G. H. Hitchings and G. B. Elion, The chemistry and biochemistry of purine analogs, <em>Ann. NY Acad. Sci.</em> <bold>60</bold>(2) (1954) 195–199; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1749-6632.1954.tb40008.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1749-6632.1954.tb40008.x</a>">https://doi.org/10.1111/j.1749-6632.1954.tb40008.x</ext-link>
C. A. Lamb, N. A. Kennedy, T. Raine, P. A. Hendy, P. J. Smith, J. K. Limdi, Bu’Hussain Hayee, M. C. E. Lomer, G. C. Parkes, C. Selinger, K. J. Barrett, R. J. Davies, C. Bennett, S. Gittens, M. G. Dunlop, O. Faiz, A. Fraser, V. Garrick, P. D. Johnston, M. Parkes, J. Sanderson and H. Terry; IBD guidelines eDelphi consensus group; D. R. Gaya, T. H. Iqbal, S. A. Taylor, M. Smith, M. Brookes, R. Hansen and A. B. Hawthorne, British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults, <em>Gut</em> <bold>68</bold>(Suppl. 3) (2019) s1–s106; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1136/gutjnl-2019-318484" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1136/gutjnl-2019-318484</a>">https://doi.org/10.1136/gutjnl-2019-318484</ext-link>
N. Toft, H. Birgens, J. Abrahamsson, L. Griškevičius, H. Hallböök, M. Heyman, T. W. Klausen, Ó. G. Jónsson, K. Palk, K. Pruunsild, P. Quist-Paulsen, G. Vaitkeviciene, K. Vettenranta, A. Åsberg, T. L. Frandsen, H. V. Marquart, H. O. Madsen, U. Norén-Nyström and K. Schmiegelow, Results of NOPHO ALL2008 treatment for patients aged 1-45 years with acute lymphoblastic leukemia, <em>Leukemia</em> <bold>32</bold> (2018) 606–615; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/leu.2017.265" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/leu.2017.265</a>">https://doi.org/10.1038/leu.2017.265</ext-link>
A. Singh, R. Mahajan, S. Kedia, A. K. Dutta, A. Anand, C. N. Bernstein, D. Desai, C. G. Pai, G. Makharia, H. V. Tevethia, J. W. Mak, K. Kaur, K. Peddi, M. K. Ranjan, P. Arkkila, R. Kochhar, R. Banerjee, S. K. Sinha, S. C. Ng, S. Hanauer, S. Verma, U. Dutta, V. Midha, V. Mehta, V. Ahuja and A. Sood, Use of thiopurines in inflammatory bowel disease: an update, <em>Intest. Res.</em> <bold>20</bold>(1) (2022) 11–30; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5217/ir.2020.00155" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5217/ir.2020.00155</a>">https://doi.org/10.5217/ir.2020.00155</ext-link>
C. Dai, Y.-H. Huang and M. Jiang, Combination therapy in inflammatory bowel disease: Current evidence and perspectives, <em>Int. Immunopharmacol.</em> <bold>114</bold> (2023) Article ID 109545; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.intimp.2022.109545" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.intimp.2022.109545</a>">https://doi.org/10.1016/j.intimp.2022.109545</ext-link>
K. Tominaga, T. Sugaya, T. Tanaka, M. Kanazawa, M. Iijima and A. Irisawa, Thiopurines: Recent topics and their role in the treatment of inflammatory bowel diseases, <em>Front. Pharmacol.</em> <bold>11</bold> (2021) Article ID 582291 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fphar.2020.582291" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fphar.2020.582291</a>">https://doi.org/10.3389/fphar.2020.582291</ext-link>
D. Christophorou, N. Funakoshi, Y. Duny, J.-C. Valats, M. Bismuth, G. Pineton De Chambrun, J.-P. Daures and P. Blanc, Systematic review with meta-analysis: infliximab and immunosuppressant therapy vs. infliximab alone for active ulcerative colitis, <em>Aliment. Pharmacol. Ther.</em> <bold>41</bold>(7) (2015) 603–612; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/apt.13102" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/apt.13102</a>">https://doi.org/10.1111/apt.13102</ext-link>
R. Franca, G. Zudeh, S. Pagarin, M. Rabusin, M. Lucafò, G. Stocco and G. Decorti, Pharmacogenetics of thiopurines, <em>Cancer Drug Resist.</em> <bold>2</bold> (2019) 256–270; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.20517/cdr.2019.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.20517/cdr.2019.004</a>">https://doi.org/10.20517/cdr.2019.004</ext-link>
G. Zaza, M. Cheok, N. Krynetskaia, C. Thorn, G. Stocco, J. M. Hebert, H. McLeod, R. M. Weinshilboum, M. V. Relling, W. E. Evans, T. E. Klein and R. B. Altman, Thiopurine pathway, <em>Pharmacogenet. Genomics</em> <bold>20</bold>(9) (2010) 573–574; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1097/FPC.0b013e328334338f" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/FPC.0b013e328334338f</a>">https://doi.org/10.1097/FPC.0b013e328334338f</ext-link>
L. Lennard, J. A. Van Loon, J. S. Lilleyman and R. M. Weinshilboum, Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations, <em>Clin. Pharmacol. Ther.</em> <bold>41</bold>(1) (1987) 18–25; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/clpt.1987.4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/clpt.1987.4</a>">https://doi.org/10.1038/clpt.1987.4</ext-link>
M. V. Relling, M. Schwab, M. Whirl-Carrillo, G. Suarez-Kurtz, C.-H. Pui, C. M. Stein, A. M. Moyer, W. E. Evans, T. E. Klein, F. G. Antillon-Klussmann, K. E. Caudle, M. Kato, A. E. J. Yeoh, K. Schmiegelow and J. J. Yang, Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update, <em>Clin. Pharmacol. Ther.</em> <bold>105</bold>(5) (2019) 1095–1105; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/cpt.1304" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/cpt.1304</a>">https://doi.org/10.1002/cpt.1304</ext-link>
M. V. Relling, E. E. Gardner, W. J. Sandborn, K. Schmiegelow, C.-H. Pui, S. W. Yee, C. M. Stein, M. Carrillo, W. E. Evans and T. E. Klein, Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing, <em>Clin. Pharmacol. Ther.</em> <bold>89</bold>(3) (2011) 387–391; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/clpt.2010.320" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/clpt.2010.320</a>">https://doi.org/10.1038/clpt.2010.320</ext-link>
T. A. de Beaumais, S. Lorrain, N. Mamhoudi, M. Simonin, C. Martinez Vinson, Y. Medard, A. Petit and E. Jacqz-Aigrain, Key factors associated with 6-thioguanine and 6-methylmercaptopurine nucleotide concentrations in children treated by thiopurine for acute leukaemia and inflammatory bowel disease, <em>Br. J. Clin. Pharmacol.</em> <bold>90</bold>(1) (2024) 209–219; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/bcp.15894" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/bcp.15894</a>">https://doi.org/10.1111/bcp.15894</ext-link>
L. N. Toksvang, S. H. R. Lee, J. J. Yang and K. Schmiegelow, Maintenance therapy for acute lymphoblastic leukemia: basic science and clinical translations, <em>Leukemia</em> <bold>36</bold> (2022) 1749–1758; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41375-022-01591-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41375-022-01591-4</a>">https://doi.org/10.1038/s41375-022-01591-4</ext-link>
L. Mei, E. P. Ontiveros, E. A. Griffiths, J. E. Thompson, E. S. Wang and M. Wetzler, Pharmacogenetics predictive of response and toxicity in acute lymphoblastic leukemia therapy, <em>Blood Rev.</em> <bold>29</bold>(4) (2015) 243–249; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.blre.2015.01.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.blre.2015.01.001</a>">https://doi.org/10.1016/j.blre.2015.01.001</ext-link>
L. Lennard, C. S. Cartwright, R. Wade and A. Vora, Thiopurine dose intensity and treatment outcome in childhood lymphoblastic leukaemia: the influence of thiopurine methyltransferase pharmacogenetics, <em>Br. J. Haematol.</em> <bold>169</bold>(2) (2015) 228–240; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/bjh.13240" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/bjh.13240</a>">https://doi.org/10.1111/bjh.13240</ext-link>
J. E. Axelrad, A. Roy, G. Lawlor, B. Korelitz and S. Lichtiger, Thiopurines and inflammatory bowel disease: Current evidence and a historical perspective, <em>World J. Gastroenterol.</em> <bold>22</bold>(46) (2016) 10103–10117; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3748/wjg.v22.i46.10103" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3748/wjg.v22.i46.10103</a>">https://doi.org/10.3748/wjg.v22.i46.10103</ext-link>
