Q. Wang, H. Su and J. Liu, Protective effect of natural medicinal plants on cardiomyocyte injury in heart failure: Targeting the dysregulation of mitochondrial homeostasis and mitophagy, Oxid. Med. Cell Longev. 2022 (2022) Article ID 3617086 (24 pages); https://doi.org/10.1155/2022/3617086
A. Bechthold, H. Boeing, C. Schwedhelm, G. Hoffmann, S. Knüppel, K. Iqbal, S. D. Henauw, N. Michels, B. Devleesschauwer, S. Schlesinger and L. Schwingshackl, Food groups and risk of coronary heart disease, stroke and heart failure: A systematic reviewand dose-response meta-analysis of prospective studies, Crit. Rev. Food Sci. Nutr. 59 (2019) 1071–1090; https://doi.org/10.1080/10408398.2017.1392288
M. Li, X. Luo, C. T. Ho, D. Li, H. Guo and Z. Xie, A new strategy for grading of Lu’an guapian green tea by combination of differentiated metabolites and hypoglycaemia effect, Food Res. Int. 159 (2022) Article ID 111639 (12 pages); https://doi.org/10.1016/j.foodres.2022.111639
W. X. Bai, C. Wang, Y. J. Wang, W. J. Zheng, W. Wang, X. C. Wan and G. H. Bao, Novel acylated flavonol tetraglycoside with inhibitory effect on lipid accumulation in 3T3-L1 cells from Lu’an Gua-Pian tea and quantification of flavonoid glycosides in six major processing types of tea, J. Agric. Food Chem. 65 (2017) 2999–3005; https://doi.org/10.1021/acs.jafc.7b00239
F. Hua, P. Zhou, P. P. Liu and G. H. Bao, Rat plasma protein binding of kaempferol-3-O-rutinoside from Lu’an GuaPian tea and its anti-inflammatory mechanism for cardiovascular protection, J. Food Biochem. 45 (2021) Article ID e13749; https://doi.org/10.1111/jfbc.13749
F. Hua, J. Y. Li, M. Zhang, P. Zhou, L. Wang, T. J. Ling and G. H. Bao, Kaempfe-rol-3-O-rutinoside exerts cardioprotective effects through NF-κB/NLRP3/Caspase-1 pathway in ventricular remodeling after acute myocardial infarction, J. Food Biochem. 46 (2022) Article ID e14305; https://doi.org/10.1111/jfbc.14305
Y. Y. Ma, X. N. Zhao, L. Zhou, S. N. Li, J. Bai, L. L. Shi, F. Hua and P. Zhou, Pretreatment of kaempferol-3-O-rutinoside protects H9c2 cells against LPS-induced inflammation through the AMPK/SIRT1 pathway, Ital. J. Food Sci. 35 (2023) 13–21; https://doi.org/10.15586/ijfs.v35i2.2290
S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A Thiessen, B. Yu, L. Zaslavsky, J. Zhang and E. E. Bolton, PubChem 2023 update, Nucleic Acids Res. 51 (2023) D1373–D1380; https://doi.org/10.1093/nar/gkac956
A. Daina, O. Michielin and V. Zoete, SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules, Nucleic Acids Res. 47 (2019) W357–364; https://doi.org/10.1093/nar/gkz382
S. Gu and L. H. Lai, Associating 197 Chinese herbal medicine with drug targets and diseases using the similarity ensemble approach, Acta. Pharm. Sin. 41 (2020) 432–438; https://doi.org/10.1038/s41401-019-0306-9
X. Wang, Y. Shen, S. Wang, S. Li, W. Zhang, X. Liu, L. Lai, J. Pei and H. Li, Pharm Mapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database, Nucleic Acids Res. 45 (2017) W356–360; https://doi.org/10.1093/nar/gkx374
