References
- P. Ray, B. Huang and Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell. Sign. 24(5) (2012) 981–990; https://doi.org/10.1016/j.cellsig.2012.01.008
- T. Finkel and N. J. Holbrook, Oxidants, oxidative stress and the biology of ageing, Nature 408(6809) (2000) 239–247; https://doi.org/10.1038/35041687
- H. Sies, Oxidative stress: a concept in redox biology and medicine, Redox Biol. . (2015) 180–183; https://doi.org/10.1016/j.redox.2015.01.002
- D. P. Jones and M. A. S. Sies, Redox signaling in cell regulation and aging, Biochem. Biophy. Res. Comm. 338(1) (2005) 485–493; https://doi.org/10.1016/j.bbrc.2005.08.002
- D. L. Carden and D. N. Granger, Pathophysiology of ischemia-reperfusion injury, The J. Path. 190(3) (2000) 255–266; https://doi.org/10.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6
- J. K. Willcox, S. Ash and G. Catignani, Antioxidants and prevention of chronic diseases, Crit. Rev. Food Sci. Nutr. 44(4) (2004) 275–295; https://doi.org/10.1080/10408690490468489
- I. Spasojević, M. Mojović, A. Ignjatović and G. Bačić, The role of EPR spectroscopy in studies of the oxidative status of biological systems and the antioxidative properties of various compounds, J. Serb. Chem. Soc. 76(5) (2011) 647–677; https://doi.org/10.2298/JSC101015064S
- C. Hawkins and M. Davies, Detection and characterisation of radicals in biological materials using EPR methodology, Biochim. Biophys. Acta 1840(2) (2014) 708–721; https://doi.org/10.1016/j.bbagen.2013.03.034
- M. Carini, G. Aldini, M. Orioli and R. Facino, Electron Paramagnetic Resonance (EPR) spectroscopy: a versatile and powerful tool in pharmaceutical and biomedical analysis, Curr. Pharm. Anal. .(2) (2006) 141–159; https://doi.org/10.2174/157341206776819328
- M. Davies, Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods, Methods 109 (2016) 21–30; https://doi.org/10.1016/j.ymeth.2016.05.013
- H. M. Swartz, N. Khan, J. Buckey, R. Comi, L. Gould, O. Grinberg, A. Hartford, H. Hopf, H. Hou, E. Hug, A. Iwasaki, P. Lesniewski, I. Salikhov and T. Walczak, Clinical applications of EPR: overview and perspectives, NMR Biomed. 17(5) (2004) 335–351; https://doi.org/10.1002/nbm.911
- K. Pavić, G. Poje, L. Pessanha de Carvalho, T. Tandarić, M. Marinović, D. Fontinha, J. Held, M. Prudêncio, I. Piantanida, R. Vianello, I. Krošl Knežević, I. Perković and Z. Rajić, Discovery of harmiprims, harmine-primaquine hybrids, as potent and selective anticancer and antimalarial compounds, Bioorg. Med. Chem. 105 (2024) Article ID 117734 (16 pages); https://doi.org/10.1016/j.bmc.2024.117734
- S. Mendanha, J. L. Anjos, A. H. M. Silva and A. Alonso, Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide, Braz. J. Med. Biol. Res. 45(6) (2012) 473–481; https://doi.org/10.1590/S0100-879X2012007500050
- I. D. Sahu and G. Lorigan, Biophysical EPR studies applied to membrane proteins, J. Phys. Chem. Biophys. .(6) (2016) 1–6; https://doi.org/10.4172/2161-0398.1000188
- S. Iravani and G. Soufi, Electron paramagnetic resonance (EPR) spectroscopy: Food, biomedical and pharmaceutical analysis, Biomed. Spec. Imag. .(3–4) (1996) 165–182; https://doi.org/10.3233/BSI-200206
- S. Kempe, H. Metz and K. Mäder, Application of electron paramagnetic resonance (EPR) spectroscopy and imaging in drug delivery research — chances and challenges, Eur. J. Pharm. Biopharm. 74(1) (2010) 55–66; https://doi.org/10.1016/j.ejpb.2009.08.007
- D. J. Lurie and Mäder K, Monitoring drug delivery processes by EPR and related techniques— principles and applications, Adv. Drug Deliv. Rev. 57(8) (2005) 1171–1190; https://doi.org/10.1016/j.addr.2005.01.023
- V. Torchilin, Tumor delivery of macromolecular drugs based on the EPR effect, Adv. Drug Del. Rev. 63(3) (2011) 131–135; https://doi.org/10.1016/j.addr.2010.03.011
- A. Bobko, Jason V. Evans, N. Denko and V. Khramtsov, Concurrent longitudinal EPR monitoring of tissue oxygenation, acidosis, and reducing capacity in mouse Xenograft tumor models, Cell Biochem. Biophys. 75(2) (2017) 247–253; https://doi.org/10.1007/s12013-016-0733-x
- A. Bobko, I. Dhimitruka, J. Zweier and V. Khramtsov, Fourier transform EPR spectroscopy of trityl radicals for multifunctional assessment of chemical microenvironment, Angew. Chem. 53(10) (2017) 2735–2738; https://doi.org/10.1002/anie.201310841
- J. A. Zeitler, Pharmaceutical Terahertz Spectroscopy and Imaging, in Analytical Techniques in the Pharmaceutical Sciences. Advances in Delivery Science and Technology (Eds. A. Müllertz, Y. Perrie and T. Rades), Springer, New York 2016, pp. 171–222; https://doi.org/10.1007/978-1-4939-4029-5_5
- S. J. Kaser, T. Christoff-Tempesta, L. D. Uliassi, Y. Cho and J. H. Ortony, Domain-specific phase transitions in a supramolecular nanostructure, J. Am. Chem. Soc. 144(39) (2022) 17841–17847; https://doi.org/10.1021/jacs.2c05908
- I. Mangion, Y. Liu, M. Reibarkh, R. Williamson and C. J. Welch, Using electron paramagnetic resonance spectroscopy to facilitate problem solving in pharmaceutical research and development, J. Org. Chem. 81(16) (2016) 6937–6944; https://doi.org/10.1021/acs.joc.6b00937
- M. M. Roessler and E. Salvadori, Principles and applications of EPR spectroscopy in the chemical sciences, Chem. Soc. Rev. 47(8) (2018) 2534–2553; https://doi.org/10.1039/c6cs00565a
- A. Savitsky and K. Möbius, Photochemical reactions and photoinduced electron-transfer processes in liquids, frozen solutions, and proteins as studied by multifrequency time-resolved EPR spectroscopy, Helv. Chim. Acta 89(10) (2006) 3544–2589; https://doi.org/10.1002/HLCA.200690232
- K. Prosser and C. Walsby, Electron paramagnetic resonance as a tool for studying the mechanisms of paramagnetic anticancer metallodrugs, Eur. J. Inorg. Chem. 2017(12) (2017), 1573–1585; https://doi.org/10.1002/EJIC.201601142
- V. Khramtsov, Biological imaging and spectroscopy of pH, Curr. Org. Chem. .(9) (2005) 909–923; https://doi.org/10.2174/1385272054038309
- J. Eisermann, M. Seif-Eddine and M. M. Roessler, Insights into metalloproteins and metallodrugs from electron paramagnetic resonance spectroscopy, Curr. Opin. Chem. Biol. 61 (2021) 114–122; https://doi.org/10.1016/j.cbpa.2020.11.005
- E. G. Vieira, R. B. Fazzi, D. O. T. A. Martins, A. M. Sheveleva, F. Tuna and A. M. da Costa Ferreira, ESR of copper and iron complexes with antitumor and cytotoxic properties, RSC Advances 13(14) (2023) 9715–9719; https://doi.org/10.1039/d2ra07266a
- C. Rhodes, Electron spin resonance: a diagnostic method in the biomedical sciences, Sci Prog. 94(1) (2008) 16–96; https://doi.org/10.3184/003685011X12982218769939
- K. Matsumoto, S. English, J. Yoo, K. Yamada, N. Devasahayam, J. Cook, J. B. Mitchell, S. Subramanian and M. Krishna, Pharmacokinetics of a triarylmethyl-type paramagnetic spin probe used in EPR oximetry, Mag. Reson. Med. 52(4) (2004) 885–892; https://doi.org/10.1002/mrm.20222
- N. M. Atherton, Principles of Electron Spin Resonance, Ellis Horword PTR, Prentice Hall, New York 1993, pp. 155–182.
