References
- B. Bozkurt, Contemporary pharmacological treatment and management of heart failure, Nat. Rev. Cardiol. 21(8) (2024) 545–555; https://doi.org/10.1038/s41569-024-00997-0
- Q. Wang, H. Su and J. Liu, Protective effect of natural medicinal plants on cardiomyocyte injury in heart failure: Targeting the dysregulation of mitochondrial homeostasis and mitophagy, Oxid. Med. Cell Longev. 2022 (2022) Article ID 3617086 (24 pages); https://doi.org/10.1155/2022/3617086
- A. Bechthold, H. Boeing, C. Schwedhelm, G. Hoffmann, S. Knüppel, K. Iqbal, S. D. Henauw, N. Michels, B. Devleesschauwer, S. Schlesinger and L. Schwingshackl, Food groups and risk of coronary heart disease, stroke and heart failure: A systematic reviewand dose-response meta-analysis of prospective studies, Crit. Rev. Food Sci. Nutr. 59 (2019) 1071–1090; https://doi.org/10.1080/10408398.2017.1392288
- M. I. Qadir, Role of green tea flavonoids and other related contents in cancer prevention, Crit. Rev. Eukaryot Gene Expr. 27 (2017) 163–171; https://doi.org/10.1615/CritRevEukaryotGeneExpr.2017019493
- P. V. A. Babu and D. Liu, Green tea catechins and cardiovascular health: An update, Curr. Med. Chem. 15 (2008) 1840–1850; https://doi.org/10.2174/092986708785132979
- P. Bhardwaj and D. Khanna, Green tea catechins: defensive role in cardiovascular disorders, Chin. J. Nat. Med. 11 (2013) 345–353; https://doi.org/10.1016/S1875-5364(13)60051-5
- M. Li, X. Luo, C. T. Ho, D. Li, H. Guo and Z. Xie, A new strategy for grading of Lu’an guapian green tea by combination of differentiated metabolites and hypoglycaemia effect, Food Res. Int. 159 (2022) Article ID 111639 (12 pages); https://doi.org/10.1016/j.foodres.2022.111639
- W. X. Bai, C. Wang, Y. J. Wang, W. J. Zheng, W. Wang, X. C. Wan and G. H. Bao, Novel acylated flavonol tetraglycoside with inhibitory effect on lipid accumulation in 3T3-L1 cells from Lu’an Gua-Pian tea and quantification of flavonoid glycosides in six major processing types of tea, J. Agric. Food Chem. 65 (2017) 2999–3005; https://doi.org/10.1021/acs.jafc.7b00239
- P. Zhou, Y. Y. Ma, J. Z. Peng and F. Hua, Kaempferol-3-O-rutinoside: a natural flavonoid glycosides with multifaceted therapeutic potential, Neurochem. J. 17 (2023) 247–252; https://link.springer.com/article/10.1134/S181971242302023X
- F. Hua, P. Zhou, P. P. Liu and G. H. Bao, Rat plasma protein binding of kaempferol-3-O-rutinoside from Lu’an GuaPian tea and its anti-inflammatory mechanism for cardiovascular protection, J. Food Biochem. 45 (2021) Article ID e13749; https://doi.org/10.1111/jfbc.13749
- F. Hua, J. Y. Li, M. Zhang, P. Zhou, L. Wang, T. J. Ling and G. H. Bao, Kaempfe-rol-3-O-rutinoside exerts cardioprotective effects through NF-κB/NLRP3/Caspase-1 pathway in ventricular remodeling after acute myocardial infarction, J. Food Biochem. 46 (2022) Article ID e14305; https://doi.org/10.1111/jfbc.14305
- Y. Y. Ma, X. N. Zhao, L. Zhou, S. N. Li, J. Bai, L. L. Shi, F. Hua and P. Zhou, Pretreatment of kaempferol-3-O-rutinoside protects H9c2 cells against LPS-induced inflammation through the AMPK/SIRT1 pathway, Ital. J. Food Sci. 35 (2023) 13–21; https://doi.org/10.15586/ijfs.v35i2.2290
- S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A Thiessen, B. Yu, L. Zaslavsky, J. Zhang and E. E. Bolton, PubChem 2023 update, Nucleic Acids Res. 51 (2023) D1373–D1380; https://doi.org/10.1093/nar/gkac956