X. Kong, C. Liu, Z. Zhang, M. Cheng, Z. Mei, X. Li, P. Liu, L. Diao, Y. Ma, P. Jiang, X. Kong, S. Nie, Y. Guo, Z. Wang, X. Zhang, Y. Wang, L. Tang, S. Guo, Z. Liu and D. Li, BATMAN-TCM 2.0: an enhanced integrative database for known and predicted interactions between traditional Chinese medicine ingredients and target proteins, Nucleic Acids Res. 52 (2024) D1110–1120; https://doi.org/10.1093/nar/gkad926
R. Barshir, S. Fishilevich, T. Iny-Stein, O. Zelig, Y. Mazor, Y. Guan-Golan, M. Safran and D. Lancet, GeneCaRNA: A comprehensive gene-centric database of human non-coding RNAs in the Gene-Cards Suite, J. Mol. Biol. 433 (2021) Article ID 166913 (10 pages); https://doi.org/10.1016/j.jmb.2021.166913
E. W. Sayers, E. E. Bolton, J. R. Brister, K. Canese, J. Chan, D. C. Comeau, R. Co-nnor, K. Funk, C. Kelly, S. Kim, T. Madej, A. Marchler-Bauer, C. Lanczycki, S. Lat-hrop, Z. Lu, F. Thibaud-Nissen, T. Murphy, L. Phan, Y. Skripchenkom, T. Tse1, J. Wang, R. Williams, B. W. Trawick, K. D. Pruitt and S. T. Sherry, Database resources of the National Center for Biotechnology Information, Nucleic Acids Res. 49 (2021) D10–17; https://doi.org/10.1093/nar/gkab1112
J. Piñero, J. M. Ramírez-Anguita, J. Saüch-Pitarch, F. Ronzano, E. Centeno, F. Sanz and L. I. Furlong, The DisGeNET knowledge platform for disease genomics: 2019 update, Nucleic Acids Res. 48(D1) (2020) D845–D855; https://doi.org/10.1093/nar/gkz1021
D. Szklarczyk, R. Kirsch, M. Koutrouli, K. Nastou, F. Mehryary, R. Hachilif, A. L. Gable, T. Fang, N. T. Doncheva, S. Pyysalo, P. Bork, L. J. Jensen and C. von Mering, The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Res. 51 (2023) D638–646; https://doi.org/10.1093/nar/gkac1000
E. H. Walker, M. E. Pacold, O. Perisic, L. Stephens, P. T. Hawkins, M. P. Wymann, R. L. Williams, Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine, Mol. Cell. 6 (2000) 909–919; https://doi.org/10.1016/s1097-2765(05)00089-4
D. A. Heerding, N. Rhodes, J. D. Leber, T. J. Clark, R. M. Keenan, L. V. Lafrance, M. Li, G. Safonov, D. T. Takata, J. W. Venslavsky, D. S. Yamashita, A. E. Choudhry, R. A. Copeland, Z. Lai, M. D. Schaber, P. J. Tummino, S. L. Strum, E. R. Wood, D.R. Duckett, D. Eberwein, V. B. Knick, T. J. Lansing, R. T. McConnell, S. Y. Zhang, E. A. Minthorn, N. O. Concha, G. L. Warren and R. Kumar, Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c] pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase, J. Med. Chem. 51 (2008) 5663–5679; https://pubs.acs.org/doi/10.1021/jm8004527#_i95
Y. Liu, M. Grimm, W. T. Dai, M. C. Hou, Z. X. Xiao and Y. Cao, CB-Dock: A web server for cavity detection-guided protein-ligand blind docking, Acta Pharmacol. Sin. 41 (2020) 138–144; https://doi.org/10.1038/s41401-019-0228-6
Y. Zhou, X. L. Wu, C. Qin, Y. N. Tong, S. Tian and X. L. Huang, Effect of cardiac rehabilitation nursing on patients with myocardial infarction, Altern. Ther. Health Med. 12 (2024) Article ID AT10294 (7 pages); http://alternative-therapies.com/oa/index.html?fid=10294