- W. Gordy, Theory and Applications of Electron Spin Resonance, Wiley & Sons, New York 1980, pp. 247–312.
- K. Abbas, N. Babić and F. Peyrot, Use of spin traps to detect superoxide production in living cells by electron paramagnetic resonance (EPR) spectroscopy, Methods 109(8) (2016) 31–43; https://doi.org/10.1016/j.ymeth.2016.05.001
- S. Renew, E. Heyno, P. Schopfer and A. Liszkay, Sensitive detection and localization of hydroxyl radical production in cucumber roots and Arabidopsis seedlings by Spin trapping electron para-magnetic resonance spectroscopy, Plant J. 44(2) (2005) 342–347; https://doi.org/10.1111/J.1365-313X.2005.02528.X
- F. Villamena, J. K. Merle, C. Hadad and J. Zweier, Superoxide radical anion adduct of 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 2. The thermodynamics of decay and EPR spectral properties, J. Phys. Chem. A 109(27) (2005) 6089–6098; https://doi.org/10.1021/JP0524330
- J. Fontmorin, R. B. Castillo, W. Z. Tang and M. Sillanpää, Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction, Water Res. 99 (2016) 24–32; https://doi.org/10.1016/j.watres.2016.04.053
- C. T. Migita and K. Migita, Spin trapping of nitrogen-centered radicals. characterization of the DMPO/DEPMPO spin adducts, Chem. Lett. 32(5) (2003) 466–467; https://doi.org/10.1246/CL.2003.466
- G. Zubčić, J. You, F. L. Zott, S. S. Ashirbaev, M. Kolympadi Markovic, E. Bešić, V. Vrček, H. Zipse and D. Šakić, Regioselective Rearrangement of Nitrogen- and Carbon-Centered Radical Intermediates in the Hofmann-Löffler-Freytag Reaction, J. Phys. Chem. A. 128(13) (2024) 2574–2583; https://doi.org/10.1021/acs.jpca.3c07892
- S. Shkunnikova, H. Zipse and D. Šakić, Role of substituents in the Hofmann-Löffler-Freytag reaction. A quantum-chemical case study on nicotine synthesis, Org. Biomol. Chem. 19(4) (2021) 854–866; https://doi.org/10.1039/d0ob02187c
- M. M. Haugland, J. Lovett and E. Anderson, Advances in the synthesis of nitroxide radicals for use in biomolecule spin labelling, Chem. Soc. Rev. 47(3) (2018) 669–680; https://doi.org/10.1039/c6cs00550k
- A. J. Fielding, M. Concilio, G. Heaven and M. A. R. Hollas, New developments in spin labels for pulsed dipolar EPR, Molecules 19(10) (2014) 16998–17025; https://doi.org/10.3390/molecules191016998
- A. Bonucci, O. Ouari, B. Guigliarelli, V. Belle and E. Mileo, In-cell EPR: Progress towards structural studies inside cells, ChemBioChem 21(4) (2019) 451–460; https://doi.org/10.1002/cbic.201900291
- D. Marsh, Spin-label EPR for determining polarity and proticity in biomolecular assemblies: trans-membrane profiles, Appl. Magn. Reson. 37(1–4) (2010) 435–454; https://doi.org/10.1007/s00723-009-0078-3
- B. Robinson, C. Mailer and A. W. Reese, Linewidth analysis of spin labels in liquids. II. Experimental, J. Magn. Reson. 138(2) (1999) 210–219; https://doi.org/10.1006/JMRE.1999.1738
- J. T. Mika, A. J. Thompson, M. R. Dent, N. Brooks, J. Michiels, J. Hofkens and M. Kuimova, Measuring the viscosity of the Escherichia coli plasma membrane using molecular rotors, Biophys. J. 111(7) (2016) 1528–1540; https://doi.org/10.1016/j.bpj.2016.08.020
- H. N. Siti, Y. Kamisah and J. Kamsiah, The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease, Vascul. Pharmacol. 71 (2015) 40–56; https://doi.org/10.1016/j.vph.2015.03.005
- L. A. Pham-Huy, H. He and C. Pham-Huyc, Free radicals, antioxidants in disease and health, Int. J. Biomed. Sci. .(2) (2008) 89–96.
- N. Sharma, Free radicals, antioxidants and disease, Biol. Med. .(3) (2014) 1–6; https://doi.org/10.4172/0974-8369.1000214
- U. Asmat, K. Abad and K. Ismail, Diabetes mellitus and oxidative stress, Saudi Pharm. J. 24(5) (2016) 547–553; https://doi.org/10.1016/j.jsps.2015.03.013
- B. Halliwell and M. Whiteman, Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br. J. Pharmacol. 142(2) (2004) 231–255; https://doi.org/10.1038/sj.bjp.0705776
- Hong-yu Zhang, Structure-activity relationships and rational design strategies for radical-scavenging antioxidants, Curr. Comp. .(3) (2005) 257–273; https://doi.org/10.2174/1573409054367691
- C. Frejaville, H. Karoui, B. Tuccio, F. Le Moigne, M. Culcasi, S. Pietri, R. Lauricella and P. Tordo, 5-Diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO): a new phosphorylated nitrone for the efficient in vitro and in vivo spin trapping of oxygen-centered radicals, J. Chem. Soc. Chem. Comm. 1994(15) (1994) 1793–1794; https://doi.org/10.1039/c39940001793
- K. Abbas, M. Hardy, F. Poulhés, H. Karoui, P. Tordo, O. Ouari and F. Peyrot, Medium-throughput ESR detection of superoxide production in undetached adherent cells using cyclic nitrone spin traps, Free Radic. Res. 49(9) (2015) 1122–1128; https://doi.org/10.3109/10715762.2015.1045504
- S. AbouZid and H. S. Ahmed, Brief review on applications of continuous-wave electron paramagnetic resonance spectroscopy in natural product free radical research, Stud. Nat. Prod. Chem. 66 (2020) 355–369; https://doi.org/10.1016/b978-0-12-817907-9.00013-1
- G. Barriga-González, B. Aguilera-Venegas, C. Folch-Cano, F. Pérez-Cruz and C. Olea-Azar, Electron spin resonance as a powerful tool for studying antioxidants and radicals, Curr. Med. Chem. 20(37) (2013) 4731–4743; https://doi.org/10.2174/09298673113209990157
- M. Bartoszek, J. Polak, Application of electron paramagnetic resonance spectroscopy for investigating antioxidant activity of selected herbs, J. AOAC Int. 98(4) (2015) 862–865; https://doi.org/10.5740/jaoacint.SGE3-Bartoszek
- I. Spasojević, Free radicals and antioxidants at a glance using EPR spectroscopy, Crit. Rev. Clin. Lab. Sci. 48(3) (2011) 114–142; https://doi.org/10.3109/10408363.2011.591772
- C. López-Alarcón and A. Denicola, Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays, Anal. Chim. Acta 763 (2013) 1–10; https://doi.org/10.1016/j.aca.2012.11.051
