References
- C. Abbruzzese, M. Persico, S. Matteoni and M. G. Paggi, Molecular biology in glioblastoma multiforme treatment, Cells 11(11) (2022) Article ID 1850 (4 pages); https://doi.org/10.3390/cells11111850
- A. Thakur, C. Faujdar, R. Sharma, S. Sharma, B. Malik, K. Nepali and J. P. Liou, Glioblastoma: Current status, emerging targets, and recent advances, J. Med. Chem. 65(13) (2022) 8596–685; https://doi.org/10.1021/acs.jmedchem.1c01946
- I. Ntafoulis, S. L. W. Koolen, S. Leenstra and M. L. M. Lamfers, Drug repurposing, a fast-track approach to develop effective treatments for glioblastoma, Cancers 14(15) (2022) Article ID 3705 (26 pages); https://doi.org/10.3390/cancers14153705
- S. Hashem, T. A. Ali, S. Akhtar, S. Nisar, G. Sageena, S. Ali, S. Hashem, T. A. Ali, S. Akhtar, S. Nisar, G. Sageena, S. Ali, S. Al-Mannai, L. Therachiyil, R. Mir, I. Elfaki, M. M. Mir, F. Jamal, T. Masoodi, S. Uddin, M. Singh, M. Haris, M. Macha and A. A. Bhat, Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents, Biomed. Pharmacother. 150 (2022) Article ID 113054 (12 pages); https://doi.org/10.1016/j.biopha.2022.113054
- P. P. Tshikhudo, T. Mabhaudhi, N. A. Koorbanally, F. N. Mudau, E. O. Avendaño Caceres, D. Popa, D. Calina and J. Sharifi-Rad, Anticancer potential of β-carboline alkaloids: An updated mechanistic overview, Chem. Biodivers. 21(2) (2024) Article ID e202301263 (22 pages); https://doi.org/10.1002/cbdv.202301263
- B. Luo and X. Song, A comprehensive overview of β-carbolines and its derivatives as anticancer agents, Eur. J. Med. Chem. 224 (2021) Article ID 113688 (42 pages); https://doi.org/10.1016/j.ejmech.2021.113688
- S. H. Liu, Q. Z. Wang, T. Liu, R. Bai, M. M. Ma, Q. L. Liu, Y. Li, Y. X. Wang, J. H. Ma, Y. Q. Zhang, Z. L. Guo and Y. Y. Liu, Enhanced glioblastoma selectivity of harmine via the albumin carrier, J. Biomed. Nanotechnol. 18(4) (2022) 1052–1063; https://doi.org/10.1166/jbn.2022.3321
- Y. G. Zhu, Y. X. Lv, C. Y. Guo, Z. M. Xiao, Q. G. Jiang, H. Kuang, W.-H. Zhang, P. Hu, Harmine inhibits the proliferation and migration of glioblastoma cells via the FAK/AKT pathway, Life Sci. 270 (2021) Article ID 119112 (9 pages); https://doi.org/10.1016/j.lfs.2021.119112
- E. Kim, J. S. Suh, Y. K. Jang, H. Kim, G. Choi and T. J. Kim, Harmine inhibits proliferation and migration of glioblastoma via ERK signalling, Process Biochem. 122 (2022) 356–362; https://doi.org/10.1016/j.procbio.2022.09.014
- M. Tarpley, H. O. Oladapo, D. Strepay, T. B. Caligan, L. Chdid, H. Shehata, R. Jose, R. R. Thomas, C. P. Laudeman, R. U. Onyenwoke, D. B. Darr and K. P. Williams, Identification of harmine and β-carboline analogs from a high-throughput screen of an approved drug collection; profiling as differential inhibitors of DYRK1A and monoamine oxidase A and for in vitro and in vivo anti-cancer studies, Eur. J. Pharm. Sci. 162 (2021) Article ID 105821 (15 pages); https://doi.org/10.1016/j.ejps.2021.105821
- R. Abbassi, T. G. Johns, M. Kassiou and L. Munoz, DYRK1A in neurodegeneration and cancer: Molecular basis and clinical implications, Pharmacol. Ther. 151 (2015) 87–98; https://doi.org/10.1016/j.pharmthera.2015.03.004
- N. Pozo, C. Zahonero, P. Fernández, J. M. Liñares, A. Ayuso, M. Hagiwara, A. Pérez, J. R. Ricoy, A. Hernández-Laín, J. M. Sepúlveda and P. Sánchez-Gómez, Inhibition of DYRK1A destabilizes EGFR and reduces EGFR-dependent glioblastoma growth, J. Clin. Invest. 123(6) (2013) 2475–2487; https://doi.org/10.1172/JCI63623
