Have a personal or library account? Click to login

Integrating network pharmacology and in vivo model to reveal the cardiovascular protective effects of kaempferol-3-O-rutinoside on heart failure

Open Access
|Apr 2025

References

  1. B. Bozkurt, Contemporary pharmacological treatment and management of heart failure, Nat. Rev. Cardiol. 21(8) (2024) 545–555; https://doi.org/10.1038/s41569-024-00997-0
  2. Q. Wang, H. Su and J. Liu, Protective effect of natural medicinal plants on cardiomyocyte injury in heart failure: Targeting the dysregulation of mitochondrial homeostasis and mitophagy, Oxid. Med. Cell Longev. 2022 (2022) Article ID 3617086 (24 pages); https://doi.org/10.1155/2022/3617086
  3. A. Bechthold, H. Boeing, C. Schwedhelm, G. Hoffmann, S. Knüppel, K. Iqbal, S. D. Henauw, N. Michels, B. Devleesschauwer, S. Schlesinger and L. Schwingshackl, Food groups and risk of coronary heart disease, stroke and heart failure: A systematic reviewand dose-response meta-analysis of prospective studies, Crit. Rev. Food Sci. Nutr. 59 (2019) 1071–1090; https://doi.org/10.1080/10408398.2017.1392288
  4. M. I. Qadir, Role of green tea flavonoids and other related contents in cancer prevention, Crit. Rev. Eukaryot Gene Expr. 27 (2017) 163–171; https://doi.org/10.1615/CritRevEukaryotGeneExpr.2017019493
  5. P. V. A. Babu and D. Liu, Green tea catechins and cardiovascular health: An update, Curr. Med. Chem. 15 (2008) 1840–1850; https://doi.org/10.2174/092986708785132979
  6. P. Bhardwaj and D. Khanna, Green tea catechins: defensive role in cardiovascular disorders, Chin. J. Nat. Med. 11 (2013) 345–353; https://doi.org/10.1016/S1875-5364(13)60051-5
  7. M. Li, X. Luo, C. T. Ho, D. Li, H. Guo and Z. Xie, A new strategy for grading of Lu’an guapian green tea by combination of differentiated metabolites and hypoglycaemia effect, Food Res. Int. 159 (2022) Article ID 111639 (12 pages); https://doi.org/10.1016/j.foodres.2022.111639
  8. W. X. Bai, C. Wang, Y. J. Wang, W. J. Zheng, W. Wang, X. C. Wan and G. H. Bao, Novel acylated flavonol tetraglycoside with inhibitory effect on lipid accumulation in 3T3-L1 cells from Lu’an Gua-Pian tea and quantification of flavonoid glycosides in six major processing types of tea, J. Agric. Food Chem. 65 (2017) 2999–3005; https://doi.org/10.1021/acs.jafc.7b00239
  9. P. Zhou, Y. Y. Ma, J. Z. Peng and F. Hua, Kaempferol-3-O-rutinoside: a natural flavonoid glycosides with multifaceted therapeutic potential, Neurochem. J. 17 (2023) 247–252; https://link.springer.com/article/10.1134/S181971242302023X
  10. F. Hua, P. Zhou, P. P. Liu and G. H. Bao, Rat plasma protein binding of kaempferol-3-O-rutinoside from Lu’an GuaPian tea and its anti-inflammatory mechanism for cardiovascular protection, J. Food Biochem. 45 (2021) Article ID e13749; https://doi.org/10.1111/jfbc.13749
  11. F. Hua, J. Y. Li, M. Zhang, P. Zhou, L. Wang, T. J. Ling and G. H. Bao, Kaempfe-rol-3-O-rutinoside exerts cardioprotective effects through NF-κB/NLRP3/Caspase-1 pathway in ventricular remodeling after acute myocardial infarction, J. Food Biochem. 46 (2022) Article ID e14305; https://doi.org/10.1111/jfbc.14305
  12. Y. Y. Ma, X. N. Zhao, L. Zhou, S. N. Li, J. Bai, L. L. Shi, F. Hua and P. Zhou, Pretreatment of kaempferol-3-O-rutinoside protects H9c2 cells against LPS-induced inflammation through the AMPK/SIRT1 pathway, Ital. J. Food Sci. 35 (2023) 13–21; https://doi.org/10.15586/ijfs.v35i2.2290
  13. S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A Thiessen, B. Yu, L. Zaslavsky, J. Zhang and E. E. Bolton, PubChem 2023 update, Nucleic Acids Res. 51 (2023) D1373–D1380; https://doi.org/10.1093/nar/gkac956
