Have a personal or library account? Click to login
Light-induced rearrangement from macrocyclic to bicyclic lactam: A case study of N-chlorinated laurolactam Cover

Light-induced rearrangement from macrocyclic to bicyclic lactam: A case study of N-chlorinated laurolactam

Open Access
|Jan 2025

References

  1. T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal and S. W. Krska, The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules, Chem. Soc. Rev. 45(3) (2016) 546–576; https://doi.org/10.1039/C5CS00628G
  2. S. K. Sinha, S. Guin, S. Maiti, J. P. Biswas, S. Porey and D. Maiti, Toolbox for distal C–H bond functionalizations in organic molecules, Chem. Rev. 122(6) (2022) 5682–5841; https://doi.org/10.1021/acs.chemrev.1c00220
  3. Z. Yang, M. Arnoux, D. Hazelard, O. R. Hughes, J. Nabarro, A. C. Whitwood, M. A. Fascione, C. D. Spicer, P. Compain and W. P. Unsworth, Expanding the scope of the successive ring expansion strategy for macrocycle and medium-sized ring synthesis: unreactive and reactive lactams, Org. Biomol. Chem. 22 (2024) 2985–2991; https://doi.org/10.1039/D4OB00285G
  4. L. G. Baud, M. A. Manning, H. L. Arkless, T. C. Stephens and W. P. Unsworth, Ring-expansion approach to medium-sized lactams and analysis of their medicinal lead-like properties, Chem. Eur. J. 23 (2017) 2225–2230; https://doi.org/10.1002/chem.201605615
  5. F. I. Saldívar-González, E. Lenci, A. Trabocchi and J. L. Medina-Franco, Exploring the chemical space and the bioactivity profile of lactams: a chemoinformatic study, RSC Adv. . (2019) Article ID 27105 (12 pages); https://doi.org/10.1039/c9ra04841c
  6. P. Bellotti, H.-M. Huang, T. Faber and F. Glorius, Photocatalytic late-stage C–H functionalization, Chem. Rev. 123(8) (2023) 4237–4352; https://doi.org/10.1021/acs.chemrev.2c00478
  7. A. W. Hofmann, Ueber die Einwirkung des Broms in alkalischer Lösung auf die Amine, Ber. Dtsch. Chem. Ges. 16(1) (1883) 558–560; https://doi.org/10.1002/cber.188301601120
  8. A. W. Hofmann, Ueber die Einwirkung des Broms in alkalischer Lösung auf Amide, Ber. Dtsch. Chem. Ges. 14(2) (1881) 2725–2736; https://doi.org/10.1002/cber.188101402242
  9. A. W. Hofmann, Zur Kenntniss der Coniin-Gruppe, Ber. Dtsch. Chem. Ges. 18(1) (1885) 109–131; https://doi.org/10.1002/cber.18850180126
  10. K. Löffler and C. Freytag, Über eine neue Bildungsweise von N-alkylierten Pyrrolidinen, Ber. Dtsch. Chem. Ges. 42(3) (1909) 3427–3431; https://doi.org/10.1002/cber.19090420377
  11. G. Zubčić, S. Shkunnikova, D. Šakić and M. Marijan, Renaissance of Hofmann-Löffler-Freytag reaction – Development of C–H functionalisation strategies based on green chemistry principles, Kem. Ind. 71(5–6) (2022) 359–373; https://doi.org/10.15255/KUI.2021.070
  12. S. W. Baldwin and R. J. Doll, Synthesis of the 2-aza-7-oxatricyclo[4.3.2.04,8]undecane nucleus of some gelsemium alkaloids, Tetrahedron Lett. 20(35) (1979) 3275–3278; https://doi.org/10.1016/S0040-4039(01)95450-2
  13. K. Löffler and S. Kober, Über die Bildung desi-Nicotins aus N-Methyl-p-pyridyl-butylamin (Dihydrometanicotin), Ber. Dtsch. Chem. Ges. 42 (1909) 3431–3438; https://doi.org/10.1002/cber.19090420378
  14. S. Shkunnikova, H. Zipse and D. Šakić, Role of substituents in the Hofmann-Löffler-Freytag reaction. A quantum-chemical case study on nicotine synthesis, Org. Biomol. Chem. 19 (2021) 854–865; https://doi.org/10.1039/D0OB02187C
  15. G. Zubčić, J. You, F. L. Zott, S. S. Ashirbaev, M. K. Marković, E. Bešić, V. Vrček, H. Zipse and D. Šakić, Regioselective rearrangement of nitrogen- and carbon-centered radical intermediates in the Hof-mann-Löffler-Freytag reaction, J. Phys. Chem. A 128(13) (2024) 2574–2583; https://doi.org/10.1021/acs.jpca.3c07892
  16. Kessil PR-160L 370-Gen2 specification; https://www.kessil.com/products/science_PR160L.php; last access date June 28, 2024.
