References
- G. H. Hitchings and G. B. Elion, The chemistry and biochemistry of purine analogs, Ann. NY Acad. Sci. 60(2) (1954) 195–199; https://doi.org/10.1111/j.1749-6632.1954.tb40008.x
- C. A. Lamb, N. A. Kennedy, T. Raine, P. A. Hendy, P. J. Smith, J. K. Limdi, Bu’Hussain Hayee, M. C. E. Lomer, G. C. Parkes, C. Selinger, K. J. Barrett, R. J. Davies, C. Bennett, S. Gittens, M. G. Dunlop, O. Faiz, A. Fraser, V. Garrick, P. D. Johnston, M. Parkes, J. Sanderson and H. Terry; IBD guidelines eDelphi consensus group; D. R. Gaya, T. H. Iqbal, S. A. Taylor, M. Smith, M. Brookes, R. Hansen and A. B. Hawthorne, British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults, Gut 68(Suppl. 3) (2019) s1–s106; https://doi.org/10.1136/gutjnl-2019-318484
- N. Toft, H. Birgens, J. Abrahamsson, L. Griškevičius, H. Hallböök, M. Heyman, T. W. Klausen, Ó. G. Jónsson, K. Palk, K. Pruunsild, P. Quist-Paulsen, G. Vaitkeviciene, K. Vettenranta, A. Åsberg, T. L. Frandsen, H. V. Marquart, H. O. Madsen, U. Norén-Nyström and K. Schmiegelow, Results of NOPHO ALL2008 treatment for patients aged 1-45 years with acute lymphoblastic leukemia, Leukemia 32 (2018) 606–615; https://doi.org/10.1038/leu.2017.265
- A. Singh, R. Mahajan, S. Kedia, A. K. Dutta, A. Anand, C. N. Bernstein, D. Desai, C. G. Pai, G. Makharia, H. V. Tevethia, J. W. Mak, K. Kaur, K. Peddi, M. K. Ranjan, P. Arkkila, R. Kochhar, R. Banerjee, S. K. Sinha, S. C. Ng, S. Hanauer, S. Verma, U. Dutta, V. Midha, V. Mehta, V. Ahuja and A. Sood, Use of thiopurines in inflammatory bowel disease: an update, Intest. Res. 20(1) (2022) 11–30; https://doi.org/10.5217/ir.2020.00155
- C. Dai, Y.-H. Huang and M. Jiang, Combination therapy in inflammatory bowel disease: Current evidence and perspectives, Int. Immunopharmacol. 114 (2023) Article ID 109545; https://doi.org/10.1016/j.intimp.2022.109545
- K. Tominaga, T. Sugaya, T. Tanaka, M. Kanazawa, M. Iijima and A. Irisawa, Thiopurines: Recent topics and their role in the treatment of inflammatory bowel diseases, Front. Pharmacol. 11 (2021) Article ID 582291 (10 pages); https://doi.org/10.3389/fphar.2020.582291
- D. Christophorou, N. Funakoshi, Y. Duny, J.-C. Valats, M. Bismuth, G. Pineton De Chambrun, J.-P. Daures and P. Blanc, Systematic review with meta-analysis: infliximab and immunosuppressant therapy vs. infliximab alone for active ulcerative colitis, Aliment. Pharmacol. Ther. 41(7) (2015) 603–612; https://doi.org/10.1111/apt.13102
- R. Franca, G. Zudeh, S. Pagarin, M. Rabusin, M. Lucafò, G. Stocco and G. Decorti, Pharmacogenetics of thiopurines, Cancer Drug Resist. 2 (2019) 256–270; https://doi.org/10.20517/cdr.2019.004
- G. Zaza, M. Cheok, N. Krynetskaia, C. Thorn, G. Stocco, J. M. Hebert, H. McLeod, R. M. Weinshilboum, M. V. Relling, W. E. Evans, T. E. Klein and R. B. Altman, Thiopurine pathway, Pharmacogenet. Genomics 20(9) (2010) 573–574; https://doi.org/10.1097/FPC.0b013e328334338f
- L. Lennard, J. A. Van Loon, J. S. Lilleyman and R. M. Weinshilboum, Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations, Clin. Pharmacol. Ther. 41(1) (1987) 18–25; https://doi.org/10.1038/clpt.1987.4