S. Izraeli, C. Shochat, N. Tal and I. Geron, Towards precision medicine in childhood leukemia – Insights from mutationally activated cytokine receptor pathways in acute lymphoblastic leukemia, <em>Cancer Lett.</em> <bold>352</bold>(1) (2014) 15–20; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.canlet.2014.02.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.canlet.2014.02.009</a>">https://doi.org/10.1016/j.canlet.2014.02.009</ext-link>
G. W. Moran, M.-F. Dubeau, G. G. Kaplan, H. Yang, B. Eksteen, S. Ghosh and R. Panaccione, Clinical predictors of thiopurine-related adverse events in Crohn’s disease, <em>World J. Gastroenterol.</em> <bold>21</bold>(25) (2015) 7795–7804; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3748/wjg.v21.i25.7795" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3748/wjg.v21.i25.7795</a>">https://doi.org/10.3748/wjg.v21.i25.7795</ext-link>
M. C. Dubinsky, H. Yang, P. V. Hassard, E. G. Seidman, L. Y. Kam, M. T. Abreu, S. R. Targan and E. A. Vasiliauskas, 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease, <em>Gastroenterology</em> <bold>122</bold>(4) (2002) 904–915; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1053/gast.2002.32420" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1053/gast.2002.32420</a>">https://doi.org/10.1053/gast.2002.32420</ext-link>
T. Moriyama, R. Nishii, V. Perez-Andreu, W. Yang, F. A. Klussmann, X. Zhao, T.-N. Lin, K. Hoshitsuki, J. Nersting, K. Kihira, U. Hofmann, Y. Komada, M. Kato, R. McCorkle, L. Li, K. Koh, C. R. Najera, S. K.-Y. Kham, T. Isobe, Z. Chen, E. K. Chiew, D. Bhojwani, C. Jeffries, Y. Lu, M. Schwab, H. Inaba, C. H. Pui, M. V. Relling, A. Manabe, H. Hori, K. Schmiegelow, A. E. Yeoh, W. E. Evans and J. J. Yang, NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity, <em>Nat. Genet.</em> <bold>48</bold> (2016) 367–373; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/ng.3508" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/ng.3508</a>">https://doi.org/10.1038/ng.3508</ext-link>
M. H. Vogt, E. H. Stet, R. A. De Abreu, J. P. Bökkerink, L. H. Lambooy and F. J. Trijbels, The importance of methylthio-IMP for methylmercaptopurine ribonucleoside (Me-MPR) cytotoxicity in Molt F4 human malignant T-lymphoblasts, <em>Biochim. Biophys. Acta</em> <bold>1181</bold>(2) (1993) 189–194; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/0925-4439(93)90110-m" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0925-4439(93)90110-m</a>">https://doi.org/10.1016/0925-4439(93)90110-m</ext-link>
P. W. Allan and L. L. Bennett, 6-Methylthioguanylic acid, a metabolite of 6-thioguanine, <em>Biochem. Pharmacol.</em> <bold>20</bold>(4) (1971) 847–852; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/0006-2952(71)90046-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0006-2952(71)90046-3</a>">https://doi.org/10.1016/0006-2952(71)90046-3</ext-link>
A. K. Fotoohi, S. A. Coulthard and F. Albertioni, Thiopurines: factors influencing toxicity and response, <em>Biochem. Pharmacol.</em> <bold>79</bold>(9) (2010) 1211–1220; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.bcp.2010.01.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bcp.2010.01.006</a>">https://doi.org/10.1016/j.bcp.2010.01.006</ext-link>
I. Tiede, G. Fritz, S. Strand, D. Poppe, R. Dvorsky, D. Strand, H. A. Lehr, S. Wirtz, C. Becker, R. Atreya, J. Mudter, K. Hildner, B. Bartsch, M. Holtmann, R. Blumberg, H. Walczak, H. Iven, P. R. Galle, M. R. Ahmadian and M. F. Neurath, CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes, <em>J. Clin. Invest.</em> <bold>111</bold>(8) (2003) 1133–1145; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1172/JCI16432" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1172/JCI16432</a>">https://doi.org/10.1172/JCI16432</ext-link>
G. Stocco, M. Pelin, R. Franca, S. De Iudicibus, E. Cuzzoni, D. Favretto, S. Martelossi, A. Ventura and G. Decorti, Pharmacogenetics of azathioprine in inflammatory bowel disease: A role for glutathione-S-transferase?, <em>World J. Gastroenterol.</em> <bold>20</bold>(13) (2014) 3534–3541; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3748/wjg.v20.i13.3534" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3748/wjg.v20.i13.3534</a>">https://doi.org/10.3748/wjg.v20.i13.3534</ext-link>
R. Goldberg and P. M. Irving, Toxicity and response to thiopurines in patients with inflammatory bowel disease, <em>Expert Rev. Gastroenterol. Hepatol.</em> <bold>9</bold>(7) (2015) 891–900; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1586/17474124.2015.1039987" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1586/17474124.2015.1039987</a>">https://doi.org/10.1586/17474124.2015.1039987</ext-link>
A. M. Abbas, R. M. Almukhtar, E. V. Loftus, G. R. Lichtenstein and N. Khan, Risk of melanoma and non-melanoma skin cancer in ulcerative colitis patients treated with thiopurines: a nationwide retrospective cohort, <em>Am. J. Gastroenterol.</em> <bold>109</bold>(11) (2014) 1781–1793; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/ajg.2014.298" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/ajg.2014.298</a>">https://doi.org/10.1038/ajg.2014.298</ext-link>
D. S. Kotlyar, J. D. Lewis, L. Beaugerie, A. Tierney, C. M. Brensinger, J. P. Gisbert, E. V. Loftus, L. Peyrin-Biroulet, W. C. Blonski, M. Van Domselaar, M. Chaparro, S. Sandilya, M. Bewtra, F. Beigel, L. Biancone and G. R. Lichtenstein, Risk of lymphoma in patients with inflammatory bowel disease treated with azathioprine and 6-mercaptopurine: A meta-analysis, <em>Clin. Gastroenterol. Hepatol.</em> <bold>13</bold>(5) (2015) 847–858; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cgh.2014.05.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cgh.2014.05.015</a>">https://doi.org/10.1016/j.cgh.2014.05.015</ext-link>
P. Deepak and D. J. Stobaugh, Risk of myeloid neoplasms in inflammatory bowel disease patients is linked to exposure to thiopurines and not with tumor necrosis factor-alpha inhibitors, <em>Clin. Gastroenterol. Hepatol.</em> <bold>13</bold>(10) (2015) 1857–1858; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cgh.2014.08.025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cgh.2014.08.025</a>">https://doi.org/10.1016/j.cgh.2014.08.025</ext-link>
B. Warner, E. Johnston, M. Arenas-Hernandez, A. Marinaki, P. Irving and J. Sanderson, A practical guide to thiopurine prescribing and monitoring in IBD, <em>Frontline Gastroenterol.</em> <bold>9</bold> (2018) 10–15; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1136/flgastro-2016-100738" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1136/flgastro-2016-100738</a>">https://doi.org/10.1136/flgastro-2016-100738</ext-link>
M. Campbell, C. Kiss, M. Zimmermann, C. Riccheri, J. Kowalczyk, M. S. Felice, M. Kuzmanovic, G. Kovacs, H. Kosmidis, A. Gonzalez, E. Bilic, L. Castillo, A. Kolenova, J. Jazbec, A. Popa, D. Konstantinov, J. Kappelmayer, T. Szczepanski, M. Dworzak, B. Buldini, G. Gaipa, N. Marinov, J. Rossi, A. Nagy, I. Gaspar, J. Stary and M. Schrappe, Childhood acute lymphoblastic leukemia: Results of the randomized acute lymphoblastic leukemia Intercontinental-Berlin-Frankfurt-Münster 2009 trial, <em>J. Clin. Oncol</em>. <bold>41</bold>(19) (2023) 3499–3511; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1200/JCO.22.01760" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1200/JCO.22.01760</a>">https://doi.org/10.1200/JCO.22.01760</ext-link>
D. R. Wong, M. J. H. Coenen, S. H. Vermeulen, L. J. J. Derijks, C. J. van Marrewijk, O. H. Klungel, H. Scheffer, B. Franke, H.-J. Guchelaar, D. J. de Jong, L. G. J. B. Engels, A. L. M. Verbeek, P. M. Hooy-mans, and TOPIC recruitment team, Early assessment of thiopurine metabolites identifies patients at risk of thiopurine-induced leukopenia in inflammatory bowel disease, <em>J. Crohns Colitis</em> <bold>11</bold>(2) (2017) 175–184; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/ecco-jcc/jjw130" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/ecco-jcc/jjw130</a>">https://doi.org/10.1093/ecco-jcc/jjw130</ext-link>
K. Keyashian, Monitoring and management of toxicities in long-term thiopurine therapy, <em>Gastroenterol. Hepatol</em>. (NY) <bold>9</bold>(10) (2013) 672–674.