- D. Shahinas, M. Liang, A. Datti and D. R. Pillai, A Repurposing strategy identifies novel synergistic inhibitors of Plasmodium falciparum heat shock protein 90, J. Med. Chem. 53(9) (2010) 3552–3557; https://doi.org/10.1021/jm901796s
- A. Filatova, S. Seidel, N. Böğürcü, S. Gräf, B. K. Garvalov and T. Acker, Acidosis acts through HSP90 in a PHD/VHL-independent manner to promote HIF function and stem cell maintenance in glioma, Cancer Res. 76(19) (2016) 5845–5856; https://doi.org/10.1158/0008-5472.CAN-15-2630
- B. Sharma and V. Kumar, Has ferrocene really delivered its role in accentuating the bioactivity of organic scaffolds?, J. Med. Chem. 64(23) (2021) 16865–16921; https://doi.org/10.1021/acs.jmedchem.1c00390
- M. Patra and G. Gasser, The medicinal chemistry of ferrocene and its derivatives, Nat. Rev. Chem. .(9) (2017) Article ID 0066 (12 pages); https://doi.org/10.1038/s41570-017-0066
- X. Qi, S. K. Jha, N. K. Jha, S. Dewanjee, A. Dey, R. Deka, P. Pingal, K. Ramgopal, W. Liu and K. Hou, Antioxidants in brain tumors: current therapeutic significance and future prospects, Mol. Cancer 21(1) (2022) Article ID 204 (32 pages); https://doi.org/10.1186/s12943-022-01668-9
- L. Tabrizi, T. L. A. Nguyen, H. D. T. Tran, M. Q. Pham and D. Q. Dao, Antioxidant and anticancer properties of functionalized ferrocene with hydroxycinnamate derivatives – An integrated experimental and theoretical study, J. Chem. Inf. Model. 60(12) (2020) 6185–6203; https://doi.org/10.1021/acs.jcim.0c00730
- S. Liu, L. Dong, W. Shi, Z. Zheng, Z. Liu, L. Meng, Y. Xin and X. Jiang, Potential targets and treatments affect oxidative stress in gliomas: An overview of molecular mechanisms, Front. Pharmacol. 13 (2022) Article ID 921070 (16 pages); https://doi.org/10.3389/fphar.2022.921070
- S. Shaveta, S. Mishra and P. Singh, Hybrid molecules: The privileged scaffolds for various pharmaceuticals, Eur. J. Med. Chem. 124 (2016) 500–536; https://doi.org/10.1016/j.ejmech.2016.08.039
- J. P. Soni, Y. Yeole and N. Shankaraiah, β-Carboline-based molecular hybrids as anticancer agents: a brief sketch, RSC Med. Chem. 12(5) (2021) 730–750; https://doi.org/10.1039/D0MD00422G
- A. H. Alkhzem, T. J. Woodman and I. S. Blagbrough, Design and synthesis of hybrid compounds as novel drugs and medicines, RSC Adv. 12(30) (2022) 19470–19484; https://doi.org/10.1039/D0MD00422G
- H. M. Sampath Kumar, L. Herrmann and S. B. Tsogoeva, Structural hybridization as a facile approach to new drug candidates, Bioorg. Med. Chem. Lett. 30(23) (2020) Article ID 127514 (15 pages); https://doi.org/10.1016/j.bmcl.2020.127514
- G. Poje, M. Marinović, K. Pavić, M. Mioč, M. Kralj, L. P. De Carvalho, J. Held, I. Perković and Z. Rajić, Harmicens, novel harmine and ferrocene hybrids: design, synthesis and biological activity, Int. J. Mol. Sci. 23(16) (2022) Article ID 9315 (20 pages); https://doi.org/10.3390/ijms23169315
- T. Tomašič, M. Durcik, B. M. Keegan, D. G. Skledar, Ž. Zajec, B. S. J. Blagg and S. D. Bryant, Discovery of novel Hsp90 C-terminal inhibitors using 3D-pharmacophores derived from molecular dynamics simulations, Int. J. Mol. Sci. 21(18) (2020) Article ID 6898 (22 pages); https://doi.org/10.3390/ijms21186898
- G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell and A. J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30(16) (2009) 2785–2791; https://doi.org/10.1002/jcc.21256
- O. Trott and A. J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31(2) (2010) 455–461; https://doi.org/10.1002/jcc.21334
- The PyMOL Molecular Graphics System, Version 2.5.5 Schrödinger, LLC.