- M. V. Relling, M. Schwab, M. Whirl-Carrillo, G. Suarez-Kurtz, C.-H. Pui, C. M. Stein, A. M. Moyer, W. E. Evans, T. E. Klein, F. G. Antillon-Klussmann, K. E. Caudle, M. Kato, A. E. J. Yeoh, K. Schmiegelow and J. J. Yang, Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update, Clin. Pharmacol. Ther. 105(5) (2019) 1095–1105; https://doi.org/10.1002/cpt.1304
- M. V. Relling, E. E. Gardner, W. J. Sandborn, K. Schmiegelow, C.-H. Pui, S. W. Yee, C. M. Stein, M. Carrillo, W. E. Evans and T. E. Klein, Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing, Clin. Pharmacol. Ther. 89(3) (2011) 387–391; https://doi.org/10.1038/clpt.2010.320
- T. A. de Beaumais, S. Lorrain, N. Mamhoudi, M. Simonin, C. Martinez Vinson, Y. Medard, A. Petit and E. Jacqz-Aigrain, Key factors associated with 6-thioguanine and 6-methylmercaptopurine nucleotide concentrations in children treated by thiopurine for acute leukaemia and inflammatory bowel disease, Br. J. Clin. Pharmacol. 90(1) (2024) 209–219; https://doi.org/10.1111/bcp.15894
- L. N. Toksvang, S. H. R. Lee, J. J. Yang and K. Schmiegelow, Maintenance therapy for acute lymphoblastic leukemia: basic science and clinical translations, Leukemia 36 (2022) 1749–1758; https://doi.org/10.1038/s41375-022-01591-4
- L. Mei, E. P. Ontiveros, E. A. Griffiths, J. E. Thompson, E. S. Wang and M. Wetzler, Pharmacogenetics predictive of response and toxicity in acute lymphoblastic leukemia therapy, Blood Rev. 29(4) (2015) 243–249; https://doi.org/10.1016/j.blre.2015.01.001
- L. Lennard, C. S. Cartwright, R. Wade and A. Vora, Thiopurine dose intensity and treatment outcome in childhood lymphoblastic leukaemia: the influence of thiopurine methyltransferase pharmacogenetics, Br. J. Haematol. 169(2) (2015) 228–240; https://doi.org/10.1111/bjh.13240
- J. E. Axelrad, A. Roy, G. Lawlor, B. Korelitz and S. Lichtiger, Thiopurines and inflammatory bowel disease: Current evidence and a historical perspective, World J. Gastroenterol. 22(46) (2016) 10103–10117; https://doi.org/10.3748/wjg.v22.i46.10103
- S. Izraeli, C. Shochat, N. Tal and I. Geron, Towards precision medicine in childhood leukemia – Insights from mutationally activated cytokine receptor pathways in acute lymphoblastic leukemia, Cancer Lett. 352(1) (2014) 15–20; https://doi.org/10.1016/j.canlet.2014.02.009
- G. W. Moran, M.-F. Dubeau, G. G. Kaplan, H. Yang, B. Eksteen, S. Ghosh and R. Panaccione, Clinical predictors of thiopurine-related adverse events in Crohn’s disease, World J. Gastroenterol. 21(25) (2015) 7795–7804; https://doi.org/10.3748/wjg.v21.i25.7795
- M. C. Dubinsky, H. Yang, P. V. Hassard, E. G. Seidman, L. Y. Kam, M. T. Abreu, S. R. Targan and E. A. Vasiliauskas, 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease, Gastroenterology 122(4) (2002) 904–915; https://doi.org/10.1053/gast.2002.32420
