References
- T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal and S. W. Krska, The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules, Chem. Soc. Rev. 45(3) (2016) 546–576; https://doi.org/10.1039/C5CS00628G
- S. K. Sinha, S. Guin, S. Maiti, J. P. Biswas, S. Porey and D. Maiti, Toolbox for distal C–H bond functionalizations in organic molecules, Chem. Rev. 122(6) (2022) 5682–5841; https://doi.org/10.1021/acs.chemrev.1c00220
- Z. Yang, M. Arnoux, D. Hazelard, O. R. Hughes, J. Nabarro, A. C. Whitwood, M. A. Fascione, C. D. Spicer, P. Compain and W. P. Unsworth, Expanding the scope of the successive ring expansion strategy for macrocycle and medium-sized ring synthesis: unreactive and reactive lactams, Org. Biomol. Chem. 22 (2024) 2985–2991; https://doi.org/10.1039/D4OB00285G
- L. G. Baud, M. A. Manning, H. L. Arkless, T. C. Stephens and W. P. Unsworth, Ring-expansion approach to medium-sized lactams and analysis of their medicinal lead-like properties, Chem. Eur. J. 23 (2017) 2225–2230; https://doi.org/10.1002/chem.201605615
- F. I. Saldívar-González, E. Lenci, A. Trabocchi and J. L. Medina-Franco, Exploring the chemical space and the bioactivity profile of lactams: a chemoinformatic study, RSC Adv. . (2019) Article ID 27105 (12 pages); https://doi.org/10.1039/c9ra04841c
- P. Bellotti, H.-M. Huang, T. Faber and F. Glorius, Photocatalytic late-stage C–H functionalization, Chem. Rev. 123(8) (2023) 4237–4352; https://doi.org/10.1021/acs.chemrev.2c00478
- A. W. Hofmann, Ueber die Einwirkung des Broms in alkalischer Lösung auf die Amine, Ber. Dtsch. Chem. Ges. 16(1) (1883) 558–560; https://doi.org/10.1002/cber.188301601120
- A. W. Hofmann, Ueber die Einwirkung des Broms in alkalischer Lösung auf Amide, Ber. Dtsch. Chem. Ges. 14(2) (1881) 2725–2736; https://doi.org/10.1002/cber.188101402242
- A. W. Hofmann, Zur Kenntniss der Coniin-Gruppe, Ber. Dtsch. Chem. Ges. 18(1) (1885) 109–131; https://doi.org/10.1002/cber.18850180126
- K. Löffler and C. Freytag, Über eine neue Bildungsweise von N-alkylierten Pyrrolidinen, Ber. Dtsch. Chem. Ges. 42(3) (1909) 3427–3431; https://doi.org/10.1002/cber.19090420377
- G. Zubčić, S. Shkunnikova, D. Šakić and M. Marijan, Renaissance of Hofmann-Löffler-Freytag reaction – Development of C–H functionalisation strategies based on green chemistry principles, Kem. Ind. 71(5–6) (2022) 359–373; https://doi.org/10.15255/KUI.2021.070
- S. W. Baldwin and R. J. Doll, Synthesis of the 2-aza-7-oxatricyclo[4.3.2.04,8]undecane nucleus of some gelsemium alkaloids, Tetrahedron Lett. 20(35) (1979) 3275–3278; https://doi.org/10.1016/S0040-4039(01)95450-2
- K. Löffler and S. Kober, Über die Bildung desi-Nicotins aus N-Methyl-p-pyridyl-butylamin (Dihydrometanicotin), Ber. Dtsch. Chem. Ges. 42 (1909) 3431–3438; https://doi.org/10.1002/cber.19090420378
- S. Shkunnikova, H. Zipse and D. Šakić, Role of substituents in the Hofmann-Löffler-Freytag reaction. A quantum-chemical case study on nicotine synthesis, Org. Biomol. Chem. 19 (2021) 854–865; https://doi.org/10.1039/D0OB02187C
- G. Zubčić, J. You, F. L. Zott, S. S. Ashirbaev, M. K. Marković, E. Bešić, V. Vrček, H. Zipse and D. Šakić, Regioselective rearrangement of nitrogen- and carbon-centered radical intermediates in the Hof-mann-Löffler-Freytag reaction, J. Phys. Chem. A 128(13) (2024) 2574–2583; https://doi.org/10.1021/acs.jpca.3c07892
- Kessil PR-160L 370-Gen2 specification; https://www.kessil.com/products/science_PR160L.php; last access date June 28, 2024.