  14. A. Daina, O. Michielin and V. Zoete, SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules, Nucleic Acids Res. 47 (2019) W357–364; https://doi.org/10.1093/nar/gkz382
  15. S. Gu and L. H. Lai, Associating 197 Chinese herbal medicine with drug targets and diseases using the similarity ensemble approach, Acta. Pharm. Sin. 41 (2020) 432–438; https://doi.org/10.1038/s41401-019-0306-9
  16. X. Wang, Y. Shen, S. Wang, S. Li, W. Zhang, X. Liu, L. Lai, J. Pei and H. Li, Pharm Mapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database, Nucleic Acids Res. 45 (2017) W356–360; https://doi.org/10.1093/nar/gkx374
  17. X. Kong, C. Liu, Z. Zhang, M. Cheng, Z. Mei, X. Li, P. Liu, L. Diao, Y. Ma, P. Jiang, X. Kong, S. Nie, Y. Guo, Z. Wang, X. Zhang, Y. Wang, L. Tang, S. Guo, Z. Liu and D. Li, BATMAN-TCM 2.0: an enhanced integrative database for known and predicted interactions between traditional Chinese medicine ingredients and target proteins, Nucleic Acids Res. 52 (2024) D1110–1120; https://doi.org/10.1093/nar/gkad926
  18. R. Barshir, S. Fishilevich, T. Iny-Stein, O. Zelig, Y. Mazor, Y. Guan-Golan, M. Safran and D. Lancet, GeneCaRNA: A comprehensive gene-centric database of human non-coding RNAs in the Gene-Cards Suite, J. Mol. Biol. 433 (2021) Article ID 166913 (10 pages); https://doi.org/10.1016/j.jmb.2021.166913
  19. E. W. Sayers, E. E. Bolton, J. R. Brister, K. Canese, J. Chan, D. C. Comeau, R. Co-nnor, K. Funk, C. Kelly, S. Kim, T. Madej, A. Marchler-Bauer, C. Lanczycki, S. Lat-hrop, Z. Lu, F. Thibaud-Nissen, T. Murphy, L. Phan, Y. Skripchenkom, T. Tse1, J. Wang, R. Williams, B. W. Trawick, K. D. Pruitt and S. T. Sherry, Database resources of the National Center for Biotechnology Information, Nucleic Acids Res. 49 (2021) D10–17; https://doi.org/10.1093/nar/gkab1112
  20. J. Piñero, J. M. Ramírez-Anguita, J. Saüch-Pitarch, F. Ronzano, E. Centeno, F. Sanz and L. I. Furlong, The DisGeNET knowledge platform for disease genomics: 2019 update, Nucleic Acids Res. 48(D1) (2020) D845–D855; https://doi.org/10.1093/nar/gkz1021
  21. D. Szklarczyk, R. Kirsch, M. Koutrouli, K. Nastou, F. Mehryary, R. Hachilif, A. L. Gable, T. Fang, N. T. Doncheva, S. Pyysalo, P. Bork, L. J. Jensen and C. von Mering, The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Res. 51 (2023) D638–646; https://doi.org/10.1093/nar/gkac1000
  22. E. H. Walker, M. E. Pacold, O. Perisic, L. Stephens, P. T. Hawkins, M. P. Wymann, R. L. Williams, Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine, Mol. Cell. 6 (2000) 909–919; https://doi.org/10.1016/s1097-2765(05)00089-4
  23. D. A. Heerding, N. Rhodes, J. D. Leber, T. J. Clark, R. M. Keenan, L. V. Lafrance, M. Li, G. Safonov, D. T. Takata, J. W. Venslavsky, D. S. Yamashita, A. E. Choudhry, R. A. Copeland, Z. Lai, M. D. Schaber, P. J. Tummino, S. L. Strum, E. R. Wood, D.R. Duckett, D. Eberwein, V. B. Knick, T. J. Lansing, R. T. McConnell, S. Y. Zhang, E. A. Minthorn, N. O. Concha, G. L. Warren and R. Kumar, Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c] pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase, J. Med. Chem. 51 (2008) 5663–5679; https://pubs.acs.org/doi/10.1021/jm8004527#_i95
  24. Y. Liu, M. Grimm, W. T. Dai, M. C. Hou, Z. X. Xiao and Y. Cao, CB-Dock: A web server for cavity detection-guided protein-ligand blind docking, Acta Pharmacol. Sin. 41 (2020) 138–144; https://doi.org/10.1038/s41401-019-0228-6
  25. Y. Zhou, X. L. Wu, C. Qin, Y. N. Tong, S. Tian and X. L. Huang, Effect of cardiac rehabilitation nursing on patients with myocardial infarction, Altern. Ther. Health Med. 12 (2024) Article ID AT10294 (7 pages); http://alternative-therapies.com/oa/index.html?fid=10294