- F. Shahidi and Y. Zhong, Measurement of antioxidant activity, J. Func. Foods 18 (2015) 757–781; https://doi.org/10.1016/j.jff.2015.01.047
- D. Sanna and A. Fadda, Role of the hydroxyl radical-generating system in the estimation of the antioxidant activity of plant extracts by Electron paramagnetic resonance (EPR), Molecules 27(14) (2022) 4560–4572; https://doi.org/10.3390/molecules27144560
- S. Iravani and G. Soufi, Electron paramagnetic resonance (EPR) spectroscopy: food, biomedical and pharmaceutical analysis, Biomed. Spec. Imag. .(3–4) (2002) 165–182; https://doi.org/10.3233/bsi-200206
- B. Gopalakrishnan, K. Nash, M. Velayutham and F. Villamena, Detection of nitric oxide and super-oxide radical anion by electron paramagnetic resonance spectroscopy from cells using spin traps, J. Vis. Exp. 66 (2012) 2810–2817; https://doi.org/10.3791/2810
- H. E. Williams, V. C. Loades, M. Claybourn and D. Murphy, Electron paramagnetic resonance spectroscopy studies of oxidative degradation of an active pharmaceutical ingredient and quantitative analysis of the organic radical intermediates using partial least-squares regression, Anal. Chem. 78(2) (2006) 604–608; https://doi.org/10.1021/AC051697F
- B. Çalişkan and A. C. Çalişkan, EPR analysis of Antioxidant Compounds, in Free Radicals, Antioxidants and Diseases (Ed. Rizwan Ahmad), IntechOpen 2018, pp. 49–63; https://doi.org/10.5772/intechopen.74294
- J. Slemmer, J. Shacka, Marva I. Sweeney and J. Weber, Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging, Curr. Med. Chem. 15(4) (2008) 404–414; https://doi.org/10.2174/092986708783497337
- I. Munteanu and C. Apetrei, Analytical methods used in determining antioxidant activity: a review, Int. J. Mol. Sci. 22(7) (2021) 3380–3397; https://doi.org/10.3390/ijms22073380
- M. C. Christodoulou, J. C. Orellana Palacios, G. Hesami, S. Jafarzadeh, J. Lorenzo, R. Domínguez, A. Moreno and M. Hadidi, Spectrophotometric methods for measurement of antioxidant activity in food and pharmaceuticals, Antioxidants 11(11) (2022) 2213–2232; https://doi.org/10.3390/anti-ox11112213
- H. E. Williams and M. Claybourn, Predicting the photostability characteristics of active pharmaceutical ingredients using electron paramagnetic resonance spectroscopy, Drug Develop. Ind. Pharm. 38(2) (2012) 200–208; https://doi.org/10.3109/03639045.2011.597399
- G. Buettner, The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate, Arch. Biochem. Biophys. 300(2) (1993) 525–543; https://doi.org/10.1006/ABBI.1993.1074
- M. Traber and J. F. Stevens, Vitamins C and E: Beneficial effects from a mechanistic perspective, Free Radic. Bio. Med. 51(5) (2011) 1000–1013; https://doi.org/10.1016/j.freeradbiomed.2011.05.017
- G. Davison, T. Ashton, B. Davies and D. Bailey, In vitro electron paramagnetic resonance characterization of free radicals: Relevance to exercise-induced lipid peroxidation and implications of ascorbate prophylaxis, Free Radic. Res. 42(4) (2008) 379–386; https://doi.org/10.1080/10715760801976618
- E. Niki, J. Tsuchiya, R. Tanimura and Y. Kamiya, Chem. Lett. 11(6) (1982) 789–782; https://doi.org/10.1246/CL.1982.789
- T. Unno, F. Yayabe, T. Hayakawa and H. Tsuge, Electron spin resonance spectroscopic evaluation of scavenging activity of tea catechins on superoxide radicals generated by a phenazine methosulfate and NADH system, Food Chem. 76(2) (2002) 259–265; https://doi.org/10.1016/S0308-8146(01)00262-X
- A. von Gadow, E. Joubert and C. F. Hansmann, Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea (Aspalathus linearis), α-tocopherol, BHT, and BHA, J. Agr. Food Chem. 45(3) (1997) 632–638; https://doi.org/10.1021/jf960281n
- P. Stopka, J. Křížová, N. Vrchotová, P. Bábíková, J. Tříska, J. Balík and M. Kyseláková, Antioxidant activity of wines and related matters studied by EPR spectroscopy, Czech J. Food Sci. 26(10) (2008) 49–54; https://doi.org/10.17221/248/2008-CJFS
- M. C. Porcu, A. Fadda and D. Sanna, Relationship among EPR oxidative stability and spectrophotometric parameters connected to antioxidant activity in beer samples, Eur. Food Res. Tech. 250(8) (2024) 2123–2132; https://doi.org/10.1007/s00217-024-04525-9
- G. J. Troup and C. R. Hunter, EPR, free radicals, wine, and the industry: Some achievements, Ann. NY Acad. Sci. 957(1) (2002) 345–347; https://doi.org/10.1111/j.1749-6632.2002.tb02939.x
- W. Sim, M. Han and D. Huang, Quantification of antioxidant capacity in a microemulsion system: Synergistic effects of chlorogenic acid with alpha-tocopherol, J. Agr. Food Chem. 57(9) (2009) 34093414; https://doi.org/10.1021/jf8040484
- S. Kawai, K. Matsumoto and H. Utsumi, An EPR method for estimating activity of antioxidants in mouse skin using an anthralin-derived radical model, Free Radic. Res. 44(3) (2010) 267–274; https://doi.org/10.3109/10715760903456100
- V. Mišik, K. Ondriaš and A. Staško, EPR spectroscopy of free radical intermediates of antiarrhythmicantihypoxic drug stobadine, a pyridoindole derivate, Life Sci. 65(18–19) (1999) 1879–1881; https://doi.org/10.1016/S0024-3205(99)00441-5
- N. P. Morales, S. Sirijaroonwong, P. Yamanont and P. C. Electron, Paramagnetic resonance study of the free radical scavenging capacity of curcumin and its demethoxy and hydrogenated derivatives, Biol. Pharm. Bull. 38(10) (2015) 1478–1483; https://doi.org/10.1248/bpb.b15-00209
- G. Poje, D. Šakić, M. Marinović, J. You, M. Tarpley, K. P. Williams, N. Golub, J. Dernovšek, T. Tomašič, E. Bešić and Z. Rajić, Unveiling the antiglioblastoma potential of harmicens, harmine and ferrocene hybrids, Acta Pharm. 74(4) (2024) paper in press; https://doi.org/10.2478/acph-2024-0033
- H. Elajaili, L. Hernandez-Lagunas, K. Ranguelova, S. Dikalov and E. Nozik-Grayck, Use of electron paramagnetic resonance in biological samples at ambient temperature and 77 K, J. Vis. Exp. 143 (2019) video article; https://doi.org/10.3791/58461