- A. Daina, O. Michielin and V. Zoete, SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules, Nucleic Acids Res. 47 (2019) W357–364; https://doi.org/10.1093/nar/gkz382
- S. Gu and L. H. Lai, Associating 197 Chinese herbal medicine with drug targets and diseases using the similarity ensemble approach, Acta. Pharm. Sin. 41 (2020) 432–438; https://doi.org/10.1038/s41401-019-0306-9
- X. Wang, Y. Shen, S. Wang, S. Li, W. Zhang, X. Liu, L. Lai, J. Pei and H. Li, Pharm Mapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database, Nucleic Acids Res. 45 (2017) W356–360; https://doi.org/10.1093/nar/gkx374
- X. Kong, C. Liu, Z. Zhang, M. Cheng, Z. Mei, X. Li, P. Liu, L. Diao, Y. Ma, P. Jiang, X. Kong, S. Nie, Y. Guo, Z. Wang, X. Zhang, Y. Wang, L. Tang, S. Guo, Z. Liu and D. Li, BATMAN-TCM 2.0: an enhanced integrative database for known and predicted interactions between traditional Chinese medicine ingredients and target proteins, Nucleic Acids Res. 52 (2024) D1110–1120; https://doi.org/10.1093/nar/gkad926
- R. Barshir, S. Fishilevich, T. Iny-Stein, O. Zelig, Y. Mazor, Y. Guan-Golan, M. Safran and D. Lancet, GeneCaRNA: A comprehensive gene-centric database of human non-coding RNAs in the Gene-Cards Suite, J. Mol. Biol. 433 (2021) Article ID 166913 (10 pages); https://doi.org/10.1016/j.jmb.2021.166913
- E. W. Sayers, E. E. Bolton, J. R. Brister, K. Canese, J. Chan, D. C. Comeau, R. Co-nnor, K. Funk, C. Kelly, S. Kim, T. Madej, A. Marchler-Bauer, C. Lanczycki, S. Lat-hrop, Z. Lu, F. Thibaud-Nissen, T. Murphy, L. Phan, Y. Skripchenkom, T. Tse1, J. Wang, R. Williams, B. W. Trawick, K. D. Pruitt and S. T. Sherry, Database resources of the National Center for Biotechnology Information, Nucleic Acids Res. 49 (2021) D10–17; https://doi.org/10.1093/nar/gkab1112
- J. Piñero, J. M. Ramírez-Anguita, J. Saüch-Pitarch, F. Ronzano, E. Centeno, F. Sanz and L. I. Furlong, The DisGeNET knowledge platform for disease genomics: 2019 update, Nucleic Acids Res. 48(D1) (2020) D845–D855; https://doi.org/10.1093/nar/gkz1021
- D. Szklarczyk, R. Kirsch, M. Koutrouli, K. Nastou, F. Mehryary, R. Hachilif, A. L. Gable, T. Fang, N. T. Doncheva, S. Pyysalo, P. Bork, L. J. Jensen and C. von Mering, The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Res. 51 (2023) D638–646; https://doi.org/10.1093/nar/gkac1000
- E. H. Walker, M. E. Pacold, O. Perisic, L. Stephens, P. T. Hawkins, M. P. Wymann, R. L. Williams, Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine, Mol. Cell. 6 (2000) 909–919; https://doi.org/10.1016/s1097-2765(05)00089-4
- D. A. Heerding, N. Rhodes, J. D. Leber, T. J. Clark, R. M. Keenan, L. V. Lafrance, M. Li, G. Safonov, D. T. Takata, J. W. Venslavsky, D. S. Yamashita, A. E. Choudhry, R. A. Copeland, Z. Lai, M. D. Schaber, P. J. Tummino, S. L. Strum, E. R. Wood, D.R. Duckett, D. Eberwein, V. B. Knick, T. J. Lansing, R. T. McConnell, S. Y. Zhang, E. A. Minthorn, N. O. Concha, G. L. Warren and R. Kumar, Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c] pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase, J. Med. Chem. 51 (2008) 5663–5679; https://pubs.acs.org/doi/10.1021/jm8004527#_i95
- Y. Liu, M. Grimm, W. T. Dai, M. C. Hou, Z. X. Xiao and Y. Cao, CB-Dock: A web server for cavity detection-guided protein-ligand blind docking, Acta Pharmacol. Sin. 41 (2020) 138–144; https://doi.org/10.1038/s41401-019-0228-6