K. Bradford and D. Q. Shih, Optimizing 6-mercaptopurine and azathioprine therapy in the management of inflammatory bowel disease, <em>World J. Gastroenterol.</em> <bold>17</bold>(37) (2011) 4166–4173; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3748/wjg.v17.i37.4166" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3748/wjg.v17.i37.4166</a>">https://doi.org/10.3748/wjg.v17.i37.4166</ext-link>
M. C. Dubinsky, S. Lamothe, H. Y. Yang, S. R. Targan, D. Sinnett, Y. Théorêt and E. G. Seidman, Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease, <em>Gastroenterology</em> <bold>118</bold>(4) (2000) 705–713; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/s0016-5085(00" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/s0016-5085(00</a>">https://doi.org/10.1016/s0016-5085(00)70140-5</ext-link>
P. Brown, H. Inaba, C. Annesley, J. Beck, S. Colace, M. Dallas, K. DeSantes, K. Kelly, C. Kitko, N. Lacayo, N. Larrier, L. Maese, K. Mahadeo, R. Nanda, V. Nardi, V. Rodriguez, J. Rossoff, L. Schuettpelz, L. Silverman, J. Sun, W. Sun, D. Teachey, V. Wong, G. Yanik, A. Johnson-Chilla and N. Ogba, Pediatric acute lymphoblastic leukemia, Version 2.2020, NCCN Clinical practice guidelines in oncology, <em>J. Nat. Compr. Cancer Network</em> <bold>18</bold>(1) (2020) 81–112; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.6004/jnccn.2020.0001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.6004/jnccn.2020.0001</a>">https://doi.org/10.6004/jnccn.2020.0001</ext-link>
C. Cuffari, Y. Théorêt, S. Latour and G. Seidman, 6-Mercaptopurine metabolism in Crohn’s disease: correlation with efficacy and toxicity, <em>Gut</em> <bold>39</bold> (1996) 401–406; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1136/gut.39.3.401" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1136/gut.39.3.401</a>">https://doi.org/10.1136/gut.39.3.401</ext-link>
L. J. J. Derijks, L. P. L. Gilissen, P. M. Hooymans and D. W. Hommes, Review article: thiopurines in inflammatory bowel disease, <em>Alim. Pharmacol. T herap.</em> <bold>24</bold>(5) (2006) 715–729; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1365-2036.2006.02980.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1365-2036.2006.02980.x</a>">https://doi.org/10.1111/j.1365-2036.2006.02980.x</ext-link>
H. E. Mardini and G. L. Arnold, Utility of measuring 6-methylmercaptopurine and 6-thioguanine nucleotide levels in managing inflammatory bowel disease patients treated with 6-mercaptopurine in a clinical practice setting, <em>J. Clin. Gastroenterol.</em> <bold>36</bold>(5) (2003) 390–395; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1097/00004836-200305000-00005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/00004836-200305000-00005</a>">https://doi.org/10.1097/00004836-200305000-00005</ext-link>
D. P. van Asseldonk, M. L. Seinen, N. K. H. de Boer, A. A. van Bodegraven and C. J. Mulder, Hepatotoxicity associated with 6-methyl mercaptopurine formation during azathioprine and 6-mercaptopurine therapy does not occur on the short-term during 6-thioguanine therapy in IBD treatment, <em>J. Crohn’s Colitis</em> <bold>6</bold>(1) (2012) 95–101; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.crohns.2011.07.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.crohns.2011.07.009</a>">https://doi.org/10.1016/j.crohns.2011.07.009</ext-link>
J. P. Gisbert, Y. González-Lama and J. Maté, Thiopurine-induced liver injury in patients with inflammatory bowel disease: a systematic review, <em>Am. J. Gastroenterol.</em> <bold>102</bold>(7) (2007) 1518–1527; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1572-0241.2007.01187.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1572-0241.2007.01187.x</a>">https://doi.org/10.1111/j.1572-0241.2007.01187.x</ext-link>
A. F. Y. A. Hadithy, N. K. H. de Boer, L. J. J. Derijks, J. C. Escher, C. J. J. Mulder and J. R. B. J. Brouwers, Thiopurines in inflammatory bowel disease: pharmacogenetics, therapeutic drug monitoring and clinical recommendations, <em>Dig. Liver Dis.</em> <bold>37</bold>(4) (2005) 282–297; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.dld.2004.09.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.dld.2004.09.029</a>">https://doi.org/10.1016/j.dld.2004.09.029</ext-link>
L. Lennard, C. S. Cartwright, R. Wade and A. Vora, Thiopurine methyltransferase and treatment outcome in the UK acute lymphoblastic leukaemia trial ALL2003, <em>Br. J. Haematol.</em> <bold>170</bold>(4) (2015) 550–558; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/bjh.13469" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/bjh.13469</a>">https://doi.org/10.1111/bjh.13469</ext-link>
C. N. Remy, Metabolism of thiopyrimidines and thiopurines. S-Methylation with S-adenosylmethionine transmethylase and catabolism in mammalian tissues, <em>J. Biol. Chem.</em> <bold>238</bold>(3) (1963) 1078–1084.
L. C. Woodson, M. M. Ames, C. D. Selassie, C. Hansch and R. M. Weinshilboum, Thiopurine methyltransferase. Aromatic thiol substrates and inhibition by benzoic acid derivatives, <em>Mol. Pharmacol.</em> <bold>24</bold>(3) (1983) 471–478.
Y. Peng, Q. Feng, D. Wilk, A. A. Adjei, O. E. Salavaggione, R. M. Weinshilboum and V. C. Yee, Structural basis of substrate recognition in thiopurine s-methyltransferase, <em>Biochemistry</em> <bold>47</bold>(23) (2008) 6216–6225; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/bi800102x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/bi800102x</a>">https://doi.org/10.1021/bi800102x</ext-link>
M. Milek, A. Smid, R. Tamm, N. K. Kuzelicki, A. Metspalu and I. Mlinaric-Rascan, Post-translational stabilization of thiopurine S-methyltransferase by S-adenosyl-L-methionine reveals regulation of TPMT*1 and *3C allozymes, <em>Biochem. Pharmacol.</em> <bold>83</bold>(7) (2012) 969–976; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.bcp.2012.01.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bcp.2012.01.010</a>">https://doi.org/10.1016/j.bcp.2012.01.010</ext-link>
N. Karas-Kuželički, A. Šmid, R. Tamm, A. Metspalu and I. Mlinarič-Raščan, From pharmacogenetics to pharmacometabolomics: SAM modulates TPMT activity, <em>Pharmacogenomics</em> <bold>15</bold>(11) (2014) 1437–1449; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2217/pgs.14.84" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2217/pgs.14.84</a>">https://doi.org/10.2217/pgs.14.84</ext-link>
M. L. Appell, J. Berg, J. Duley, W. E. Evans, M. A. Kennedy, L. Lennard, T. Marinaki, H. L. McLeod, M. V. Relling, E. Schaeffeler, M. Schwab, R. Weinshilboum, A. E. J. Yeoh, E. M. McDonagh, J. M. Hebert, T. E. Klein and S. A. Coulthard, Nomenclature for alleles of the thiopurine methyltransferase gene, <em>Pharmacogenet. Genomics</em> <bold>23</bold>(4) (2013) 242–248; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1097/FPC.0b013e32835f1cc0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/FPC.0b013e32835f1cc0</a>">https://doi.org/10.1097/FPC.0b013e32835f1cc0</ext-link>
E. Y. Krynetski, M. Y. Fessing, C. R. Yates, D. Sun, J. D. Schuetz and W. E. Evans, Promoter and intronic sequences of the human thiopurine S-methyltransferase (TPMT) gene isolated from a human pacl genomic library, <em>Pharm. Res.</em> <bold>14</bold> (1997) 1672–1678; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1023/A:1012111325397" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1023/A:1012111325397</a>">https://doi.org/10.1023/A:1012111325397</ext-link>
E. Y. Krynetski, N. F. Krynetskaia, Y. Yanishevski and W. E. Evans, Methylation of mercaptopurine, thioguanine, and their nucleotide metabolites by heterologously expressed human thiopurine S-methyltransferase, <em>Mol. Pharmacol.</em> <bold>47</bold>(6) (1995) 1141–1147.
C. Szumlanski, D. Otterness, C. Her, D. Lee, B. Brandriff, D. Kelsell, N. Spurr, L. Lennard, E. Wieben and R. Weinshilboum, Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism, <em>DNA Cell Biol.</em> <bold>15</bold>(1) (1996) 17–30; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1089/dna.1996.15.17" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1089/dna.1996.15.17</a>">https://doi.org/10.1089/dna.1996.15.17</ext-link>
H. L. Tai, E. Y. Krynetski, C. R. Yates, T. Loennechen, M. Y. Fessing, N. F. Krynetskaia and W. E. Evans, Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians, <em>Am. J. Human Genet.</em> <bold>58</bold>(4) (1996) 694–702.