- G. Barriga-González, C. Olea-Azar, M. Zúñiga-López, C. Folch-Cano, B. Aguilera-Venegas, W. Porcal, M. Gonzalez and H. Cerecetto, Spin trapping: an essential tool for the study of diseases caused by oxidative stress, Curr. Top. Med. Chem. 15(5) (2015) 484–495; https://doi.org/10.2174/156802661566 6150206155108
- C. Olea-Azar, C. Rigol, F. Mendizabal and R. Briones, Applications of Electron spin resonance and spin trapping in tropical parasitic diseases, Mini Rev. Med. Chem. .(2) (2006) 211220; https://doi.org/10.2174/138955706775475966
- A. M. L. Louithys-Mickalad, S. X. Zheng, G. P. Deby-Dupont, C. M. T. Deby, M. M. Lamy, J. Y. Reginster and Y. Henrotin, In vitro study of the antioxidant properties of non-steroidal anti-inflammatory drugs by chemiluminescence and electron spin resonance (ESR), Free Radic. Res. 33(5) (2010) 607–621; https://doi.org/10.1080/10715760000301131
- K. Ondrias, V. Mišík, A. Staško, D. Gergel and M. Hromadová, Comparison of antioxidant properties of nifedipine and illuminated nifedipine with nitroso spin traps in low density lipoproteins and phosphatidylcholine liposomes, Biochim. Biophys. Acta 1211(1) (1994) 114–119; https://doi.org/10.1016/0005-2760(94)90145-7
- A. Alberti, A. Bolognese, M. Guerra, A. Lavecchia, D. Macciantelli, M. Marcaccio, E. Novellino, F. Paolucci, Characterization of free radicals produced during reduction of the antitumor drug 5H-pyridophenoxazin-5-one: an EPR study, Biochem. 42(41) (2003) 11924–11931; https://doi.org/10.1021/BI0346087
- M. Velayutham, F. Villamena, M. Navamal, J. Fishbein and J. Zweier, Glutathione-mediated formation of oxygen free radicals by the major metabolite of oltipraz, Chem. Res. Tox. 18(6) (2005) 970–975; https://doi.org/10.1021/TX049687H
- A. M. Gopalakrishnan and N. Kumar, Antimalarial action of artesunate involves DNA damage mediated by reactive oxygen species, Antimicrob. Agents and Chemother. 59(1) (2014) 317–325; https://doi.org/10.1128/AAC.03663-14
- A. Alberti, D. Macciantelli and G. Marconi, Free radicals formed by addition of antimalaric artemisinin (Qinghaosu, QHS) to human serum: an ESR-spin trapping investigation, Res. Chem. Intermed. 30(6) (2004) 615–625; https://doi.org/10.1163/1568567041570366
- C. Olea-Azar, C. Rigol, F. Mendizábal, A. Morello, J. Diego Maya, C. Moncada, E. Cabrera, R. di Maio, M. González and H. Cerecetto, ESR spin trapping studies of free radicals generated from nitrofuran derivative analogues of Nifurtimox by electrochemical and Trypanosoma cruzi reduction, Free Radic. Res. 37(9) (2003) 993–1001; https://doi.org/10.1080/10715760310001598141
- H. Yasui, A. Tamura, T. Takino and H. Sakurai, Structure-dependent metallokinetics of antidiabetic vanadyl-picolinate complexes in rats: studies on solution structure, insulinomimetic activity, and metallokinetics, J. Inorg. Biochem. 91(1) (2002) 327–338; https://doi.org/10.1016/S0162-0134(02)00443-9
- K. Takechi, H. Tamura, K. Yamaoka and H. Sakurai, Pharmacokinetic analysis of free radicals by in vivo BCM (Blood Circulation Monitoring)-ESR method, Free Radic. Res. 26(6) (1997) 483–496; https://doi.org/10.3109/10715769709097819
- J. Fugono, H. Yasui and H. Sakurai, Pharmacokinetic study on gastrointestinal absorption of insulinomimetic vanadyl complexes in rats by ESR spectroscopy, J. Pharm. Pharmacol. 53(9) (2001) 1247–1255; https://doi.org/10.1211/0022357011776531
- H. Sakurai, J. Fugono and H. Yasui, Pharmacokinetic study and trial for preparation of enteric-coated capsule containing insulinomimetic vanadyl compounds: implications for clinical use, Mini Rev. Med. Chem. .(1) (2004) 41–48; https://doi.org/10.2174/1389557043487574
- G. Bačić, A. Pavićević and F. Peyrot, In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques, Redox Biol. .(1) (2016) 226–242; https://doi.org/10.1016/j.redox.2015.10.007
- M. Krishna, S. Matsumoto, H. Yasui, K. Saito, N. Devasahayam, S. Subramanian and J. B. Mitchell, Electron paramagnetic resonance imaging of tumor pO2, Radiat. Res. 177(4) (2012) 376–386; https://doi.org/10.1667/RR2622.1
- F. Goda, G. Bačić, I. A. O’Hara, B. Gallez, H. M. Swartz and I. F. Dunn, The relationship between partial pressure of oxygen and perfusion in two murine tumors after X-ray irradiation: a combined gadopentetate dimeglumine dynamic magnetie resonance imaging an in vivo electron paramagnetic resonance oximetry study, Cancer Res. 56(14) (1996) 3344–3349.
- F. Goda, B. Gallez and H. M. Swartz, Pharmacokinetics of the nitroxide PCA measured by in vivo EPR, Res. Chem. Intermed. 22(5) (1996) 491–498; https://doi.org/10.1163/156856796X00692
- B. Pilawa, E. Buszman, D. Wrzéniok, M. Latocha and T. Wilczok, Application of EPR spectroscopy to examination of gentamicin and kanamycin binding to DOPA-melanin, Appl. Magn. Reson. 23(2) (2002) 181–192; https://doi.org/10.1007/BF03166194
- M. Kościelniak-Ziemniak and B. Pilawa, Application of EPR spectroscopy for examination of free radical formation in thermally sterilized betamethasone, clobetasol, and dexamethasone, Appl. Magn. Reson. 42(4) (2012) 519–530; https://doi.org/10.1007/s00723-012-0321-1
- S. Yeo, M. de Smet, S. Langereis, L. van der Elst, R. Muller and H. Grüll, Temperature-sensitive paramagnetic liposomes for image-guided drug delivery: Mn2+ versus [Gd(HPDO3A)(H2O)], Biochim. Biophys. Acta 1838(11) (2014) 2807–2816; https://doi.org/10.1016/j.bbamem.2014.07.019
- B. Gallez, G. Bacic and H. M. Swartz, Evidence for the dissociation of the hepatobiliary MRI contrast agent Mn-DPDP, Magn. Reson. Med. 35(1) (1996) 14–19; https://doi.org/10.1002/mrm.1910350104
- K. J. Liu, X. L. Shi, J. J. Jiang, F. Goda, N. Dalal and H. M. Swartz, Low frequency electron paramagnetic resonance investigation on metabolism of chromium (VI) by whole live mice, Ann. Clin. Lab. Sci. 26(2) (1996) 176–184.