- T. Moriyama, R. Nishii, V. Perez-Andreu, W. Yang, F. A. Klussmann, X. Zhao, T.-N. Lin, K. Hoshitsuki, J. Nersting, K. Kihira, U. Hofmann, Y. Komada, M. Kato, R. McCorkle, L. Li, K. Koh, C. R. Najera, S. K.-Y. Kham, T. Isobe, Z. Chen, E. K. Chiew, D. Bhojwani, C. Jeffries, Y. Lu, M. Schwab, H. Inaba, C. H. Pui, M. V. Relling, A. Manabe, H. Hori, K. Schmiegelow, A. E. Yeoh, W. E. Evans and J. J. Yang, NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity, Nat. Genet. 48 (2016) 367–373; https://doi.org/10.1038/ng.3508
- M. H. Vogt, E. H. Stet, R. A. De Abreu, J. P. Bökkerink, L. H. Lambooy and F. J. Trijbels, The importance of methylthio-IMP for methylmercaptopurine ribonucleoside (Me-MPR) cytotoxicity in Molt F4 human malignant T-lymphoblasts, Biochim. Biophys. Acta 1181(2) (1993) 189–194; https://doi.org/10.1016/0925-4439(93)90110-m
- P. W. Allan and L. L. Bennett, 6-Methylthioguanylic acid, a metabolite of 6-thioguanine, Biochem. Pharmacol. 20(4) (1971) 847–852; https://doi.org/10.1016/0006-2952(71)90046-3
- L. Lennard, The clinical pharmacology of 6-mercaptopurine, Eur. J. Clin. Pharmacol. 43 (1992) 329–339; https://doi.org/10.1007/BF02220605
- A. K. Fotoohi, S. A. Coulthard and F. Albertioni, Thiopurines: factors influencing toxicity and response, Biochem. Pharmacol. 79(9) (2010) 1211–1220; https://doi.org/10.1016/j.bcp.2010.01.006
- I. Tiede, G. Fritz, S. Strand, D. Poppe, R. Dvorsky, D. Strand, H. A. Lehr, S. Wirtz, C. Becker, R. Atreya, J. Mudter, K. Hildner, B. Bartsch, M. Holtmann, R. Blumberg, H. Walczak, H. Iven, P. R. Galle, M. R. Ahmadian and M. F. Neurath, CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes, J. Clin. Invest. 111(8) (2003) 1133–1145; https://doi.org/10.1172/JCI16432
- G. Stocco, M. Pelin, R. Franca, S. De Iudicibus, E. Cuzzoni, D. Favretto, S. Martelossi, A. Ventura and G. Decorti, Pharmacogenetics of azathioprine in inflammatory bowel disease: A role for glutathione-S-transferase?, World J. Gastroenterol. 20(13) (2014) 3534–3541; https://doi.org/10.3748/wjg.v20.i13.3534
- R. Goldberg and P. M. Irving, Toxicity and response to thiopurines in patients with inflammatory bowel disease, Expert Rev. Gastroenterol. Hepatol. 9(7) (2015) 891–900; https://doi.org/10.1586/17474124.2015.1039987
- A. M. Abbas, R. M. Almukhtar, E. V. Loftus, G. R. Lichtenstein and N. Khan, Risk of melanoma and non-melanoma skin cancer in ulcerative colitis patients treated with thiopurines: a nationwide retrospective cohort, Am. J. Gastroenterol. 109(11) (2014) 1781–1793; https://doi.org/10.1038/ajg.2014.298
- D. S. Kotlyar, J. D. Lewis, L. Beaugerie, A. Tierney, C. M. Brensinger, J. P. Gisbert, E. V. Loftus, L. Peyrin-Biroulet, W. C. Blonski, M. Van Domselaar, M. Chaparro, S. Sandilya, M. Bewtra, F. Beigel, L. Biancone and G. R. Lichtenstein, Risk of lymphoma in patients with inflammatory bowel disease treated with azathioprine and 6-mercaptopurine: A meta-analysis, Clin. Gastroenterol. Hepatol. 13(5) (2015) 847–858; https://doi.org/10.1016/j.cgh.2014.05.015
- P. Deepak and D. J. Stobaugh, Risk of myeloid neoplasms in inflammatory bowel disease patients is linked to exposure to thiopurines and not with tumor necrosis factor-alpha inhibitors, Clin. Gastroenterol. Hepatol. 13(10) (2015) 1857–1858; https://doi.org/10.1016/j.cgh.2014.08.025