M. Milek, J. Murn, Z. Jaksic, J. Lukac Bajalo, J. Jazbec and I. Mlinaric Rascan, Thiopurine S-methyltransferase pharmacogenetics: genotype to phenotype correlation in the Slovenian population, <em>Pharmacology</em> <bold>77</bold>(3) (2006) 105–114; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1159/000093278" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1159/000093278</a>">https://doi.org/10.1159/000093278</ext-link>
E. Krynetski and W. E. Evans, Drug methylation in cancer therapy: lessons from the TPMT polymorphism, <em>Oncogene</em> <bold>22</bold> (2003) 7403–7413; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/sj.onc.1206944" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/sj.onc.1206944</a>">https://doi.org/10.1038/sj.onc.1206944</ext-link>
L. Lennard, C. S. Cartwright, R. Wade, S. M. Richards and A. Vora, Thiopurine methyltransferase genotype-phenotype discordance and thiopurine active metabolite formation in childhood acute lymphoblastic leukaemia, <em>Br. J. Clin. Pharmacol.</em> <bold>76</bold>(1) (2013) 125–136; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/bcp.12066" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/bcp.12066</a>">https://doi.org/10.1111/bcp.12066</ext-link>
M. Carter, A.-S. Jemth, A. Hagenkort, B. D. G. Page, R. Gustafsson, J. J. Griese, H. Gad, N. C. K. Valerie, M. Desroses, J. Boström, U. Warpman Berglund, T. Helleday and P. Stenmark, Crystal structure, biochemical and cellular activities demonstrate separate functions of MTH1 and MTH2, <em>Nat. Commun.</em> <bold>6</bold> (2015) Article ID 7871 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/ncomms8871" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/ncomms8871</a>">https://doi.org/10.1038/ncomms8871</ext-link>
S.-K. Yang, M. Hong, J. Baek, H. Choi, W. Zhao, Y. Jung, T. Haritunians, B. D. Ye, K.-J. Kim, S. H. Park, S.-K. Park, D.-H. Yang, M. Dubinsky, I. Lee, D. P. B. McGovern, J. Liu and K. Song, A common mis-sense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia, <em>Nat. Genet.</em> <bold>46</bold> (2014) 1017–1020; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/ng.3060" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/ng.3060</a>">https://doi.org/10.1038/ng.3060</ext-link>
D. Yin, X. Xia, J. Zhang, S. Zhang, F. Liao, G. Zhang, Y. Zhang, Q. Hou, X. Yang, H. Wang, Z. Ma, H. Wang, Y. Zhu, W. Zhang, Y. Wang, B. Liu, L. Wang, H. Xu and Y. Shu, Impact of NUDT15 polymorphisms on thiopurines-induced myelotoxicity and thiopurines tolerance dose, <em>Oncotarget</em> <bold>8</bold> (2017) 13575–13585; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.18632/oncotarget.14594" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.18632/oncotarget.14594</a>">https://doi.org/10.18632/oncotarget.14594</ext-link>
J. J. Yang, W. Landier, W. Yang, C. Liu, L. Hageman, C. Cheng, D. Pei, Y. Chen, K. R. Crews, N. Kornegay, F. L. Wong, W. E. Evans, C.-H. Pui, S. Bhatia and M. V. Relling, Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia, <em>J. Clin. Oncol.</em> <bold>33</bold> (2015) 1235–1242; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1200/JCO.2014.59.4671" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1200/JCO.2014.59.4671</a>">https://doi.org/10.1200/JCO.2014.59.4671</ext-link>
A. Gaedigk, S. T. Casey, M. Whirl-Carrillo, N. A. Miller and T. E. Klein, Pharmacogene variation consortium: a global resource and repository for pharmacogene variation, <em>Clin. Pharmacol. Ther</em>. <bold>110</bold>(3) (2021) 542–545; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/cpt.2321" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/cpt.2321</a>">https://doi.org/10.1002/cpt.2321</ext-link>
J. J. Yang, M. Whirl-Carrillo, S. A. Scott, A. J. Turner, M. Schwab, Y. Tanaka, G. Suarez-Kurtz, E. Schaeffeler, T. E. Klein, N. A. Miller and A. Gaedigk, Pharmacogene variation consortium gene introduction: NUDT15, <em>Clin. Pharmacol. Therap.</em> <bold>105</bold>(5) (2019) 1091–1094; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/cpt.1268" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/cpt.1268</a>">https://doi.org/10.1002/cpt.1268</ext-link>
E. Schaeffeler, C. Fischer, D. Brockmeier, D. Wernet, K. Moerike, M. Eichelbaum, U. M. Zanger and M. Schwab, Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants, <em>Pharmacogenetics</em> <bold>14</bold>(7) (2004) 407–417; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1097/01.fpc.0000114745.08559.db" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/01.fpc.0000114745.08559.db</a>">https://doi.org/10.1097/01.fpc.0000114745.08559.db</ext-link>
M. Stanulla, E. Schaeffeler, T. Flohr, G. Cario, A. Schrauder, M. Zimmermann, K. Welte, W.-D. Ludwig, C. R. Bartram, U. M. Zanger, M. Eichelbaum, M. Schrappe and M. Schwab, Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia, <em>JAMA</em> <bold>293</bold>(12) (2005) 1485–1489; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1001/jama.293.12.1485" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1001/jama.293.12.1485</a>">https://doi.org/10.1001/jama.293.12.1485</ext-link>
N. Karas-Kuzelicki, J. Jazbec, M. Milek and I. Mlinaric-Rascan, Heterozygosity at the TPMT gene locus, augmented by mutated MTHFR gene, predisposes to 6-MP related toxicities in childhood ALL patients, <em>Leukemia</em> <bold>23</bold> (2009) 971–974; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/leu.2008.317" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/leu.2008.317</a>">https://doi.org/10.1038/leu.2008.317</ext-link>
E. Schaeffeler, S. U. Jaeger, V. Klumpp, J. J. Yang, S. Igel, L. Hinze, M. Stanulla and M. Schwab, Impact of <em>NUDT15</em> genetics on severe thiopurine-related hematotoxicity in patients with European ancestry, <em>Gen. Med.</em> <bold>21</bold>(9) (2019) 2145–2150; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41436-019-0448-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41436-019-0448-7</a>">https://doi.org/10.1038/s41436-019-0448-7</ext-link>
L. Dean and M. Kane, <em>Mercaptopurine Therapy and</em> TPMT <em>and</em> NUDT15 <em>Genotype</em>, in <em>Medical Genetics Summaries</em> (Eds. V. M. Pratt, S. A. Scott, M. Pirmohamed, B. Esquivel, B. L. Kattman and A. J. Malheiro); National Center for Biotechnology Information (US), Bethesda (MD), 2012; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ncbi.nlm.nih.gov/books/NBK100660/">https://www.ncbi.nlm.nih.gov/books/NBK100660/</ext-link>
L. L. Goh, C. W. Lim, K. P. Leong and K. H. Ong, TPMT and NUDT15 testing for thiopurine therapy: A major tertiary hospital experience and lessons learned, <em>Front. Pharmacol.</em> <bold>13</bold> (2022) Article ID 837164 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fphar.2022.837164" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fphar.2022.837164</a>">https://doi.org/10.3389/fphar.2022.837164</ext-link>
M. Whirl-Carrillo, R. Huddart, L. Gong, K. Sangkuhl, C. F. Thorn, R. Whaley and T. E. Klein, An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine, <em>Clin. Pharmacol. Ther.</em> <bold>110</bold>(3) (2021) 563–572; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/cpt.2350" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/cpt.2350</a>">https://doi.org/10.1002/cpt.2350</ext-link>
C. J. D. Ross, H. Visscher, J. Sistonen, L. R. Brunham, K. Pussegoda, T. T. Loo, M. J. Rieder, G. Koren, B. C. Carleton, M. R. Hayden, and CPNDS Consortium, The Canadian Pharmacogenomics Network for Drug Safety: A model for safety pharmacology, <em>Thyroid</em> <bold>20</bold>(7) (2010) 681–687; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1089/thy.2010.1642" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1089/thy.2010.1642</a>">https://doi.org/10.1089/thy.2010.1642</ext-link>
V. M. Pratt, L. H. Cavallari, M. L. Fulmer, A. Gaedigk, H. Hachad, Y. Ji, L. V. Kalman, R. C. Ly, A. M. Moyer, S. A. Scott, R. H. N. van Schaik, M. Whirl-Carrillo and K. E. Weck, TPMT and NUDT15 genotyping recommendations: A joint consensus recommendation of the Association for Molecular Pathology, Clinical Pharmacogenetics Implementation Consortium, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, European Society for Pharmacogenomics and Personalized Therapy, and Pharmacogenomics Knowledgebase, <em>J. Mol. Diagn.</em> <bold>24</bold>(10) (2022) 1051–1063; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jmoldx.2022.06.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jmoldx.2022.06.007</a>">https://doi.org/10.1016/j.jmoldx.2022.06.007</ext-link>
PharmGKB, <em>Azathioprine</em>; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.pharmgkb.org/chemical/PA448515/prescribingInfo">https://www.pharmgkb.org/chemical/PA448515/prescribingInfo</ext-link>, last access date August 4, 2024.
PharmGKB, <em>Mercaptopurine</em>; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.pharmgkb.org/chemical/PA450379/prescribing">https://www.pharmgkb.org/chemical/PA450379/prescribing</ext-link> Info, last access date August 4, 2024.
PharmGKB, <em>Thioguanine</em>; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.pharmgkb.org/chemical/PA451663/prescribingInfo">https://www.pharmgkb.org/chemical/PA451663/prescribingInfo</ext-link>, last access date August 4, 2024.
