, L. Hodson, L. L. Gathercole and J. W. Tomlinson, Glucocorticoids regulate AKR1D1 activity in human liver in vitro and in vivo, J. Endocrinol. 245(2) (2020) 207–218; https://doi.org/10.1530/JOE-19-0473
- N. Nikolaou, L. L. Gathercole, L. Marchand, S. Althari, N. J. Dempster, C. J. Green, M. Van De Bunt, C. McNeil, A. Arvaniti, B. A. Hughes, B. Sgromo, R. S. Gillies, H-U. Marschall, T. M. Penning, J. Ryan, W. Arlt, L. Hodson and J. W. Tomlinson, AKR1D1 is a novel regulator of metabolic phenotype in human hepatocytes and is dysregulated in non-alcoholic fatty liver disease, Metabolism 99 (2019) 67–80; https://doi.org/10.1016/j.metabol.2019.153947
- M. Chen and T. M. Penning, 5β-Reduced steroids and human Δ4-3-ketosteroid 5β-reductase (AKR1D1), Steroids 83 (2014) 17–26; https://doi.org/10.1016/j.steroids.2014.01.013
- Y. Jin, M. Chen and T. M. Penning, Rate of steroid double-bond reduction catalysed by the human steroid 5β-reductase (AKR1D1) is sensitive to steroid structure: implications for steroid metabolism and bile acid synthesis, Biochem. J. 462(1) (2014) 163–171; https://doi.org/10.1042/BJ20140220
- A.-H. N. Pham, K.-O. B. Thi, M.-H. N. Thi, D.-N. Ngo, N. Naritaka, H. Nittono, H. Hayashi, T. T. Dao, K.-H. T. Nguyen, H.-N. Nguyen, H. Giang, H.-S. Tang, T.-T. Nguyen, D.-K. Truong and M.-D. Tran, Clinical and genetic features of congenital bile acid synthesis defect with a novel mutation in AKR1D1 gene sequencing, Medicine (Baltimore) 101(25) (2022) e29476 (6 pages); https://doi.org/10.1097/MD.0000000000029476
- L. L. Gathercole, N. Nikolaou, S. E. Harris, A. Arvaniti, T. M. Poolman, J. M. Hazlehurst, D. V. Kratschmar, M. Todorčević, A. Moolla, N. Dempster, R. C. Pink, M. F. Saikali, L. Bentley, T. M. Penning, C. Ohlsson, C. L. Cummins, M. Poutanen, A. Odermatt, R. D. Cox and J. W. Tomlinson, AKR1D1 knockout mice develop a sex-dependent metabolic phenotype, J. Endocrinol. 253(3) (2022) 97–113; https://doi.org/10.1530/JOE-21-0280
- F. H. Gardner, Androgen therapy of aplastic anaemia, Clin. Haematol. 7(3) (1978) 571–585.
- C. L. Kussius, N. Kaur and G. K. Popescu, Pregnanolone sulfate promotes desensitization of activated NMDA receptors, J. Neurosci. 29(21) (2009) 6819–6827; https://doi.org/10.1523/JNEUROSCI.0281-09.2009
- P. M. Sheehan, G. E. Rice, E. K. Moses and S. P. Brennecke, 5 Beta-dihydroprogesterone and steroid 5 beta-reductase decrease in association with human parturition at term, Mol. Hum. Reprod. 11(7) (2005) 495–501; https://doi.org/10.1093/molehr/gah201
- S. Astle, R. N. Khan and S. Thornton, The effects of a progesterone metabolite, 5 beta-dihydroprogesterone, on oxytocin receptor binding in human myometrial membranes, BJOG 110(6) (2003) 589–592; https://doi.org/10.1046/j.1471-0528.2003.02041.x
- D. Gorshein, E. H. Reisner and F. Gardner, Tissue culture of bone marrow. V. Effect of 5β(H) steroids and cyclic AMP on heme synthesis, Am. J. Physiol. 228(4) (1975) 1024–1028; https://doi.org/10.1152/ajplegacy.1975.228.4.1024
- L. B. Moore, D. J. Parks, S. A. Jones, R. K. Bledsoe, T. G. Consler, J. B. Stimmel, B. Goodwin, C. Liddle, S. G. Blanchard, T. M. Willson, J. L. Collins and S. A. Kliewer, Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands, J. Biol. Chem. 275(20) (2000) 15122–15127; https://doi.org/10.1074/jbc.M001215200