- R. Sharmin, A. C. Nusantara, L. Nie, K. Wu, A. E. Llumbet, W. Woudstra, A. Mzyk and R. Schirhagl, Intracellular quantum sensing of free-radical generation induced by acetaminophen (APAP) in the cytosol, in mitochondria and the nucleus of macrophages, ACS Sensors .(12) (2022) 3326–3334; https://doi.org/10.1021/acssensors.2c01272
- J. Hinson, A. B. Reid, S. McCullough and L. James, Acetaminophen-induced hepatotoxicity: role of metabolic activation, reactive oxygen/nitrogen species, and mitochondrial permeability transition, Drug. Metab. Rev. 36(4) (2004) 805–822; https://doi.org/10.1081/DMR-200033494
- G. Yakovlev, T. Reda and J. Hirst, Reevaluating the relationship between EPR spectra and enzyme structure for the iron-sulfur clusters in NADH:quinone oxidoreductase, Proc. Nat. Acad. Sci. 104(31) (2007) 12720–12725; https://doi.org/10.1073/pnas.0705593104
- L. Gille and H. Nohl, Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity, Free Radic. Biol. Med. 23(5) (1997) 775–782; https://doi.org/10.1016/s0891-5849(97)00025-7
- S. Muraoka and T. Miura, Thiol oxidation induced by oxidative action of adriamycin, Free Radic. Res. 38(9) (2004) 963–938; https://doi.org/10.1080/10715760400000919
- L. J. C. Bolchoz, A. K. Gelasco, D. J. Jollow and D. C. McMillan, Primaquine-induced hemolytic anemia: formation of free radicals in rat erythrocytes exposed to 6-methoxy-8-hydroxylaminoquinoline, J. Pharmacol. Exp. Ther. 303(3) (2002) 1121–1129; https://doi.org/10.1124/jpet.102.041459
- A. G. Motten, L. J. Martínez, N. Holt, R. H. Sik, K. Reszka, C. F. Chignell, H. H. Tonnesen and J. E. Roberts, Photophysical studies on antimalarial drugs, Photochem. Photobiol. 69(3) (1999) 282–287; https://doi.org/10.1562/0031-8655(1999)069<0282:psoad>2.3.co;2
- T. Miura, S. Muraoka and Y. Fujimoto, Lipid peroxidation induced by indomethacin with horseradish peroxidase and hydrogen peroxide: involvement of indomethacin radicals, Biochem. Pharmacol. 63(11) (2002) 2069–2074; https://doi.org/10.1016/s0006-2952(02)00995-4
- T. Miura, S. Muraoka and Y. Fujimoto, Inactivation of creatine kinase during the interaction of indomethacin with horseradish peroxidase and hydrogen peroxide: involvement of indomethacin radicals, Chem. Biol. Interact. 134(1) (2001) 13–25; https://doi.org/10.1016/s0009-2797(00)00250-7
- S. Muraoka and T. Miura, Inactivation of alcohol dehydrogenase by piroxicam-derived radicals, Free Radic. Res. 38(3) (2004) 217–223; https://doi.org/10.1080/10715760310001643320
- C. Bennett, D. Raisch and O. Sartor, Pneumonitis associated with nonsteroidal antiandrogens: presumptive evidence of a class effect, Ann. Intern. Med. 37(7) (2002) 625–626; https://doi.org/10.7326/0003-4819-137-7-200210010-00029
- S. Russmann, G. Kullak-Ublick and I. Grattagliano, Current concepts of mechanisms in drug- induced hepatotoxicity, Curr. Med. Chem. 16(23) (2009) 3041–3053; https://doi.org/10.2174/092986709788803097
- K. Mader, G. Bačić and H. M. Swartz, In vivo detection of anthralin-derived free radicals in the skin of hairless mice by Low-frequency electron paramagnetic resonance spectroscopy, J. Invest. Dermatol. 104(4) (1995) 514–517; https://doi.org/10.1111/1523-1747.ep12605998
- S. Scalia, A. Molinari, A. Casolari and A. Maldotti, Complexation of the sunscreen agent, phenylbenzimidazole sulphonic acid with cyclodextrins: effect on stability and photo-induced free radical formation, Eur. J. Pharm. Sci. 22(4) (2004) 241–249; https://doi.org/10.1016/j.ejps.2004.03.014
- J. J. Inbaraj, P. Bilski and C. F. Chignell, Photophysical and photochemical studies of 2-phenylbenzimidazole and UVB sunscreen 2-phenylbenzimidazole-5-sulfonic acid, Photochem. Photobiol. 75(2) (2002) 107–116; https://doi.org/10.1562/0031-8655(2002)075<0107:papsop>2.0.co;2
- A. Kyrychenko and A. Ladokhin, Molecular dynamics simulations of depth distribution of spin-labeled phospholipids within lipid bilayer, J. Phys. Chem. B 117(19) (2013) 5875–5885; https://doi.org/10.1021/jp4026706
- A. Wolnicka-Głubisz, M. Lukasik, A. Pawlak, A. Wielgus, Magdalena Niziolek-Kierecka and T. Sarna, Peroxidation of lipids in liposomal membranes of different composition photosensitized by chlorpromazine, Photochem. Photobiol. Sci. .(2) (2009) 241–247; https://doi.org/10.1039/b809887e
- H. Tsuchiya and M. Mizogami, Membrane interactivity of non-steroidal anti-inflammatory drugs: A literature review, J. Adv. Med. Med. Res. 31(9) (2020) 1–30; https://doi.org/10.9734/jammr/2019/v31i930320
- D. Marsh, Electron spin resonance in membrane research: protein-lipid interactions from challenging beginnings to state of the art, Eur. Biophys. J. 39(4) (2009) 513–525; https://doi.org/10.1007/s00249-009-0512-3
- T. Páli and Z. Kóta, Studying lipid-protein interactions with electron paramagnetic resonance spectroscopy of spin-labeled lipids, Meth. Mol. Biol. 2003 (2019) 529–561; https://doi.org/10.1007/978-1-4939-9512-7_22
- N. Weizenmann, D. Huster and H. Scheidt, Interaction of local anesthetics with lipid bilayers investigated by ¹H MAS NMR spectroscopy, Biochim. Biophys. Acta 1818(12) (2012) 3010–3018; https://doi.org/10.1016/j.bbamem.2012.07.014
- V. Corradi, B. I. Sejdiu, H. Mesa-Galloso, H. Abdizadeh, S. Noskov, S. Marrink and D. Tieleman, Emerging diversity in lipid–protein interactions, Chem. Biol. Interact. 119(9) (2019) 5775–5848; https://doi.org/10.1021/acs.chemrev.8b00451
- K. E. O. Åkerman and J. O. Järvisalo, Effect of propranolol and related drugs on transmembraneous pH differences in liposomes, Acta Pharmacol. Toxicol. 40(4) (2009) 497–504; https://doi.org/10.1111/J.1600-0773.1977.TB03550.X
- S. Burks, E. Barth, H. Halpern, G. Rosen and J. Kao, Cellular uptake of electron paramagnetic resonance imaging probes through endocytosis of liposomes, Biochim. Biophys. Acta 1788(10) (2009) 2301–2308; https://doi.org/10.1016/j.bbamem.2009.08.007
- T. Koklič, M. Šentjurc and R. Zeisig, The influence of cholesterol and charge on the membrane domains of alkylphospholipid liposomes as studied by EPR, J. Liposome Res. 12(4) (2002) 335–352; https://doi.org/10.1081/LPR-120016198
- J. Kristl, B. Volk, P. Ahlin, K. Gombac and M. Šentjurc, Interactions of solid lipid nanoparticles with model membranes and leukocytes studied by EPR, Int. J. Pharm. 256(1–2) (2003) 133–140; https://doi.org/10.1016/s0378-5173(03)00070-x
- N. A. Nusair and G. A. Lorigan, Investigating the structural and dynamic properties of .-doxylstearic acid in magnetically-aligned phospholipid bilayers by X-band EPR spectroscopy, Chem. Phys. Lipids 133(2) (2005) 151–164; https://doi.org/10.1016/j.chemphyslip.2004.09.019
- I. Katzhendler, K. Mader, P. Azoury and M. Friedman, Investigating the structure properties of hydrated hydroxypropyl methylcellulose and egg albumin matrixes containing carbamazepine, Pharmacol. Res. 17 (2000) 1299–1308; https://doi.org/10.1023/a:1026408006665