M. Maillard, R. Nishii, W. Yang, K. Hoshitsuki, D. Chepyala, S. H. R. Lee, J. Q. Nguyen, M. V. Relling, K. R. Crews, M. Leggas, M. Singh, J. L. Y. Suang, A. E. J. Yeoh, S. Jeha, H. Inaba, C.-H. Pui, S. E. Karol, A. Trehan, P. Bhatia, F. G. Antillon Klussmann, D. Bhojwani, C. E. Haidar and J. J. Yang, Additive effects of TPMT and NUDT15 on thiopurine toxicity in children with acute lymphoblastic leukemia across multiethnic populations, <em>J. Natl. Cancer Inst.</em> <bold>116</bold>(5) (2024) 702–710; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/jnci/djae004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/jnci/djae004</a>">https://doi.org/10.1093/jnci/djae004</ext-link>
T. R. Yakushi, Y. Qu, M. M. Moradian and R. T. Ramjit, Comprehensive evaluation of how TPMT genotype influences thiopurine treatment, <em>Transl. Biomed.</em> <bold>13</bold>(12) (2022) 1–11; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.36648/2172" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.36648/2172</a>">https://doi.org/10.36648/2172</ext-link>
D. F. Carr, R. M. Turner and M. Pirmohamed, Pharmacogenomics of anticancer drugs: Personalising the choice and dose to manage drug response, <em>Br. J. Clin. Pharmacol.</em> <bold>87</bold>(2) (2021) 237–255; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/bcp.14407" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/bcp.14407</a>">https://doi.org/10.1111/bcp.14407</ext-link>
D. Desai, A. Jena, V. Sharma and T. Hibi, Time to incorporate preemptive NUDT15 testing before starting thiopurines in inflammatory bowel disease in Asia and beyond: a review, <em>Expert Rev. Clin. Pharmacol.</em> <bold>16</bold> (2023) 643–653; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/17512433.2023.2232300" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/17512433.2023.2232300</a>">https://doi.org/10.1080/17512433.2023.2232300</ext-link>
O. Dewit, T. Moreels, F. Baert, H. Peeters, C. Reenaers, M. de Vos, P. Van Hootegem, V. Muls, G. Veereman, F. Mana, M. Van Outryve, J. Holvoet, S. Naegels, H. Piessevaux, Y. Horsmans, J. L. Gala and Belgian Inflammatory Bowel Disease Research Group (BIRD), Limitations of extensive TPMT genotyping in the management of azathioprine-induced myelosuppression in IBD patients, <em>Clin. Biochem.</em> <bold>44</bold>(13) (2011) 1062–1066; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.clinbiochem.2011.06.079" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.clinbiochem.2011.06.079</a>">https://doi.org/10.1016/j.clinbiochem.2011.06.079</ext-link>
K. Zarca, I. Durand-Zaleski, M.-A. Loriot, G. Chatellier and N. Pallet, Modeling the outcome of systematic TPMT genotyping or phenotyping before azathioprine prescription: A cost-effectiveness analysis, <em>Mol. Diagn. Ther.</em> <bold>23</bold> (2019) 429–438; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s40291-019-00398-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s40291-019-00398-x</a>">https://doi.org/10.1007/s40291-019-00398-x</ext-link>
A. A. Omar, L. Basiouny, A. S. Elnoby, A. Zaki and M. Abouzid, St. Jude Total Therapy studies from I to XVII for childhood acute lymphoblastic leukemia: a brief review, <em>J. Egypt. Natl. Cancer Inst.</em> <bold>34</bold> (2022) Article ID 25 (20 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/s43046-022-00126-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s43046-022-00126-3</a>">https://doi.org/10.1186/s43046-022-00126-3</ext-link>
L. M. Roy, R. M. Zur, E. Uleryk, C. Carew, S. Ito and W. J. Ungar, Thiopurine S-methyltransferase testing for averting drug toxicity in patients receiving thiopurines: a systematic review, <em>Pharmacogenomics</em> <bold>17</bold>(6) (2016) 633–656; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2217/pgs.16.12" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2217/pgs.16.12</a>">https://doi.org/10.2217/pgs.16.12</ext-link>
NIH – NLM – NCBI, Genetic Testing Registry (GTR), <em>Clinical and Research Tests for Thiopurine</em>; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=thiopurine;">https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=thiopurine;</ext-link> last access date August 4, 2024.
R. M. Weinshilboum, F. A. Raymond and P. A. Pazmiño, Human erythrocyte thiopurine methyltransferase: radiochemical microassay and biochemical properties, <em>Clin. Chim. Acta</em> <bold>85</bold>(3) (1978) 323–333; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/0009-8981(78)90311-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0009-8981(78)90311-x</a>">https://doi.org/10.1016/0009-8981(78)90311-x</ext-link>
M. Tinel, A. Berson, D. Pessayre, P. Letteron, M. P. Cattoni, Y. Horsmans and D. Larrey, Pharmacogenetics of human erythrocyte thiopurine methyltransferase activity in a French population, <em>Br. J. Clin. Pharmacol.</em> <bold>32</bold>(6) (1991) 729–734.
U. Hindorf and M. L. Appell, Genotyping should be considered the primary choice for pre-treatment evaluation of thiopurine methyltransferase function, <em>J. Crohns Colitis</em> <bold>6</bold>(6) (2012) 655–659; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.crohns.2011.11.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.crohns.2011.11.014</a>">https://doi.org/10.1016/j.crohns.2011.11.014</ext-link>
T. Larussa, E. Suraci, M. Lentini, I. Nazionale, L. Gallo, L. Abenavoli, M. Imeneo, F. S. Costanzo, G. Cuda and F. Luzza, High prevalence of polymorphism and low activity of thiopurine methyltransferase in patients with inflammatory bowel disease, <em>Eur. J. Intern. Med.</em> <bold>23</bold>(3) (2012) 273–277; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ejim.2011.12.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ejim.2011.12.002</a>">https://doi.org/10.1016/j.ejim.2011.12.002</ext-link>
T. Kröplin, C. Fischer and H. Iven, Inhibition of thiopurine S-methyltransferase activity by impurities in commercially available substrates: a factor for differing results of TPMT measurements, <em>Eur. J. Clin. Pharmacol.</em> <bold>55</bold>(4) (1999) 285–291.
L. Ben Salah, M. Belkhiria el Haj Amor, C. Chbili, S. Khlifi, N. Fathallah, I. Bougmiza, E. Ben Jazia, N. Houdret, C. Ben Salem and S. Saguem, Analysis of thiopurine S-methyltransferase phenotypegenotype in a Tunisian population with Crohn’s disease, <em>Eur. J. Drug Metab. Pharmacokin.</em> <bold>38</bold> (2013) 241–244; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13318-013-0127-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13318-013-0127-z</a>">https://doi.org/10.1007/s13318-013-0127-z</ext-link>
R. Tamm, R. Mägi, R. Tremmel, S. Winter, E. Mihailov, A. Smid, A. Möricke, K. Klein, M. Schrappe, M. Stanulla, R. Houlston, R. Weinshilboum, I. Mlinarič Raščan, A. Metspalu, L. Milani, M. Schwab and E. Schaeffeler, Polymorphic variation in TPMT is the principal determinant of TPMT pheno-type: A meta-analysis of three genome-wide association studies, <em>Clin. Pharmacol. Ther.</em> <bold>101</bold>(5) (2017) 684–695; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/cpt.540" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/cpt.540</a>">https://doi.org/10.1002/cpt.540</ext-link>
D. Pecher, S. Dokupilová, Z. Zelinková, M. Peppelenbosch, V. Mikušová and P. Mikuš, Determination of thiopurine <em>S</em>-methyltransferase activity by hydrophilic interaction liquid chromatography hyphenated with mass spectrometry, <em>J. Pharm. Biomed. Anal.</em> <bold>142</bold> (2017) 244–251; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jpba.2017.05.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jpba.2017.05.016</a>">https://doi.org/10.1016/j.jpba.2017.05.016</ext-link>
L. Wilson, S. Tuson, L. Yang and D. Loomes, Real-world use of azathioprine metabolites changes clinical management of inflammatory bowel disease, <em>J. Can. Assoc. Gastroenterol.</em> <bold>4</bold>(3) (2020) 101–109; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/jcag/gwaa005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/jcag/gwaa005</a>">https://doi.org/10.1093/jcag/gwaa005</ext-link>
P. Sousa, M. M. Estevinho, C. C. Dias, P. Ministro, U. Kopylov, S. Danese, L. Peyrin-Biroulet and F. Magro, Thiopurines’ metabolites and drug toxicity: A meta-analysis, <em>J. Clin. Med.</em> <bold>9</bold>(7) (2020) Article ID 2216 (29 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/jcm9072216101" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/jcm9072216101</a>">https://doi.org/10.3390/jcm9072216101</ext-link>
T. Dervieux and R. Boulieu, Simultaneous determination of 6-thioguanine and methyl 6-mercaptopurine nucleotides of azathioprine in red blood cells by HPLC, <em>Clin. Chem.</em> <bold>44</bold>(3) (1998) 551–555.