- M. R. Willcott, MestRe Nova, J. Am. Chem. Soc. 131(36) (2009) 13180; https://doi.org/10.1021/ja906709t
- L. Patiny, H. Musallam, A. Bolaños, M. Zasso, J. Wist, M. Karayilan, E. Ziegler, J. C. Liermann and N. E. Schlörer, NMRium: Teaching nuclear magnetic resonance spectra interpretation in an online platform, Beilstein J. Org. Chem. 20 (2024) 25–31; https://doi.org/10.3762/bjoc.20.4
- S. Stoll and A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR, J. Magn. Reson. 178(1) (2006) 42–55; https://doi.org/10.1016/j.jmr.2005.08.013
- D. Šakić, G. Zubčić, J. You, T. Weitner, V. Chechik and E. Bešić, VisualEPR; https://github.com/DSakicLab/visualEPR; last access date December 1, 2023.
- C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher and S. Grimme, WIREs Comput. Mol. Sci. 11 (2020) Article ID e01493 (49 pages); https://doi.org/10.1002/wcms.1493
- P. Pracht, F. Bohle and S. Grimme, Automated exploration of the low-energy chemical space with fast quantum chemical methods, Phys. Chem. Chem. Phys. 22 (2020) 7169–7192; https://doi.org/10.1039/C9CP06869D
- S. Grimme, Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations, J. Chem. Theory Comput. 15(5) (2019) 2847–2862; https://doi.org/10.1021/acs.jctc.9b00143
- C. Bannwarth, S. Ehlert and S. Grimme, GFN2-xTB – An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions, J. Chem. Theory Comput. 15(3) (2019) 1652–1671; https://doi.org/10.1021/acs.jctc.8b01176
- A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98(7) (1993) 5648–5652; https://doi.org/10.1063/1.464913
- R. Ditchfield, W. J. Hehre and J. A. Pople, Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules, J. Chem. Phys. 54(2) (1971) 724–728; https://doi.org/10.1063/1.1674902
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox. Gaussian 16. Wallingford CT, USA: Gaussian, Inc.; 2016.
- S. Grimme, Semiempirical hybrid density functional with perturbative second-order correlation, J. Chem. Phys. 124(3) (2006) Article ID 034108 (17 pages); https://doi.org/10.1063/1.2148954
- S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15) (2010) Article ID (20 pages) 154104; https://doi.org/10.1063/1.3382344
- F. Neese, T. Schwabe and S. Grimme, Analytic derivatives for perturbatively corrected “double hybrid” density functionals: Theory, implementation, and applications, J. Chem. Phys. 126(12) (2007) Article ID (16 pages) 124115; https://doi.org/10.1063/1.2712433
- L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov and J. A. Pople, Gaussian-3 theory using reduced Möller-Plesset order, J. Chem. Phys. 110(10) (1999) 4703–4709; https://doi.org/10.1063/1.478385
- HR-ZOO, Cluster Supek; University of Zagreb University Computing Centre – SRCE, KK.01.1.1.08.0001, EU funded within OPCC for Republic of Croatia, Zagreb, 2023.
- PharmInova Project, Cluster Sw.Pharma.Hr; University of Zagreb Faculty of Pharmacy and Biochemistry, KK.01.1.1.02.0021, EU funded by the European Regional Development Fund: Zagreb, 2023.
- IQmol; https://github.com/nutjunkie/IQmol; last access date July 2, 2024.
- D. Šakić and H. Zipse, Radical stability as a guideline in C–H amination reactions, Adv. Synth. Catal. 358 (2016) 3983–3991; https://doi.org/10.1002/adsc.201600629
- Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, London 2007.