- Y. Zhou, X. L. Wu, C. Qin, Y. N. Tong, S. Tian and X. L. Huang, Effect of cardiac rehabilitation nursing on patients with myocardial infarction, Altern. Ther. Health Med. 12 (2024) Article ID AT10294 (7 pages); http://alternative-therapies.com/oa/index.html?fid=10294
- H. M. Yoon, S. J. Joo, K. Y. Boo, J. G. Lee, J. H. Choi, S. Y. Kim and S. Y. Lee, Impact of cardiac rehabilitation on ventricular-arterial coupling and left ventricular function in patients with acute myocardial infarction, PLoS One 9 (2024) Article ID e0300578; https://doi.org/10.1371/journal.pone.0300578
- H. Y. Kim, K. H. Kim, N. Lee, H. Park, J. Y. Cho, H. J. Yoon, Y. Ahn, M. H. Jeong and J. G. Cho, Timing of heart failure development and clinical outcomes in pati-ents with acute myocardial infarction, Front. Cardiovasc. Med. 10 (2023) Article ID 1193973 (9 pages); https://doi.org/10.3389/fcvm.2023.1193973
- L. Zhao, H. Zhang, N. Li, J. Chen, H. Xu, Y. Wang and Q. Liang, Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula, J. Ethnopharmacol. 309 (2023) Article ID 116306; https://doi.org/10.1016/j.jep.2023.116306
- L. Pinzi and G. Rastelli, Molecular docking: Shifting paradigms in drug discovery, Int. J. Mol. Sci. 20(18) (2019) Article ID 4331 (23 pages); https://doi.org/10.3390/ijms20184331
- K. Crampon, A. Giorkallos, M. Deldossi, S. Baud and L. A. Steffenel, Machine-learning methods for ligand-protein molecular docking, Drug Discov. Today 27 (2022) 151–164; https://doi.org/10.1016/j.drudis.2021.09.007
- S. Ghafouri-Fard, A. K. Sasi, B. M. Hussen, H. Shoorei, A. Siddiq, M. Taheri and S. A. Ayatollahi, Interplay between PI3K/AKT pathway and heart disorders, Mol. Biol. Rep. 49 (2022) 9767–9781; https://doi.org/10.1007/s11033-022-07468-0
- K. Chen, Y. Guan, S. Wu, D. Quan, D. Yang, H. Wu, L. Lv and G. Zhang, Salvianolic acid D: A potent molecule that protects against heart failure induced by hypertension via Ras signalling pathway and PI3K/Akt signalling pathway, Heliyon 9(2) (2022) Article ID e12337 (15 pages); https://doi.org/10.1016/j.heliyon.2022.e12337
- W. Xie, S. Chen, W. Wang, X. Qin, C. Kong and D. Wang, Nuciferine reduces vascular leakage and improves cardiac function in acute myocardial infarction by regulating the PI3K/AKT pathway, Sci. Rep. 14 (2024) 7086; https://doi.org/10.1038/s41598-024-57595-w
- X. Wang, W. Li, Y. Zhang, Q. Sun, J. Cao, N. Tan, S. Yang, L. Lu, Q. Zhang, P. Wei, X. Ma, W. Wang and Y. Wang, Calycosin as a novel PI3K activator reduces inflammation and fibrosis in heart failure through AKT-IKK/STAT3 axis, Front. Pharmacol. 13 (2022) Article ID 828061 (14 pages); https://doi.org/10.3389/fphar.2022.828061
- W. Qin, L. Cao and I. Y. Massey, Role of PI3K/Akt signaling pathway in cardiac fibrosis, Mol. Cell Biochem. 476 (2021) 4045–4059; https://doi.org/10.1007/s11010-021-04219-w
- P. L. Hsieh, P. M. Chu, H. C. Cheng, Y. T. Huang, W. C. Chou, K. L. Tsai and S. H. Chan, Dapagliflozin mitigates doxorubicin-caused myocardium damage by regulating AKT-mediated oxidative stress, cardiac remodeling, and inflammation, Int. J. Mol. Sci. 23(17) (2022) Article ID 10146; https://doi.org/10.3390/ijms231710146
- Y. Hu, H. Y. Qu and H. Zhou, Integrating network pharmacology and an experimental model to investigate the effect of Zhenwu decoction on doxorubicin-induced heart failure, Comb. Chem. High Throughput Screen. 26 (2023) 2502–2516; https://doi.org/10.2174/1386207326666230413091715