G. Cangemi, A. Barabino, S. Barco, A. Parodi, S. Arrigo and G. Melioli, A validated HPLC method for the monitoring of thiopurine metabolites in whole blood in paediatric patients with inflammatory bowel disease, <em>Int. J. Immunopathol. Pharmacol.</em> <bold>25</bold>(2) (2012) 435–444; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1177/039463201202500213" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/039463201202500213</a>">https://doi.org/10.1177/039463201202500213</ext-link>
M. F. Neurath, R. Kiesslich, U. Teichgräber, C. Fischer, U. Hofmann, M. Eichelbaum, P. R. Galle and M. Schwab, 6-Thioguanosine diphosphate and triphosphate levels in red blood cells and response to azathioprine therapy in Crohn’s Disease, <em>Clin. Gastroenterol. Hepatol.</em> <bold>3</bold>(10) (2005) 1007–1014; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S1542-3565(05)00697-X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S1542-3565(05)00697-X</a>">https://doi.org/10.1016/S1542-3565(05)00697-X</ext-link>
Q. Miao, Y.-J. Bai, J.-L. Zhang, Yi Li, Z.-Z. Su, L. Yan, L.-L. Wang and Y.-G. Zou, Highly sensitive and rapid determination of azathioprine metabolites in whole blood lysate by liquid chromatography-tandem mass spectrometry, <em>J. Chromatogr. B</em> <bold>1136</bold> (2020) Article ID 121802; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jchromb.2019.121802" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jchromb.2019.121802</a>">https://doi.org/10.1016/j.jchromb.2019.121802</ext-link>
K. Lampič, J. Trontelj, H. Prosen, D. Drobne, A. Šmid and T. Vovk, Determination of 6-thioguanine and 6-methylmercaptopurine in dried blood spots using liquid chromatography-tandem mass spectrometry: Method development, validation and clinical application, <em>Clin. Chim. Acta</em> <bold>499</bold> (2019) 24–33; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cca.2019.08.024" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cca.2019.08.024</a>">https://doi.org/10.1016/j.cca.2019.08.024</ext-link>
I.-Y. Yoo, K. Lee, O.-J. Ji, H. I. Woo and S.-Y. Lee, Evaluation of stability of thiopurine metabolites using a validated LC-MS/MS method, <em>Ann. Lab. Med.</em> <bold>38</bold>(3) (2018) 255–260; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3343/alm.2018.38.3.255" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3343/alm.2018.38.3.255</a>">https://doi.org/10.3343/alm.2018.38.3.255</ext-link>
P. W. Lowry, C. L. Franklin, A. L. Weaver, M. G. Pike, D. C. Mays, W. J. Tremaine, J. J. Lipsky and W. J. Sandborn, Measurement of thiopurine methyltransferase activity and azathioprine metabolites in patients with inflammatory bowel disease, <em>Gut</em> <bold>49</bold> (2001) 665–670; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1136/gut.49.5.665" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1136/gut.49.5.665</a>">https://doi.org/10.1136/gut.49.5.665</ext-link>
P. de Graaf, N. K. H. de Boer, B. Jharap, C. J. J. Mulder, A. A. van Bodegraven and A. I. Veldkamp, Stability of thiopurine metabolites: A potential analytical bias, <em>Clin. Chem.</em> <bold>54</bold>(1) (2008) 216–218; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1373/clinchem.2007.092676" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1373/clinchem.2007.092676</a>">https://doi.org/10.1373/clinchem.2007.092676</ext-link>
H. Yu, D. Li, D. Xiang, X. Li, L. Liu, D. Liu and X. Gong, Development and validation of a novel HPLC-UV method for simultaneous determination of azathioprine metabolites in human red blood cells, <em>Heliyon</em> <bold>9</bold> (2023) Article ID e13870 (9 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.heliyon.2023.e13870" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.heliyon.2023.e13870</a>">https://doi.org/10.1016/j.heliyon.2023.e13870</ext-link>
Y. Kakuta, M. Kato, Y. Shimoyama, T. Naito, R. Moroi, M. Kuroha, H. Shiga, Y. Kinouchi and A. Masamune, Usefulness and difficulties with the thiopurine pharmacogenomic <em>NUDT15</em> genotyping test: Analysis of real-world data in Japan, <em>J. Pharmacol. Sci.</em> <bold>153</bold>(3) (2023) 161–169; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jphs.2023.09.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jphs.2023.09.002</a>">https://doi.org/10.1016/j.jphs.2023.09.002</ext-link>
K. W. Weitzel, D. M. Smith, A. R. Elsey, B. Q. Duong, B. Burkley, M. Clare-Salzler, Y. Gong, T. A. Higgins, B. Kong, T. Langaee, C. W. McDonough, B. J. Staley, T. T. Vo, D. T. Wake, L. H. Cavallari and J. A. Johnson, Implementation of standardized clinical processes for TPMT testing in a diverse multidisciplinary population: Challenges and lessons learned, <em>Clin. Trans. Sci.</em> <bold>11</bold>(2) (2018) 175–181; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/cts.12533" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/cts.12533</a>">https://doi.org/10.1111/cts.12533</ext-link>
S. A. Morris, A. T. Alsaidi, A. Verbyla, A. Cruz, C. Macfarlane, J. Bauer and J. N. Patel, Cost effectiveness of pharmacogenetic testing for drugs with clinical pharmacogenetics implementation consortium (CPIC) guidelines: A systematic review, <em>Clin. Pharmacol. Therap.</em> <bold>112</bold>(6) (2022) 1318–1328; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/cpt.2754" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/cpt.2754</a>">https://doi.org/10.1002/cpt.2754</ext-link>
G. Suarez-Kurtz, Population impact of pharmacogenetic tests in admixed populations across the Americas, <em>Pharmacogenomics J.</em> <bold>21</bold> (2021) 216–221; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41397-020-00200-w" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41397-020-00200-w</a>">https://doi.org/10.1038/s41397-020-00200-w</ext-link>
Y. Zhou and V. M. Lauschke, Population pharmacogenomics: an update on ethnogeographic differences and opportunities for precision public health, <em>Hum. Genet.</em> <bold>141</bold> (2022) 1113–1136; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00439-021-02385-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00439-021-02385-x</a>">https://doi.org/10.1007/s00439-021-02385-x</ext-link>
K. J. Karczewski, L. C. Francioli, G. Tiao, B. B. Cummings, J. Alföldi, Q. Wang, R. L. Collins, K. M. Laricchia, A. Ganna, D. P. Birnbaum, L. D. Gauthier, H. Brand, M. Solomonson, N. A. Watts, D. Rhodes, M. Singer-Berk, E. M. England, E. G. Seaby, J. A. Kosmicki, R. K. Walters, K. Tashman, Y. Farjoun, E. Banks, T. Poterba, A. Wang, C. Seed, N. Whiffin, J. X. Chong, K. E. Samocha, E. Pierce-Hoffman, Z. Zappala, A. H. O’Donnell-Luria, E. V. Minikel, B. Weisburd, M. Lek, J. S. Ware, C. Vittal, I. M. Armean, L. Bergelson, K. Cibulskis, K. M. Connolly, M. Covarrubias, S. Donnelly, S. Ferriera, S. Gabriel, J. Gentry, N. Gupta, T. Jeandet, D. Kaplan, C. Llanwarne, R. Munshi, S. Novod, N. Petrillo, D. Roazen, V. Ruano-Rubio, A. Saltzman, M. Schleicher, J. Soto, K. Tibbetts, C. Tolonen, G. Wade, M. E. Talkowski, Genome Aggregation Database Consortium, B. M. Neale, M. J. Daly and D. G. MacArthur, The mutational constraint spectrum quantified from variation in 141,456 humans, <em>Nature</em> <bold>581</bold> (2020) 434–443; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41586-020-2308-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41586-020-2308-7</a>">https://doi.org/10.1038/s41586-020-2308-7</ext-link>
H. Wint, J. Li, T. Abe, H. Yamada, T. Higaki, Y. Nasu, M. Watanabe, K. Takei and T. Takeda, Pacsin 2-dependent N-cadherin internalization regulates the migration behaviour of malignant cancer cells, <em>J. Cell Sci.</em> <bold>136</bold>(10) (2023) jcs260827; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1242/jcs.260827" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1242/jcs.260827</a>">https://doi.org/10.1242/jcs.260827</ext-link>
G. Stocco, W. Yang, K. R. Crews, W. E. Thierfelder, G. Decorti, M. Londero, R. Franca, M. Rabusin, M. G. Valsecchi, D. Pei, C. Cheng, S. W. Paugh, L. B. Ramsey, B. Diouf, J. R. McCorkle, T. S. Jones, C.-H. Pui, M. V. Relling and W. E. Evans, PACSIN2 polymorphism influences TPMT activity and mercaptopurine-related gastrointestinal toxicity, <em>Hum. Mol. Genet.</em> <bold>21</bold>(21) (2012) 4793–4804; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/hmg/dds302" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/hmg/dds302</a>">https://doi.org/10.1093/hmg/dds302</ext-link>
R. Franca, G. Stocco, D. Favretto, N. Giurici, I. del Rizzo, F. Locatelli, L. Vinti, A. Biondi, A. Colom-bini, F. Fagioli, E. Barisone, M. Pelin, S. Martellossi, A. Ventura, G. Decorti and M. Rabusin, PACSIN2 rs2413739 influence on thiopurine pharmacokinetics: validation studies in pediatric patients, <em>Pharmacogenomics J.</em> <bold>20</bold> (2020) 415–425; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41397-019-0130-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41397-019-0130-0</a>">https://doi.org/10.1038/s41397-019-0130-0</ext-link>
A. Smid, N. Karas-Kuzelicki, J. Jazbec and I. Mlinaric-Rascan, <em>PACSIN2</em> polymorphism is associated with thiopurine-induced hematological toxicity in children with acute lymphoblastic leukaemia undergoing maintenance therapy, <em>Sci. Rep.</em> <bold>6</bold> (2016) Article ID 30244 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/srep30244" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/srep30244</a>">https://doi.org/10.1038/srep30244</ext-link>
T. Moriyama, S. Liu, J. Li, J. Meyer, X. Zhao, W. Yang, Y. Shao, R. Heath, A. Hnízda, W. L. Carroll and J. J. Yang, Mechanisms of NT5C2-mediated thiopurine resistance in acute lymphoblastic leukemia, <em>Mol. Cancer Ther.</em> <bold>18</bold>(10) (2019) 1887–1895; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1158/1535-7163.MCT-18-1112" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1158/1535-7163.MCT-18-1112</a>">https://doi.org/10.1158/1535-7163.MCT-18-1112</ext-link>
C. Jiang, W. Yang, T. Moriyama, C. Liu, C. Smith, W. Yang, M. Qian, Z. Li, M. Tulstrup, K. Schmiegelow, K. R. Crews, H. Zhang, C.-H. Pui, W. Evans, M. Relling, S. Bhatia and J. J. Yang, Effects of NT5C2 germline variants on 6-mecaptopurine metabolism in children with acute lymphoblastic leukemia, <em>Clin. Pharmacol. Ther.</em> <bold>109</bold>(6) (2021) 1538–1545; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/cpt.2095" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/cpt.2095</a>">https://doi.org/10.1002/cpt.2095</ext-link>