- B. Warner, E. Johnston, M. Arenas-Hernandez, A. Marinaki, P. Irving and J. Sanderson, A practical guide to thiopurine prescribing and monitoring in IBD, Frontline Gastroenterol. 9 (2018) 10–15; https://doi.org/10.1136/flgastro-2016-100738
- M. Campbell, C. Kiss, M. Zimmermann, C. Riccheri, J. Kowalczyk, M. S. Felice, M. Kuzmanovic, G. Kovacs, H. Kosmidis, A. Gonzalez, E. Bilic, L. Castillo, A. Kolenova, J. Jazbec, A. Popa, D. Konstantinov, J. Kappelmayer, T. Szczepanski, M. Dworzak, B. Buldini, G. Gaipa, N. Marinov, J. Rossi, A. Nagy, I. Gaspar, J. Stary and M. Schrappe, Childhood acute lymphoblastic leukemia: Results of the randomized acute lymphoblastic leukemia Intercontinental-Berlin-Frankfurt-Münster 2009 trial, J. Clin. Oncol. 41(19) (2023) 3499–3511; https://doi.org/10.1200/JCO.22.01760
- D. R. Wong, M. J. H. Coenen, S. H. Vermeulen, L. J. J. Derijks, C. J. van Marrewijk, O. H. Klungel, H. Scheffer, B. Franke, H.-J. Guchelaar, D. J. de Jong, L. G. J. B. Engels, A. L. M. Verbeek, P. M. Hooy-mans, and TOPIC recruitment team, Early assessment of thiopurine metabolites identifies patients at risk of thiopurine-induced leukopenia in inflammatory bowel disease, J. Crohns Colitis 11(2) (2017) 175–184; https://doi.org/10.1093/ecco-jcc/jjw130
- K. Keyashian, Monitoring and management of toxicities in long-term thiopurine therapy, Gastroenterol. Hepatol. (NY) 9(10) (2013) 672–674.
- K. Bradford and D. Q. Shih, Optimizing 6-mercaptopurine and azathioprine therapy in the management of inflammatory bowel disease, World J. Gastroenterol. 17(37) (2011) 4166–4173; https://doi.org/10.3748/wjg.v17.i37.4166
- M. C. Dubinsky, S. Lamothe, H. Y. Yang, S. R. Targan, D. Sinnett, Y. Théorêt and E. G. Seidman, Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease, Gastroenterology 118(4) (2000) 705–713; https://doi.org/10.1016/s0016-5085(00)70140-5
- P. Brown, H. Inaba, C. Annesley, J. Beck, S. Colace, M. Dallas, K. DeSantes, K. Kelly, C. Kitko, N. Lacayo, N. Larrier, L. Maese, K. Mahadeo, R. Nanda, V. Nardi, V. Rodriguez, J. Rossoff, L. Schuettpelz, L. Silverman, J. Sun, W. Sun, D. Teachey, V. Wong, G. Yanik, A. Johnson-Chilla and N. Ogba, Pediatric acute lymphoblastic leukemia, Version 2.2020, NCCN Clinical practice guidelines in oncology, J. Nat. Compr. Cancer Network 18(1) (2020) 81–112; https://doi.org/10.6004/jnccn.2020.0001
- C. Cuffari, Y. Théorêt, S. Latour and G. Seidman, 6-Mercaptopurine metabolism in Crohn’s disease: correlation with efficacy and toxicity, Gut 39 (1996) 401–406; https://doi.org/10.1136/gut.39.3.401
- L. J. J. Derijks, L. P. L. Gilissen, P. M. Hooymans and D. W. Hommes, Review article: thiopurines in inflammatory bowel disease, Alim. Pharmacol. T herap. 24(5) (2006) 715–729; https://doi.org/10.1111/j.1365-2036.2006.02980.x
- H. E. Mardini and G. L. Arnold, Utility of measuring 6-methylmercaptopurine and 6-thioguanine nucleotide levels in managing inflammatory bowel disease patients treated with 6-mercaptopurine in a clinical practice setting, J. Clin. Gastroenterol. 36(5) (2003) 390–395; https://doi.org/10.1097/00004836-200305000-00005