- G. Martini and L. Ciani, Electron spin resonance spectroscopy in drug delivery, Phys. Chem. Chem. Phys. 11(2) (2009) 211–254; https://doi.org/10.1039/b808263d
- N. E. Polyakov, A. I. Kruppa, T. V. Leshina, T. A. Konovalova and L. D. Kispert, Carotenoids as antioxidants: spin trapping EPR andoptical study, Free Radic. Biol. Med. 31(1) (2001) 43–52; https://doi.org/10.1016/S0891-5849(01)00547-0
- D. L. Lurie and K. Mader, Monitoring drug delivery processes by EPR and related techniques. Principles and applications, Adv. Drug Deliv. Rev. 57 (2005) 1171–1190; https://doi.org/10.1016/j.addr.2005.01.023
- K. Mader, S. Nitschke, R. Stosser, H. H. Borchert and A. Domb, Non-destructive and localized assessment of acidic environments inside biodegradable polyanhydrides by spectral spatial electron paramagnetic resonance imaging, Polymers 38(19) (1997) 4785–4794; https://doi.org/10.1016/S0032-3861(97)00003-7
- K. Mäder, Y. Crémmilleux, A. J. Domb, J. F. Dunn and H. M. Swartz, In vitro/in vivo comparison of drug release and polymer erosion from biodegradable P(FAD-SA) polyanhydrides – a noninvasive approach by the combined use of electron paramagnetic resonance spectroscopy and nuclear magnetic resonance imaging, Pharm. Res. 14(6) (1997) 820–826; https://doi.org/10.1023/a:1012123127330
- K. Mader, A. Domb and H. H. Swartz, Gamma-sterilization induced radicals in biodegradable drug delivery systems, Appl. Radiat. Isot. 47 (1996) 1669–1674; https://doi.org/10.1016/S0969-8043(96)00236-9
- K. Mäder, Pharmaceutical applications of in vivo EPR, Phys. Med. Biol. 43(7) (1998) 1931–1935; https://doi.org/10.1088/0031-9155/43/7/014
- R. Bartucci, S. Belsito and L. Sportelli, Spin-label electron spin resonance studies of micellar dispersions of PEGs-PEs polymer-lipids, Chem. Phys. Lipids 124 (2003) 111–122; https://doi.org/10.1016/S0009-3084(03)00047-1
- C. Chauvierre, C. Vauthier, D. Labarre and H. Hommel, Evaluation of the surface properties of dextran-coated poly(isobutylcyanoacrylate) nanoparticles by spin-labelling coupled with electron resonance spectroscopy, Colloid Polym. Sci. 282(9) (2004) 1016–1025; https://doi.org/10.1007/s00396-003-1027-6
- K. Jores, W. Mehnert and K. Mäder, Physicochemical investigations on solid lipid nanoparticles (SLN) and on oil-loaded solid lipid nanoparticles: a NMR- and ESR-study, Pharm. Res. 20(8) (2003) 1274–1283; https://doi.org/10.1023/a:1025065418309
- A. Rübe and K. Mäder, An electron spin resonance study on the dynamics of polymeric nanocapsules, J. Biomed. Nanotechnol. .(2) (2005) 208–213; https://doi.org/10.1166/jbn.2005.024
- I. Katzhendler, K. Mäder, R. Azoury and M. Friedman, Investigating the structure properties of hydrated hydroxypropyl methyl cellulose and egg albumin matrixes containing carbamazepine: EPR and NMR study, Pharm. Res. 17(10) (2000) 1299–1308; https://doi.org/10.1023/a:1026408006665
- I. Katzhendler, K. Mäder and M. Friedman, Correlation between drug release kinetics from protein matrix and matrix structure: EPR and NMR study, J. Pharm. Sci. 89(3) (2000) 365–381; https://doi.org/10.1002/(SICI)1520-6017(200003)89:3<365::AID-JPS8>3.0.CO;2-D
- F. Eisenächer, A. Schädlich and K. Mäder, Monitoring of internal pH gradients within multi-layer tablets by optical methods and EPR imaging, Int. J. Pharm. 417(1–2) (2011) 203–215; https://doi.org/10.1016/j.ijpharm.2010.10.010
- A. Kogan, S. Rozner, S. C. Mehta, P. Somasundaran, A. Aserin, N. Garti and M. Ottaviani, Characterization of the nonionic microemulsions by EPR. I. Effect of solubilized drug on nanostructure, J. Phys. Chem. B 113(3) (2009) 691–699; https://doi.org/10.1021/jp807161g
- A. Sotgiu, S. Colacicchi, G. Placidi and M. Alecci, Water soluble free radicals as biologically responsive agents in electron paramagnetic resonance imaging, Cell. Mol. Biol. 43(6) (1997) 813–823.
- K. Matsumoto, T. Yahiro, K. Yamada and H. Utsumi, In vivo EPR spectroscopic imaging for a liposomal drug delivery system, Magn. Reson. Med. 53(5) (2005) 1158–1165; https://doi.org/10.1002/mrm.20460
- R. Sun, J. Xiang, Q. Zhou, Y. Piao, J. Tang, S. Shao, Z. Zhou, Y. H. Bae and Y. Shen, The tumor EPR effect for cancer drug delivery: Current status, limitations, and alternatives, Adv. Drug Deliv. Rev. 191 (2002) 138–155; https://doi.org/10.1016/j.addr.2022.114614
- B. Gallez, B. F. Jordan, C. Baudelet and P. O. Misson, Pharmacological modifications of the partial pressure of oxygen in murine tumors: Evaluation using in vivo EPR oximetry, Magn. Reson. Med. 42(4) (1999) 627–630; https://doi.org/10.1002/(SICI)15222594(199910)42:43.0.CO;2-M
- K. N. Kontogiannopoulos, A. Dasargyri, M. F. Ottaviani, M. Cangiotti, D. Fessas, V. P. Papageorgiou and A. N. Assimopoulou, Advanced drug delivery nanosystems for shikonin: a calorimetric and electron paramagnetic resonance study, Langmuir 34(33) (2018) 9424–9434; https://doi.org/10.1021/acs.langmuir.8b00751
- E. J. Anthony, E. M. Bolitho, H. E. Bridgewater, O. W. Carter, J. M. Donnelly, C. Imberti, E. C. Lant, F. Lermyte, R. J. Needham, M. Palau, P. J. Sadler, H. Shi, F. X. Wang, W. Y. Zhang and Z. Zhang, Metallodrugs are unique: opportunities and challenges of discovery and development, Chem. Sci. 11(48) (2020) 12888–12917; https://doi.org/10.1039/d0sc04082g
- S. Meron, Y. Shenberger and S. Ruthstein, The advantages of EPR spectroscopy in exploring diamagnetic metal ion binding and transfer mechanisms in biological systems, Magnetochem. .(1) (2022) 3–21; https://doi.org/10.3390/magnetochemistry8010003
- L. Gala, M. Lawson, K. Jomová, Ľ. Zelenický, A. Čongrádyová, M. Mazúr and M. Valko, EPR spectroscopy of a clinically active (1:2) copper(ii)-histidine complex used in the treatment of Menkes disease: a Fourier transform analysis of a fluid CW-EPR spectrum, Molecules 19(1) (2014) 980–991; https://doi.org/10.3390/molecules19010980
- F. Bacher, É. A. Enyedy, N. V. Nagy, A. Rockenbauer, G. M. Bognár, R. Trondl, M. S. Novak, E. Klapproth, T. Kiss and V. B. Arion, Copper(II) complexes with highly water-soluble L- and D-prolinethiosemicarbazone conjugates as potential inhibitors of topoisomerase IIα, Inorg. Chem. 52(15) (2013) 8895–8908; https://doi.org/10.1021/ic401079w
- E. K. Efthimiadou, H. Thomadaki, Y. Sanakis, C. P. Raptopoulou, N. Katsaros, A. Scorilas, A. Karal-iota and G. Psomas, Structure and biological properties of the copper(II) complex with the quino-lone antibacterial drug N-propyl-Norfloxacin and 2,2’-bipyridine, J. Inorg. Biochem. 101 (2007) 64–73; https://doi.org/10.1016/j.jinorgbio.2006.07.019
- S. Gama, F. Mendes, F. Marques, I. C. Santos, M. F. Carvalho, I. Correia, J. C. Pessoa, I. Santos and A. Paulo, Copper (II) complexes with tridentate pyrazole-based ligands: synthesis, characterization, DNA cleavage activity and cytotoxicity, J. Inorg. Biochem. 105 (2011) 637–644; https://doi.org/10.1016/j.jinorgbio.2011.01.013