H. M. Yoon, S. J. Joo, K. Y. Boo, J. G. Lee, J. H. Choi, S. Y. Kim and S. Y. Lee, Impact of cardiac rehabilitation on ventricular-arterial coupling and left ventricular function in patients with acute myocardial infarction, PLoS One9 (2024) Article ID e0300578; https://doi.org/10.1371/journal.pone.0300578
H. Y. Kim, K. H. Kim, N. Lee, H. Park, J. Y. Cho, H. J. Yoon, Y. Ahn, M. H. Jeong and J. G. Cho, Timing of heart failure development and clinical outcomes in pati-ents with acute myocardial infarction, Front. Cardiovasc. Med. 10 (2023) Article ID 1193973 (9 pages); https://doi.org/10.3389/fcvm.2023.1193973
L. Zhao, H. Zhang, N. Li, J. Chen, H. Xu, Y. Wang and Q. Liang, Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula, J. Ethnopharmacol. 309 (2023) Article ID 116306; https://doi.org/10.1016/j.jep.2023.116306
L. Pinzi and G. Rastelli, Molecular docking: Shifting paradigms in drug discovery, Int. J. Mol. Sci. 20(18) (2019) Article ID 4331 (23 pages); https://doi.org/10.3390/ijms20184331
K. Crampon, A. Giorkallos, M. Deldossi, S. Baud and L. A. Steffenel, Machine-learning methods for ligand-protein molecular docking, Drug Discov. Today27 (2022) 151–164; https://doi.org/10.1016/j.drudis.2021.09.007
S. Ghafouri-Fard, A. K. Sasi, B. M. Hussen, H. Shoorei, A. Siddiq, M. Taheri and S. A. Ayatollahi, Interplay between PI3K/AKT pathway and heart disorders, Mol. Biol. Rep. 49 (2022) 9767–9781; https://doi.org/10.1007/s11033-022-07468-0
K. Chen, Y. Guan, S. Wu, D. Quan, D. Yang, H. Wu, L. Lv and G. Zhang, Salvianolic acid D: A potent molecule that protects against heart failure induced by hypertension via Ras signalling pathway and PI3K/Akt signalling pathway, Heliyon9(2) (2022) Article ID e12337 (15 pages); https://doi.org/10.1016/j.heliyon.2022.e12337
W. Xie, S. Chen, W. Wang, X. Qin, C. Kong and D. Wang, Nuciferine reduces vascular leakage and improves cardiac function in acute myocardial infarction by regulating the PI3K/AKT pathway, Sci. Rep. 14 (2024) 7086; https://doi.org/10.1038/s41598-024-57595-w
X. Wang, W. Li, Y. Zhang, Q. Sun, J. Cao, N. Tan, S. Yang, L. Lu, Q. Zhang, P. Wei, X. Ma, W. Wang and Y. Wang, Calycosin as a novel PI3K activator reduces inflammation and fibrosis in heart failure through AKT-IKK/STAT3 axis, Front. Pharmacol. 13 (2022) Article ID 828061 (14 pages); https://doi.org/10.3389/fphar.2022.828061
W. Qin, L. Cao and I. Y. Massey, Role of PI3K/Akt signaling pathway in cardiac fibrosis, Mol. Cell Biochem. 476 (2021) 4045–4059; https://doi.org/10.1007/s11010-021-04219-w
P. L. Hsieh, P. M. Chu, H. C. Cheng, Y. T. Huang, W. C. Chou, K. L. Tsai and S. H. Chan, Dapagliflozin mitigates doxorubicin-caused myocardium damage by regulating AKT-mediated oxidative stress, cardiac remodeling, and inflammation, Int. J. Mol. Sci. 23(17) (2022) Article ID 10146; https://doi.org/10.3390/ijms231710146
Y. Hu, H. Y. Qu and H. Zhou, Integrating network pharmacology and an experimental model to investigate the effect of Zhenwu decoction on doxorubicin-induced heart failure, Comb. Chem. High Throughput Screen. 26 (2023) 2502–2516; https://doi.org/10.2174/1386207326666230413091715