M. Tulstrup, M. Grosjean, S. N. Nielsen, K. Grell, B. O. Wolthers, P. S. Wegener, O. G. Jonsson, B. Lund, A. Harila-Saari, J. Abrahamsson, G. Vaitkeviciene, K. Pruunsild, N. Toft, M. Holm, E. Hulegårdh, S. Liestøl, L. Griskevicius, M. Punab, J. Wang, W. L. Carroll, Z. Zhang, M. D. Dalgaard, R. Gupta, J. Nersting and K. Schmiegelow, <em>NT5C2</em> germline variants alter thiopurine metabolism and are associated with acquired <em>NT5C2</em> relapse mutations in childhood acute lymphoblastic leukaemia, <em>Leukemia</em> <bold>32</bold> (2018) 2527–2535; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41375-018-0245-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41375-018-0245-3</a>">https://doi.org/10.1038/s41375-018-0245-3</ext-link>
T. Moriyama, J. Meyer, S. Liu, X. Zhao, Z. Ying, W. L. Carroll and J. J. Yang, NT5C2 as a major contributor to thiopurine resistance at ALL relapse via multiple mechanisms, <em>Blood</em> <bold>126</bold>(23) (2015) Article ID 446; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1182/blood.V126.23.446.446" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1182/blood.V126.23.446.446</a>">https://doi.org/10.1182/blood.V126.23.446.446</ext-link>
S. Somazu, Y. Tanaka, M. Tamai, A. Watanabe, K. Kagami, M. Abe, D. Harama, T. Shinohara, K. Akahane, K. Goi, K. Sugita, T. Moriyama, J. Yang, H. Goto, M. Minegishi, S. Iwamoto, J. Takita and T. Inukai, NUDT15 polymorphism and NT5C2 and PRPS1 mutations influence thiopurine sensitivity in acute lymphoblastic leukaemia cells, <em>J. Cell. Mol. Med.</em> <bold>25</bold>(22) (2021) 10521–10533; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/jcmm.16981" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/jcmm.16981</a>">https://doi.org/10.1111/jcmm.16981</ext-link>
Y. Lee, E. J. Jang, H.-Y. Yoon, J. Yee and H.-S. Gwak, Effect of ITPA polymorphism on adverse drug reactions of 6-mercaptopurine in pediatric patients with acute lymphoblastic leukemia: a systematic review and meta-analysis, <em>Pharmaceuticals</em> (Basel) <bold>15</bold>(4) (2022) Article ID 416 (12 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ph15040416" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ph15040416</a>">https://doi.org/10.3390/ph15040416</ext-link>
J. M. Van Dieren, B. E. Hansen, E. J. Kuipers, E. E. S. Nieuwenhuis and C. J. Van der Woude, Meta-analysis: Inosine triphosphate pyrophosphatase polymorphisms and thiopurine toxicity in the treatment of inflammatory bowel disease, <em>Aliment. Pharmacol. Ther.</em> <bold>26</bold>(5) (2007) 643–652; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1365-2036.2007.03412.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1365-2036.2007.03412.x</a>">https://doi.org/10.1111/j.1365-2036.2007.03412.x</ext-link>
R. Steponaitiene, J. Kupcinskas, S. Survilaite, G. Varkalaite, L. Jonaitis, G. Kiudelis, G. Denapiene, J. Valantinas, J. Skieceviciene and L. Kupcinskas, <em>TPMT</em> and <em>ITPA</em> genetic variants in Lithuanian inflammatory bowel disease patients: Prevalence and azathioprine-related side effects, <em>Adv. Med. Sci.</em> <bold>61</bold>(1) (2016) 135–140; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.advms.2015.09.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.advms.2015.09.008</a>">https://doi.org/10.1016/j.advms.2015.09.008</ext-link>
A. Jena, N. Grover, P. Bhatia, M. Singh, D. Lad, K. K. Prasad, H. Singh, U. Dutta and V. Sharma, ITPA polymorphisms do not predict additional risk beyond TPMT and NUDT15 for thiopurine-induced cytopenia in inflammatory bowel disease ITPA polymorphisms do not predict additional risk beyond TPMT and NUDT15 for thiopurine-induced cytopenia in inflammatory bowel disease [Los polimorfismos de ITPA no predicen un riesgo adicional más allá de TPMT y NUDT15 para citopenia inducida por tiopurina en la enfermedad inflamatoria intestinal], <em>Rev. Gastroenterol. Mex</em>. (Engl. Ed.) <bold>89</bold>(1) (2024) 25–30; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.rgmxen.2021.11.017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rgmxen.2021.11.017</a>">https://doi.org/10.1016/j.rgmxen.2021.11.017</ext-link>
Y. S. Jung, J. H. Cheon, J. J. Park, C. M. Moon, E. S. Kim, J. H. Lee, S. W. Kim, J. H. Kim, S. P. Hong, T. I. Kim and W. H. Kim, Correlation of genotypes for thiopurine methyltransferase and inosine triphosphate pyrophosphatase with long-term clinical outcomes in Korean patients with inflammatory bowel diseases during treatment with thiopurine drugs, <em>J. Hum. Genet.</em> <bold>55</bold> (2010) 121–123; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/jhg.2009.125" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/jhg.2009.125</a>">https://doi.org/10.1038/jhg.2009.125</ext-link>
Q. Miao, L. Yan, Y. Zhou, Y. Li, Y. Zou, L. Wang, Y. Bai and J. Zhang, Association of genetic variants in <em>TPMT</em>, <em>ITPA</em>, and <em>NUDT15</em> with azathioprine-induced myelosuppression in southwest china patients with autoimmune hepatitis, <em>Sci. Rep.</em> <bold>11</bold> (2021) Article ID 7984 (8 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41598-021-87095-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-021-87095-0</a>">https://doi.org/10.1038/s41598-021-87095-0</ext-link>
T. Adam de Beaumais, M. Fakhoury, Y. Medard, S. Azougagh, D. Zhang, K. Yakouben and E. Jacqz-Aigrain, Determinants of mercaptopurine toxicity in paediatric acute lymphoblastic leukemia maintenance therapy, <em>Br. J. Clin. Pharmacol.</em> <bold>71</bold>(4) (2011) 575–584; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1365-2125.2010.03867.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1365-2125.2010.03867.x</a>">https://doi.org/10.1111/j.1365-2125.2010.03867.x</ext-link>
R. Choi, M.-N. Lee, K. Kim, S.-Y. Baek, T. J. Kim, S. N. Hong, Y.-H. Kim and S.-Y. Lee, Effects of various genetic polymorphisms on thiopurine treatment-associated outcomes for Korean patients with Crohn’s disease, <em>Br. J. Clin. Pharmacol.</em> <bold>86</bold>(11) (2020) 2302–2313; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/bcp.14339" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/bcp.14339</a>">https://doi.org/10.1111/bcp.14339</ext-link>
T. Gerbek, M. Ebbesen, J. Nersting, T. L. Frandsen, M. L. Appell and K. Schmiegelow, Role of TPMT and ITPA variants in mercaptopurine disposition, <em>Cancer Chemother. Pharmacol.</em> <bold>81</bold> (2018) 579–586; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00280-018-3525-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00280-018-3525-8</a>">https://doi.org/10.1007/s00280-018-3525-8</ext-link>
B. Moradveisi, S. Muwakkit, F. Zamani, E. Ghaderi, E. Mohammadi and N. K. Zgheib, <em>ITPA</em>, <em>TPMT</em>, and <em>NUDT15</em> genetic polymorphisms predict 6-mercaptopurine toxicity in Middle Eastern children with acute lymphoblastic leukemia, <em>Front. Pharmacol.</em> <bold>10</bold> (2019) Article ID 916 (8 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fphar.2019.00916" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fphar.2019.00916</a>">https://doi.org/10.3389/fphar.2019.00916</ext-link>
B. Boonyawat, C. Monsereenusorn, A. Photia, N. Lertvivatpong, V. Kaewchaivijit, P. Jindatanmanusan and P. Rujkijyanont, ITPA:c.94C>A and NUDT15:c.415C>T polymorphisms and their relation to mercaptopurine-related myelotoxicity in childhood leukemia in Thailand, <em>Appl. Clin. Genet.</em> <bold>14</bold> (2021) 341–351; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2147/TACG.S318912" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2147/TACG.S318912</a>">https://doi.org/10.2147/TACG.S318912</ext-link>
A. Smid, N. Karas-Kuzelicki, M. Milek, J. Jazbec and I. Mlinaric-Rascan, Association of ITPA genotype with event-free survival and relapse rates in children with acute lymphoblastic leukemia undergoing maintenance therapy, <em>PLoS ONE</em> <bold>9</bold>(10) (2014) Article ID e109551 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1371/journal.pone.0109551" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0109551</a>">https://doi.org/10.1371/journal.pone.0109551</ext-link>
J. Ereño-Orbea, T. Majtan, I. Oyenarte, J. P. Kraus and L. A. Martínez-Cruz, Structural insight into the molecular mechanism of allosteric activation of human cystathionine β-synthase by <em>S</em>-adeno-sylmethionine, <em>Proc. Natl. Acad. Sci. USA</em> <bold>111</bold>(37) (2014) E3845-E3852; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1073/pnas.1414545111" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1073/pnas.1414545111</a>">https://doi.org/10.1073/pnas.1414545111</ext-link>
T. H. Scheuermann, C. Keeler and M. E. Hodsdon, Consequences of binding an S-adenosylmethionine analogue on the structure and dynamics of the thiopurine methyltransferase protein backbone, <em>Biochemistry</em> <bold>43</bold>(38) (2004) 12198–12209; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/bi0492556" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/bi0492556</a>">https://doi.org/10.1021/bi0492556</ext-link>
M. Milek, N. Karas Kuzelicki, A. Smid and I. Mlinaric-Rascan, S-adenosylmethionine regulates thiopurine methyltransferase activity and decreases 6-mercaptopurine cytotoxicity in MOLT lymphoblasts, <em>Biochem. Pharmacol.</em> <bold>77</bold>(12) (2009) 1845–1853; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.bcp.2009.03.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bcp.2009.03.006</a>">https://doi.org/10.1016/j.bcp.2009.03.006</ext-link>
N. Karas-Kuzelicki, M. Milek and I. Mlinaric-Rascan, MTHFR and TYMS genotypes influence TPMT activity and its differential modulation in males and females, <em>Clin. Biochem.</em> <bold>43</bold>(1–2) (2010) 37–42; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.clinbiochem.2009.09.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.clinbiochem.2009.09.003</a>">https://doi.org/10.1016/j.clinbiochem.2009.09.003</ext-link>
M.-N. Lee, B. Kang, S. Y. Choi, M. J. Kim, S. Y. Woo, J.-W. Kim, Y. H. Choe and S.-Y. Lee, Impact of genetic polymorphisms on 6-thioguanine nucleotide levels and toxicity in pediatric patients with IBD treated with azathioprine, <em>Inflamm. Bowel Dis.</em> <bold>21</bold>(12) (2015) 2897–2908; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1097/MIB.0000000000000570" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/MIB.0000000000000570</a>">https://doi.org/10.1097/MIB.0000000000000570</ext-link>
NIH – NLM - NCBI, Genetic Testing Registry (GTR), <em>Clinical and Research Tests for NUDT15</em>; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=NUDT15;">https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=NUDT15;</ext-link> last access date April 17, 2024.