  17. M. R. Willcott, MestRe Nova, J. Am. Chem. Soc. 131(36) (2009) 13180; https://doi.org/10.1021/ja906709t
  18. L. Patiny, H. Musallam, A. Bolaños, M. Zasso, J. Wist, M. Karayilan, E. Ziegler, J. C. Liermann and N. E. Schlörer, NMRium: Teaching nuclear magnetic resonance spectra interpretation in an online platform, Beilstein J. Org. Chem. 20 (2024) 25–31; https://doi.org/10.3762/bjoc.20.4
  19. S. Stoll and A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR, J. Magn. Reson. 178(1) (2006) 42–55; https://doi.org/10.1016/j.jmr.2005.08.013
  20. D. Šakić, G. Zubčić, J. You, T. Weitner, V. Chechik and E. Bešić, VisualEPR; https://github.com/DSakicLab/visualEPR; last access date December 1, 2023.
  21. C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher and S. Grimme, WIREs Comput. Mol. Sci. 11 (2020) Article ID e01493 (49 pages); https://doi.org/10.1002/wcms.1493
  22. P. Pracht, F. Bohle and S. Grimme, Automated exploration of the low-energy chemical space with fast quantum chemical methods, Phys. Chem. Chem. Phys. 22 (2020) 7169–7192; https://doi.org/10.1039/C9CP06869D
  23. S. Grimme, Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations, J. Chem. Theory Comput. 15(5) (2019) 2847–2862; https://doi.org/10.1021/acs.jctc.9b00143
  24. C. Bannwarth, S. Ehlert and S. Grimme, GFN2-xTB – An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions, J. Chem. Theory Comput. 15(3) (2019) 1652–1671; https://doi.org/10.1021/acs.jctc.8b01176
  25. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98(7) (1993) 5648–5652; https://doi.org/10.1063/1.464913
  26. R. Ditchfield, W. J. Hehre and J. A. Pople, Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules, J. Chem. Phys. 54(2) (1971) 724–728; https://doi.org/10.1063/1.1674902
  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox. Gaussian 16. Wallingford CT, USA: Gaussian, Inc.; 2016.
  28. S. Grimme, Semiempirical hybrid density functional with perturbative second-order correlation, J. Chem. Phys. 124(3) (2006) Article ID 034108 (17 pages); https://doi.org/10.1063/1.2148954
  29. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15) (2010) Article ID (20 pages) 154104; https://doi.org/10.1063/1.3382344
  30. F. Neese, T. Schwabe and S. Grimme, Analytic derivatives for perturbatively corrected “double hybrid” density functionals: Theory, implementation, and applications, J. Chem. Phys. 126(12) (2007) Article ID (16 pages) 124115; https://doi.org/10.1063/1.2712433
  31. L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov and J. A. Pople, Gaussian-3 theory using reduced Möller-Plesset order, J. Chem. Phys. 110(10) (1999) 4703–4709; https://doi.org/10.1063/1.478385
  32. HR-ZOO, Cluster Supek; University of Zagreb University Computing Centre – SRCE, KK.01.1.1.08.0001, EU funded within OPCC for Republic of Croatia, Zagreb, 2023.
  33. PharmInova Project, Cluster Sw.Pharma.Hr; University of Zagreb Faculty of Pharmacy and Biochemistry, KK.01.1.1.02.0021, EU funded by the European Regional Development Fund: Zagreb, 2023.
  34. IQmol; https://github.com/nutjunkie/IQmol; last access date July 2, 2024.
  35. D. Šakić and H. Zipse, Radical stability as a guideline in C–H amination reactions, Adv. Synth. Catal. 358 (2016) 3983–3991; https://doi.org/10.1002/adsc.201600629
  36. Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, London 2007.
DOI: https://doi.org/10.2478/acph-2024-0035 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 725 - 737
Accepted on: Sep 14, 2024
|
Published on: Jan 9, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Gabrijel Zubčić, Kristina Pavić, Jiangyang You, Valerije Vrček, Tomislav Portada, Erim Bešić, Davor Šakić, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.