  26. H. M. Yoon, S. J. Joo, K. Y. Boo, J. G. Lee, J. H. Choi, S. Y. Kim and S. Y. Lee, Impact of cardiac rehabilitation on ventricular-arterial coupling and left ventricular function in patients with acute myocardial infarction, PLoS One 9 (2024) Article ID e0300578; https://doi.org/10.1371/journal.pone.0300578
  27. H. Y. Kim, K. H. Kim, N. Lee, H. Park, J. Y. Cho, H. J. Yoon, Y. Ahn, M. H. Jeong and J. G. Cho, Timing of heart failure development and clinical outcomes in pati-ents with acute myocardial infarction, Front. Cardiovasc. Med. 10 (2023) Article ID 1193973 (9 pages); https://doi.org/10.3389/fcvm.2023.1193973
  28. L. Zhao, H. Zhang, N. Li, J. Chen, H. Xu, Y. Wang and Q. Liang, Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula, J. Ethnopharmacol. 309 (2023) Article ID 116306; https://doi.org/10.1016/j.jep.2023.116306
  29. L. Pinzi and G. Rastelli, Molecular docking: Shifting paradigms in drug discovery, Int. J. Mol. Sci. 20(18) (2019) Article ID 4331 (23 pages); https://doi.org/10.3390/ijms20184331
  30. K. Crampon, A. Giorkallos, M. Deldossi, S. Baud and L. A. Steffenel, Machine-learning methods for ligand-protein molecular docking, Drug Discov. Today 27 (2022) 151–164; https://doi.org/10.1016/j.drudis.2021.09.007
  31. S. Ghafouri-Fard, A. K. Sasi, B. M. Hussen, H. Shoorei, A. Siddiq, M. Taheri and S. A. Ayatollahi, Interplay between PI3K/AKT pathway and heart disorders, Mol. Biol. Rep. 49 (2022) 9767–9781; https://doi.org/10.1007/s11033-022-07468-0
  32. K. Chen, Y. Guan, S. Wu, D. Quan, D. Yang, H. Wu, L. Lv and G. Zhang, Salvianolic acid D: A potent molecule that protects against heart failure induced by hypertension via Ras signalling pathway and PI3K/Akt signalling pathway, Heliyon 9(2) (2022) Article ID e12337 (15 pages); https://doi.org/10.1016/j.heliyon.2022.e12337
  33. W. Xie, S. Chen, W. Wang, X. Qin, C. Kong and D. Wang, Nuciferine reduces vascular leakage and improves cardiac function in acute myocardial infarction by regulating the PI3K/AKT pathway, Sci. Rep. 14 (2024) 7086; https://doi.org/10.1038/s41598-024-57595-w
  34. X. Wang, W. Li, Y. Zhang, Q. Sun, J. Cao, N. Tan, S. Yang, L. Lu, Q. Zhang, P. Wei, X. Ma, W. Wang and Y. Wang, Calycosin as a novel PI3K activator reduces inflammation and fibrosis in heart failure through AKT-IKK/STAT3 axis, Front. Pharmacol. 13 (2022) Article ID 828061 (14 pages); https://doi.org/10.3389/fphar.2022.828061
  35. W. Qin, L. Cao and I. Y. Massey, Role of PI3K/Akt signaling pathway in cardiac fibrosis, Mol. Cell Biochem. 476 (2021) 4045–4059; https://doi.org/10.1007/s11010-021-04219-w
  36. P. L. Hsieh, P. M. Chu, H. C. Cheng, Y. T. Huang, W. C. Chou, K. L. Tsai and S. H. Chan, Dapagliflozin mitigates doxorubicin-caused myocardium damage by regulating AKT-mediated oxidative stress, cardiac remodeling, and inflammation, Int. J. Mol. Sci. 23(17) (2022) Article ID 10146; https://doi.org/10.3390/ijms231710146
  37. Y. Hu, H. Y. Qu and H. Zhou, Integrating network pharmacology and an experimental model to investigate the effect of Zhenwu decoction on doxorubicin-induced heart failure, Comb. Chem. High Throughput Screen. 26 (2023) 2502–2516; https://doi.org/10.2174/1386207326666230413091715
DOI: https://doi.org/10.2478/acph-2025-0001 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 119 - 132
Accepted on: Nov 12, 2024
Published on: Apr 10, 2025
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Lu-Qin Guo, Lan Zhou, Sheng-Nan Li, Juan Bai, Ling-Li Shi, Fang Hua, Peng Zhou, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.