R. J. Marrero, E. J. Cicali, M. J. Arwood, E. Eddy, D. DeRemer, B. H. Ramnaraign, K. C. Daily, D. Jones Jr, K. J. Cook, L. H. Cavallari, K. Wiisanen Weitzel, T. Langaee, K. J. Newsom, P. Starostik, M. J. Clare-Salzer, J. A. Johnson, T. J. George and R. M. Cooper-DeHoff, how to transition from single-gene pharmacogenetic testing to preemptive panel-based testing: A tutorial, <em>Clin. Pharmacol. Ther.</em> <bold>108</bold>(3) (2020) 557–565; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/cpt.1912" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/cpt.1912</a>">https://doi.org/10.1002/cpt.1912</ext-link>
J. Hayward, J. McDermott, N. Qureshi and W. Newman, Pharmacogenomic testing to support prescribing in primary care: a structured review of implementation models, <em>Pharmacogenomics</em> <bold>22</bold>(12) (2021) 761–776; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2217/pgs-2021-0032" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2217/pgs-2021-0032</a>">https://doi.org/10.2217/pgs-2021-0032</ext-link>
C. H. van der Wouden, E. Paasman, M. Teichert, M. R. Crone, H.-J. Guchelaar and J. J. Swen, Assessing the Implementation of pharmacogenomic panel-testing in primary care in the Netherlands utilizing a theoretical framework, <em>J. Clin. Med.</em> <bold>9</bold>(3) (2020) Article ID 814 (19 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/jcm9030814" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/jcm9030814</a>">https://doi.org/10.3390/jcm9030814</ext-link>
M. B. Rosenman, B. Decker, K. D. Levy, A. M. Holmes, V. M. Pratt and M. T. Eadon, Lessons learned when introducing pharmacogenomic panel testing into clinical practice, <em>Value Health</em> <bold>20</bold>(1) (2017) 54–59; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jval.2016.08.727" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jval.2016.08.727</a>">https://doi.org/10.1016/j.jval.2016.08.727</ext-link>
C. H. van der Wouden, H.-J. Guchelaar and J. J. Swen, Precision medicine using pharmacogenomic panel-testing: current status and future perspectives, <em>Adv. Mol. Pathol.</em> <bold>3</bold> (2020) 131–142; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.yamp.2020.07.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.yamp.2020.07.012</a>">https://doi.org/10.1016/j.yamp.2020.07.012</ext-link>
H. Xin, C. Fischer, M. Schwab and U. Klotz, Effects of aminosalicylates on thiopurine S-methyltransferase activity: an ex vivo study in patients with inflammatory bowel disease, <em>Aliment. Pharmacol. Ther</em>. <bold>21</bold>(9) (2005) 1105–1109; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1365-2036.2005.02460.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1365-2036.2005.02460.x</a>">https://doi.org/10.1111/j.1365-2036.2005.02460.x</ext-link>
R. A. Lysaa, T. Giverhaug, H. L. Wold and J. Aarbakke, Inhibition of human thiopurine methyltransferase by furosemide, bendroflumethiazide and trichlormethiazide, <em>Eur. J. Clin. Pharmacol</em>. <bold>49</bold> (1996) 393–396; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s002280050038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s002280050038</a>">https://doi.org/10.1007/s002280050038</ext-link>
K. Oselin and K. Anier, Inhibition of human thiopurine S-methyltransferase by various nonsteroidal anti-inflammatory drugs in vitro: a mechanism for possible drug interactions, <em>Drug Metab. Dispos</em>. <bold>35</bold>(9) (2007) 1452–1454; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1124/dmd.107.016287" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1124/dmd.107.016287</a>">https://doi.org/10.1124/dmd.107.016287</ext-link>
J. P. A. Houwen, A. C. G. Egberts, A. de Boer, E. M. van Maarseveen, R. H. J. Houwen and A. Lalmohamed, Influence of allopurinol on thiopurine associated toxicity: A retrospective population-based cohort study, <em>Br. J. Clin. Pharmacol</em>. <bold>87</bold>(5) (2021) 2333–2340; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/bcp.14625" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/bcp.14625</a>">https://doi.org/10.1111/bcp.14625</ext-link>
J. Brackett, E. S. Schafer, D. H. Leung and M. B. Bernhardt, Use of allopurinol in children with acute lymphoblastic leukemia to reduce skewed thiopurine metabolism, <em>Pediatr. Blood Cancer</em> <bold>61</bold>(6) (2014) 1114–1117; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/pbc.24913" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/pbc.24913</a>">https://doi.org/10.1002/pbc.24913</ext-link>
S. F. Chavoushi, B. Jharap, P. Friedrich, K. Smid, G. J. Peters and M. Malingré, Thiopurines with low-dose allopurinol (ThiLDA) – a prospective clinical one-way crossover trial, <em>Eur. J. Clin. Pharmacol.</em> <bold>75</bold> (2019) 1669–1674; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00228-019-02760-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00228-019-02760-8</a>">https://doi.org/10.1007/s00228-019-02760-8</ext-link>
G. Nakafero, T. Card, M. J. Grainge, H. C. Williams, M. W. Taal, G. P. Aithal, C. P. Fox, C. D. Mallen, D. A. van der Windt, M. D. Stevenson, R. D. Riley and A. Abhishek, Risk-stratified monitoring for thiopurine toxicity in immune-mediated inflammatory diseases: prognostic model development, validation, and, health economic evaluation, <em>eClin. Med.</em> <bold>64</bold> (2023) Article ID 102213 (13 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.eclinm.2023.102213" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.eclinm.2023.102213</a>">https://doi.org/10.1016/j.eclinm.2023.102213</ext-link>
G. Milosevic, N. Kotur, N. Krstovski, J. Lazic, B. Zukic, B. Stankovic, D. Janic, T. Katsila, G. P. Patrinos, S. Pavlovic and L. Dokmanovic, Variants in TPMT, ITPA, ABCC4 and ABCB1 genes as predictors of 6-mercaptopurine induced toxicity in children with acute lymphoblastic leukemia, <em>J. Med. Biochem.</em> <bold>37</bold>(3) (2018) 320–327; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1515/jomb-2017-0060" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/jomb-2017-0060</a>">https://doi.org/10.1515/jomb-2017-0060</ext-link>
N. H. Nguyen, D. Picetti, P. S. Dulai, V. Jairath, W. J. Sandborn, L. Ohno-Machado, P. L. Chen and S. Singh, Machine learning-based prediction models for diagnosis and prognosis in inflammatory bowel diseases: A systematic review, <em>J. Crohns Colitis</em> <bold>16</bold>(3) (2022) 398–413; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/ecco-jcc/jjab155" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/ecco-jcc/jjab155</a>">https://doi.org/10.1093/ecco-jcc/jjab155</ext-link>
L. Arosa, M. Camba-Gómez, O. Golubnitschaja and J. Conde-Aranda, Predictive, preventive and personalised approach as a conceptual and technological innovation in primary and secondary care of inflammatory bowel disease benefiting affected individuals and populations, <em>EPMA J.</em> <bold>15</bold> (2024) 111–123; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13167-024-00351-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13167-024-00351-x</a>">https://doi.org/10.1007/s13167-024-00351-x</ext-link>