- K. Das, A. Datta, C. Sinha, J. Huang, E. Garribba, C. Hsiao and C. Hsu, End-to-end thiocyanato-bridged helical chain polymer and dichlorido-bridged copper(II) complexes with a hydrazone ligand: synthesis, characterisation by electron paramagnetic resonance and variable temperature magnetic studies, and inhibitory effects on human colorectal carcinoma cells, ChemistryOpen .(2) (2012) 80–89; https://doi.org/10.1002/open.201100011
- J. Benítez, L. Guggeri, I. Tomaz, J. C. Pessoa, V. Moreno, J. Lorenzo, F. X. Avilés, B. Garat and D. Gambino, A novel vanadyl complex with a polypyridyl DNA intercalator as ligand: a potential anti-protozoa and anti-tumor agent, J. Inorg. Biochem. 103 (2009) 1386–1394; http://doi.org/10.1016/j.jinorgbio.2009.07.013
- M. Groessl and P. Dyson, Bioanalytical and biophysical techniques for the elucidation of the mode of action of metal-based drugs, Curr. Top. Med. Chem. 11(21) (2011) 2632–2644; https://doi.org/10.2174/156802611798040705
- R. Biswas, H. Kühne, G. Brudvig and V. Gopalan, Use of EPR spectroscopy to study macromolecular structure and function, Sci. Prog. 84(1) (2001) 45–68; https://doi.org/10.3184/003685001783239050
- P. Fulmer, C. Zhao, W. Li, E. DeRose, W. E. Antholine and D. H. Petering, Fe- and Co-bleomycins bound to site specific and nonspecific DNA decamers: Comparative binding and reactivity of their metal centers, Biochem. 36(14) (1997) 4367–4374; https://doi.org/10.1021/bi9625354
- A. Veselov, R. M. Burger and C. P. Scholes, Q-band Electron nuclear double resonance of ferric bleomycin and activated bleomycin complexes with DNA: Fe(III) hyperfine interaction with 31P and DNA-induced perturbation to bleomycin structure, J. Am. Chem. Soc. 120(5) (1998) 1030–1033; https://doi.org/10.1021/ja972138w
- M. Chikira, T. Iiyama, K. Sakamoto, W. Antholine and D. Petering, Orientation of iron bleomycin and porphyrin complexes on DNA fibers, Inorg. Chem. 39(8) (2000) 1779–1786; https://doi.org/10.1021/IC991365R
- V. Murray, J. K. Chen and L. Chung, The interaction of the metallo-glycopeptide anti-tumour drug bleomycin with DNA, Int. J. Mol. Sci. 19(5) (2018) 1372–1401; https://doi.org/10.3390/ijms19051372
- M. Chikira, T. Iiyama, K. Sakamoto, W. Antholine and D. Petering, Orientation of iron bleomycin and porphyrin complexes on DNA fibers, Inorg. Chem. 39(8) (2000) 1779–1786; https://doi.org/10.1021/IC991365R
- Q. Jiang, B. C. Blount and B. N. Ames, 5-Chlorouracil, a marker of DNA damage from hypochlorous acid during inflammation, J. Biol. Chem. 278(35) (2003) 32834–32840; https://doi.org/10.1074/jbc.M304021200
- P. Noordhuis, U. Holwerda, C. L. van der Wilt, C. Van Groeningen, K. Smid, S. Meijer, H. Pinedo and G. Peters, 5-Fluorouracil incorporation into RNA and DNA in relation to thymidylate synthase inhibition of human colorectal cancers, Ann. Oncol. 15(7) (2004) 1025–1032; https://doi.org/10.1093/annonc/mdh264
- J. P. Henderson, J. Byun, J. Takeshita and J. W. Heinecke, Phagocytes produce 5-chlorouracil and 5-bromouracil, two mutagenic products of myeloperoxidase, in human inflammatory tissue, J. Biol. Chem. 278(26) (2003) 23522–23528; https://doi.org/10.1074/jbc.M303928200
- S. Prachayasittikul, A. Worachartcheewan, R. Pingaew, T. Suksrichavalit, C. Isarankura-Na-Ayudhya, S. Ruchiwat and V. Prachayasittikul, Metal complexes of uracil derivatives with cytotoxicity and superoxide scavenging activity, Lett. Drug Des. Discov. .(3) (2012) 282–287; https://doi.org/10.2174/157018012799129918
- M. Zaki, F. Arjmand and S. Tabassum, Current and future potential of metallodrugs: revisiting DNA-binding of metal containing molecules and their diverse mechanism of action, Inorg. Chim. Acta 444 (2016) 1–22; https://doi.org/10.1016/j.ica.2016.01.006
- S. Denifl, S. Ptasińska, B. Gstir, P. Scheier and T. D. Märk, Electron impact ionization of 5- and 6-chlorouracil: appearance energies, Int. J. Mass Spec. 232 (2004) 99–105; https://doi.org/10.1016/j.ijms.2003.11.010
- D. Šakić and E. Bešić, EPR study of a copper impurity center in a single crystal of 6-chlorouracil, J. Mol. Struc. 1321(3) (2025) 140080–140088; https://doi.org/10.1016/j.molstruc.2024.140080
- D. Šakić, G. Zubčić, J. You, T. Weitner, V. Chechik and E. Bešić, VisualEPR; https://github.com/DSakicLab/visualEPR; last access date December 1, 2023.
- C. S. Allardyce and P. J. Dyson, Ruthenium in medicine: current clinical uses and future prospects, Platinum Met. Rev. 45(2) (2001) 62–69; https://doi.org/10.1595/003214001X4526269
- M. Groessl, C. G. Hartinger, K. Polec-Pawlak, M. Jarosz and B. K. Keppler, Capillary electrophoresis hyphenated to inductively coupled plasma-mass spectrometry: a novel approach for the analysis of anticancer metallodrugs in human serum and plasma, Electrophoresis 29(10) (2008) 2224–2232; https://doi.org/10.1002/elps.200780790
- M. Groessl, E. Reisner, C. G. Hartinger, R. Eichinger, O. Semenova, A. R. Timerbaev, M. A. Jakupec, V. B. Arion and B. K. Keppler, Anticancer activity of structurally related ruthenium(II) cyclopentadienyl complexes, J. Med. Chem. 50(9) (2007) 2185–2193; https://doi.org/10.1007/s00775-014-1120-y
- N. Cetinbas, M. I. Webb, J. A. Dubland and C. J. Walsby, Serum-protein interactions with anticancer Ru(III) complexes KP1019 and KP418 characterized by EPR, J. Biol. Inorg. Chem. 15(2) (2010) 131–145; https://doi.org/10.1007/s00775-009-0578-5
- S. W. Chang, A. R. Lewis, K. E. Prosser, J. R. Thompson, M. Gladkikh, M. B. Bally, J. J. Warren and C. J. Walsby, Derivatives of the anticancer Ru(III) complexes KP1019, NKP-1339, and their imidazole and pyridine analogues show enhanced lipophilicity, albumin interactions, and cytotoxicity, Inorg. Chem. 55(10) (2016) 4850–4863; https://doi.org/10.1021/acs.inorgchem.6b00359
- A. Levina, J. B. Aitken, Y. Y. Gwee, Z. J. Lim, M. Liu, A. M. Singharay, P. F. Wong and P. A. Lay, Biotransformations of anticancer ruthenium(III) complexes: an X-ray absorption spectroscopic study, Chem. Eur. J. 19(11) (2013) 3609–3619; https://doi.org/10.1002/chem.201203127
- C. Mu, S. W. Chang, K. E. Prosser, A. W. Y. Leung, S. Santacruz, T. Jang, J. R. Thompson, D. T. T. Yapp, J. J. Warren, M. B. Bally, T. V. Beischlag and C. J. Walsby, Induction of cytotoxicity in pyridine analogues of the antimetastatic Ru(III) complex NAMI-A by ferrocene functionalization, Inorg. Chem. 55(1) (2016) 177–190; https://doi.org/10.1021/acs.inorgchem.5b02109
- J. Viklund, S. Avnet and A. de Milito, Pathobiology and therapeutic implications of tumor acidosis, Curr. Med. Chem. 24(26) (2017) 2827–2845; https://doi.org/10.2174/0929867323666161228142849