- BIOVIA, Dassault Systèmes, [Discovery Studio], San Diego: Dassault Systèmes, 2024.
- J. M. Berger, R. J. Rana, H. Javeed, I. Javeed and S. L. Schulien, Radical quenching of 1,1-diphenyl-2-picrylhydrazyl: A spectrometric determination of antioxidant behavior, J. Chem. Educ. 85(3) (2008) Article ID 408 (3 pages); https://doi.org/10.1021/ed085p408
- V. L. Singleton and J. A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Am. J. Enol. Vitic. 16(3) (1965) 144–158; http://doi.org/10.5344/ajev.1965.16.3.144
- E. A. Ainsworth and K. M. Gillespie, Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent, Nat. Protoc. 2(4) (2007) 875–877; https://doi.org/10.1038/nprot.2007.102
- https://github.com/nutjunkie/IQmol; last access June 28, 2024.
- C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher and S. Grimme, Extended tight-binding quantum chemistry methods, WIREs Comput. Mol. Sci. 11(2) (2021) Article ID e1493 (49 pages); https://doi.org/10.1002/wcms.1493
- A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98(7) (1993) 5648–5652; https://doi.org/10.1063/1.464913
- R. Ditchfield, W. J. Hehre and J. A. Pople, Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules, J. Chem. Phys. 54(2) (1971) 724–728; https://doi.org/10.1063/1.1674902
- M. Dolg, U. Wedig, H. Stoll and H. Preuss, Energy-adjusted ab initio pseudopotentials for the first row transition elements, J. Chem. Phys. 86(2) (1987) 866–868; https://doi.org/10.1063/1.452288
- B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson and T. L. Windus, New basis set exchange: An open, up-to-date resource for the molecular sciences community, J. Chem. Inf. Model. 59(11) (2019) 4814–4820; https://doi.org/10.1021/acs.jcim.9b00725
- S. Grimme, Semiempirical hybrid density functional with perturbative second-order correlation, J. Chem. Phys. 124(3) (2006) Article ID 034108 (16 pages); https://doi.org/10.1063/1.2148954
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Gaussian, Inc., Walling-ford 2016.
- K. P. Williams and J. E. Scott, Enzyme Assay Design for High-Throughput Screening, in High Throughput Screening (Eds. W. P. Janzen and P. Bernasconi), Humana Press 2009, p.p. 107–126; https://doi.org/10.1007/978-1-60327-258-2_5
- C. S. Lebakken, S. M. Riddle, U. Singh, W. J. Frazee, H. C. Eliason, Y. Gao, K. Smith, L. Johnson, M. Millar, J. Kozlowski, D. Matthews, J. Gallagher and P. Lindroos, Development and applications of a broad-coverage, TR-FRET-based kinase binding assay platform, SLAS Discov. 14(8) (2009) 924–935; https://doi.org/10.1177/1087057106286653
- Ž. Zajec, J. Dernovšek, M. Gobec and T. Tomašič, In silico discovery and optimisation of a novel structural class of Hsp90 C-terminal domain inhibitors, Biomolecules 12(7) (2022) Article ID 884 (23 pages); https://doi.org/10.3390/biom12070884
- C. Sanchez-Moreno, J. A. Larrauri and F. Saura-Calixto, A procedure to measure the antiradical efficiency of polyphenols, J. Sci. Food Agric. 76 (1998) 270–276; https://doi.org/10.1002/(SICI)1097-0010(199802)76:2
- D. Villaño, M. S. Fernández-Pachón, M. L. Moyá, A. M. Troncoso and M. C. García-Parrilla, Radical scavenging ability of polyphenolic compounds towards DPPH free radical, Talanta 71(1) (2007) 230–235; https://doi.org/10.1016/j.talanta.2006.03.050
- W. Brand-Williams, M. E. Cuvelier and C. Berset, Use of a free radical method to evaluate antioxidant activity, LWT – Food Sci. Technol. 28(1) (1995) 25–30; https://doi.org/10.1016/S0023-6438(95)80008-5
- V. Havaić, S. Djaković, J. Lapić, T. Weitner, D. Šakić and V. Vrček, Reduction potential of ferrocenoyl-substituted nucleobases. Experimental and computational study, Croat. Chem. Acta 90(4) (2017) 589–594; https://doi.org/10.5562/cca3229
- J. Hioe, D. Šakić, V. Vrček and H. Zipse, The stability of nitrogen-centered radicals, Org. Biomol. Chem. 13(1) (2015) 157–169; https://doi.org/10.1039/C4OB01656D