- J. Chen, K.-N. Zhao and C. Chen, The role of CYP3A4 in the biotransformation of bile acids and therapeutic implication for cholestasis, Ann. Transl. Med. 2(1) (2014) Article ID 7 (9 pages); https://doi.org/10.3978/j.issn.2305-5839.2013.03.02
- M. Chen, J. E. Drury and T. M. Penning, Substrate specificity and inhibitor analyses of human steroid 5β-reductase (AKR1D1), Steroids 76(5) (2011) 484–490; https://doi.org/10.1016/j.steroids.2011.01.003
- J. Kędzierski, J. A. Allard, A. Odermatt and M. Smieško, Assessment of the inhibitory potential of anabolic steroids towards human AKR1D1 by computational methods and in vitro evaluation, Toxicol. Lett. 384 (2023) 1–13; https://doi.org/10.1016/j.toxlet.2023.07.006
- A. S. Chaudhry, R. K. Thirumaran, K. Yasuda, X. Yang, Y. Fan, S. C. Strom and E. G. Schuetz, Genetic variation in aldo-keto reductase 1D1 (AKR1D1) affects the expression and activity of multiple cytochrome P450s, Drug Metab. Dispos. 41(8) (2013) 1538–1547; https://doi.org/10.1124/dmd.113.051672
- A. Kapedanovska-Nestorovska, A. J. Dimovski, Z. Sterjev, N. Matevska Geskovska, L. Suturkova, P. Ugurov, Z. Mitrev and R. Rosalia, The AKR1D1*36 (rs1872930) allelic variant is independently associated with clopidogrel treatment outcome, Pharmgenomics Pers. Med. 12 (2019) 287–295; https://doi.org/10.2147/PGPM.S222212
- A. Kapedanovska Nestorovska, K. Jakjovski, Z. Naumovska, Z. Sterjev, N. M. Geskovska, K. Mladenovska, L. Suturkova and A. Dimovski, AKR1D1*36 C>T (rs1872930) allelic variant is associated with variability of the CYP2C9 genotype predicted pharmacokinetics of ibuprofen enantiomers – a pilot study in healthy volunteers, Acta Pharm. 69(3) (2019) 399–412; https://doi.org/10.2478/acph-2019-0032
- T. M. Penning, Steroid 5β-reductase (AKR1D1): Purification and characterization, Methods Enzymol. 689 (2023) 277–301; https://doi.org/10.1016/bs.mie.2023.04.012
- M. R. Green and J. Sambrook, Molecular Cloning: A Laboratory Manual, 4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor 2012.
- J. Huang, C. Wu, D. Liu, X. Yang, R. Wu, J. Zhang, C. Ma and H. He, C-terminal domains of bacterial proteases: Structure, function and the biotechnological applications, J. Appl. Microbiol. 122(1) (2017) 12–22; https://doi.org/10.1111/jam.13317
- S. Trazzi, G. Perini, R. Bernardoni, M. Zoli, J. C. Reese, A. Musacchio and G. D. Valle, The C-terminal domain of CENP-C displays multiple and critical functions for mammalian centromere formation, PLoS One 4(6) (2009) e5832 (13 pages); https://doi.org/10.1371/journal.pone.0005832
- S. Lykkemark, O. A. Mandrup, N. A. Friis and P. Kristensen, Degradation of C-terminal tag sequences on domain antibodies purified from E. coli supernatant, mAbs 6(6) (2014) 1551–1559; https://doi.org/10.4161/mabs.36211
- W.-J. Park, S.-H. You, H.-A. Choi, Y.-J. Chu and G.-J. Kim, Over-expression of recombinant proteins with N-terminal His-tag via subcellular uneven distribution in Escherichia coli, Acta Biochim. Biophys. Sin. 47(7) (2015) 488–495; https://doi.org/10.1093/abbs/gmv036
- G. L. Rosano and E. A. Ceccarelli, Recombinant protein expression in Escherichia coli: advances and challenges, Front. Microbiol. 5 (2014) Article ID 172 (17 pages); https://doi.org/10.3389/fmicb.2014.00172
- T. A. Brown, Gene Cloning and DNA Analysis: An Introduction, 8th ed., Wiley-Blackwell, Hoboken 2020.
- P. T. Wingfield, Overview of the purification of recombinant proteins, Curr. Protoc. Protein Sci. 80 (2015) 6.1.1–6.1.35; https://doi.org/10.1002/0471140864.ps0601s80