- F. Bacher, O. Domotor, A. Chugunova, N. V. Nagy, L. Filipović, S. Radulovič, E. A. Enyedy and V. B. Arion, Strong effect of copper(II) coordination on antiproliferative activity of thiosemicarba-zone-piperazine and thiosemicarbazone-morpholine hybrids, Dalton Trans. 44(19) (2015) 9071–9090; https://doi.org/10.1039/C5DT01076D
- M. N. M. Milunović, O. Palamarciuc, A. Sirbu, S. Shova, D. Dumitrescu, D. Dvoranová, P. Rapta, T. V. Petrasheuskaya, E. A. Enyedy, G. Spengler, M. Ilić, H. H. Sitte, G. Lubec and V. B. Arion, Insight into the anticancer activity of copper(II) 5-methylenetrimethylammonium-thiosemicarbazonates and their interaction with organic cation transporters, Biomolecules 10(9) (2020) 1213–1243; https://doi.org/10.3390/biom10091213
- M. Tada, M. Kohno and Y. Niwano, Scavenging or quenching effect of melanin on superoxide anion and singlet oxygen, J. Clin. Biochem. Nutr. 46(3) (2010) 224–228; https://doi.org/10.3164/jcbn.09-84
- V. V. Khramtsov, A. A. Bobko, M. Tseytlin and B. Driesschaert, Exchange phenomena in the electron paramagnetic resonance spectra of the nitroxyl and trityl radicals: multifunctional spectroscopy and imaging of local chemical microenvironment, Anal. Chem. 89(9) (2017) 4758–4771; https://doi.org/10.1021/acs.analchem.6b03796
- D. d’Hose and B. Gallez, Measurement of mitochondrial (dys)function in cellular systems using electron paramagnetic resonance (EPR): oxygen consumption rate and superoxide production, Methods Mol. Biol. 2497 (2022) 83–95; https://doi.org/10.1007/978-1-0716-2309-1_5
- M. A. Polacco, H. Hou, P. Kuppusamy and E. Y. Chen, Measuring flap oxygen using electron para-magnetic resonance oximetry, Laryngoscope 129(12) (2019) 415–419; https://doi.org/10.1002/lary.28043
- H. M. Swartz, The Measurement of Oxygen in Vivo Using EPR Techniques, in In vivo EPR (ESR) (Ed. L. J. Berliner), Springer, Boston 2003, pp. 403–440; https://doi.org/10.1007/978-1-4615-0061-2_15
- K. J. Liu, G. Bačič, P. J. Hoopes, J. Jiang, H. Du, L. C. Ou, J. F. Dunn and H. M. Swartz, Assessment of cerebral p02 by EPR oximetry in rodents: effects of anesthesia, ischemia, and breathing gas, Brain Res. 685 (1995) 91–98; https://doi.org/10.1016/0006-8993(95)00413-K
- B. Gallez, B. F. Jordan, C. Baudelet and P. O. Misson, Pharmacological modifications of the partial pressure of oxygen in murine tumors: evaluation using in vivo EPR oximetry, Magn. Reson. Med. 42(4) (1999) 627–630; https://doi.org/10.1002/(sici)1522-2594(199910)42:4<627::aid-mrm2>3.0.co;2-m
- M. Šentjurc, J. Kristl and Z. Abramović, Transport of liposome-entrapped substances into skin as measured by electron paramagnetic resonance oximetry in vivo, Methods Enzymol. 387 (2004) 267–287; https://doi.org/10.1016/S0076-6879(04)87017-4
- B. Gallez, C. Baudelet and B. F. Jordan, Assessment of tumor oxygenation by electron paramagnetic resonance: principles and applications, NMR Biomed. 17(5) (2004) 240–262; https://doi.org/10.1002/nbm.900
- F. Goda, K. Liu, T. Walczak, J. O’Hara, Jinjie Jiang and H. Swartz, In vivo oximetry using EPR and India ink, Magn. Reson. Med. 33(2) (1995) 237–245; https://doi.org/10.1002/mrm.1910330214
- K. J. Liu, P. Gast, M. Moussavi, S. Norby, N. Vahidi, T. Walczak, M. Wu, Harold and M. Swartz, Lithium phthalocyanine: a probe for electron paramagnetic resonance oximetry in viable biological systems, Proc. Nat. Acad. Sci. USA 90(12) (1993) 5438–5442; https://doi.org/10.1073/PNAS.90.12.5438
- J. He, N. Beghein, P. Ceroke, R. B. Clarkson, H. M. Swartz and B. Gallez, Development of biocompatible oxygen-permeable films holding paramagnetic carbon particles: evaluation of their performance and stability in EPR oximetry, Magn. Reson. Med. 46(3) (2001) 610–614; https://doi.org/10.1002/mrm.1234
- B. Gallez and K. Mäder, Accurate and sensitive measurements of pO(2) in vivo using low frequency EPR spectroscopy: how to confer biocompatibility to the oxygen sensors, Free Radic. Biol. Med. 29 (2000) 1078–1084; https://doi.org/10.1016/s0891-5849(00)00405-6
- M. Lan, N. Beghein, N. Charlier and B. Gallez, Carbon blacks as EPR sensors for localized measurements of tissue oxygenation, Magn. Reson. Med. 51(6) (2004) 1272–1278; https://doi.org/10.1002/mrm.20077
- A. I. Smirnov, S. W. Norby, R. B. Clarkson, T. Walczak and H. M. Swartz, Simultaneous multi-site EPR spectroscopy in vivo, Magn. Reson. Med. 30(2) (1993) 213–220; https://doi.org/10.1002/mrm.1910300210
- P. E. James, G. Bačić, O. Y. Grinberg, F. Goda, J. Dunn, S. K. Jackson and H. M. Swartz, Endotoxin induced changes in intrarenal pO2 measured by in vivo electron paramagnetic resonance oximetry and magnetic resonance imaging, Free Radic. Biol. Med. 21 (1996) 25–34; https://doi.org/10.1016/0891-5849(95)02221-x
- T. Nakashima, F. Goda, J. Jiang, T. Shima and H. M. Swartz, Use of EPR oximetry with India ink to measure the pO2 in the liver in vivo in mice, Magn. Reson. Med. 34(6) (1995) 888–892; https://doi.org/10.1002/mrm.1910340614
- K. J. Liu, G. Bačić, P. J. Hoopes, J. Jiang, J. F. Dunn and H. M. Swartz, Assessment of cerebral pO2 by EPR oximetry in rodents: effects of anesthesia, ischemia, and breathing gas, Brain Res. 685 (1995) 91–98; https://doi.org/10.1016/0006-8993(95)00413-k
- H. Halpern, C. Yu, M. Perić, E. Barth, G. Karczmar, J. River, D. Grdina and B. Teicher, Measurement of differences in pO2 in response to perfluorocarbon/carbogen in FSa and NFSa murine fibrosarcomas with low-frequency electron paramagnetic resonance oximetry, Radiat. Res. 145(5) (1996) 610–618.
- G. Ilangovan, A. Bratasz and P. Kuppusamy, Non-invasive measurement of tumor oxygenation using embedded microparticulate EPR spin probe, Adv. Exp. Med. Biol. 566 (2005) 67–73; https://doi.org/10.1007/0-387-26206-7_10
- B. J. Friedman, O. Y. Grinberg, K. Isaacs, E. K. Ruuge and H. M. Swartz, Effect of repetitive ischemia on local myocardial oxygen tension in isolated perfused and hypoperfused rat hearts, Magn. Reson. Med. 35(2) (1996) 214–220; https://doi.org/10.1002/mrm.1910350213
- J. Weaver, S. Burks, K. Liu, J. Kao and G. Rosen, In vivo EPR oximetry using an isotopically-substituted nitroxide: Potential for quantitative measurement of tissue oxygen, J. Magn. Reson. 271 (2016) 68–74; https://doi.org/10.1016/j.jmr.2016.08.006
- F. Goda, J. A. O’Hara, E. S. Rhodes, K. J. Liu, J. F. Dunn, G. Bačić and H. M. Swartz, The changes of oxygen tension in experimental tumors after a single dose of X-ray irradiation, Cancer Res. 55(11) (1995) 2249–2252.
- M. Kržič, M. Šentjurc and J. Kristl, Improved skin oxygenation after benzyl nicotinate application in different carriers as measured by EPR oximetry in vivo, J. Control. Release 70 (2001) 203–211; https://doi.org/10.1016/s0168-3659(00)00351-5
- J. Kristl, Z. Abramović and M. Šentjurc, Skin oxygenation after topical application of liposome-entrapped benzyl nicotinate as measured by EPR oximetry in vivo: influence of composition and size, Am. Assoc. Pharm. Sci. . (2003) 1–9; https://doi.org/10.1208/ps050202