- D. P. van Asseldonk, M. L. Seinen, N. K. H. de Boer, A. A. van Bodegraven and C. J. Mulder, Hepatotoxicity associated with 6-methyl mercaptopurine formation during azathioprine and 6-mercaptopurine therapy does not occur on the short-term during 6-thioguanine therapy in IBD treatment, J. Crohn’s Colitis 6(1) (2012) 95–101; https://doi.org/10.1016/j.crohns.2011.07.009
- J. P. Gisbert, Y. González-Lama and J. Maté, Thiopurine-induced liver injury in patients with inflammatory bowel disease: a systematic review, Am. J. Gastroenterol. 102(7) (2007) 1518–1527; https://doi.org/10.1111/j.1572-0241.2007.01187.x
- A. F. Y. A. Hadithy, N. K. H. de Boer, L. J. J. Derijks, J. C. Escher, C. J. J. Mulder and J. R. B. J. Brouwers, Thiopurines in inflammatory bowel disease: pharmacogenetics, therapeutic drug monitoring and clinical recommendations, Dig. Liver Dis. 37(4) (2005) 282–297; https://doi.org/10.1016/j.dld.2004.09.029
- L. Lennard, C. S. Cartwright, R. Wade and A. Vora, Thiopurine methyltransferase and treatment outcome in the UK acute lymphoblastic leukaemia trial ALL2003, Br. J. Haematol. 170(4) (2015) 550–558; https://doi.org/10.1111/bjh.13469
- C. N. Remy, Metabolism of thiopyrimidines and thiopurines. S-Methylation with S-adenosylmethionine transmethylase and catabolism in mammalian tissues, J. Biol. Chem. 238(3) (1963) 1078–1084.
- L. C. Woodson, M. M. Ames, C. D. Selassie, C. Hansch and R. M. Weinshilboum, Thiopurine methyltransferase. Aromatic thiol substrates and inhibition by benzoic acid derivatives, Mol. Pharmacol. 24(3) (1983) 471–478.
- Y. Peng, Q. Feng, D. Wilk, A. A. Adjei, O. E. Salavaggione, R. M. Weinshilboum and V. C. Yee, Structural basis of substrate recognition in thiopurine s-methyltransferase, Biochemistry 47(23) (2008) 6216–6225; https://doi.org/10.1021/bi800102x
- M. Milek, A. Smid, R. Tamm, N. K. Kuzelicki, A. Metspalu and I. Mlinaric-Rascan, Post-translational stabilization of thiopurine S-methyltransferase by S-adenosyl-L-methionine reveals regulation of TPMT*1 and *3C allozymes, Biochem. Pharmacol. 83(7) (2012) 969–976; https://doi.org/10.1016/j.bcp.2012.01.010
- N. Karas-Kuželički, A. Šmid, R. Tamm, A. Metspalu and I. Mlinarič-Raščan, From pharmacogenetics to pharmacometabolomics: SAM modulates TPMT activity, Pharmacogenomics 15(11) (2014) 1437–1449; https://doi.org/10.2217/pgs.14.84
- NIH – NLM – NCBI, TPMT thiopurine S-methyltransferase [Homo sapiens (human)] – Gene ID: 7172, updated on 17-Jun-2024; https://www.ncbi.nlm.nih.gov/gene/7172, last acces date August 4, 2024.
- M. L. Appell, J. Berg, J. Duley, W. E. Evans, M. A. Kennedy, L. Lennard, T. Marinaki, H. L. McLeod, M. V. Relling, E. Schaeffeler, M. Schwab, R. Weinshilboum, A. E. J. Yeoh, E. M. McDonagh, J. M. Hebert, T. E. Klein and S. A. Coulthard, Nomenclature for alleles of the thiopurine methyltransferase gene, Pharmacogenet. Genomics 23(4) (2013) 242–248; https://doi.org/10.1097/FPC.0b013e32835f1cc0
- Linköping University, TPMT nomenclature committee (TPMT Alleles); LiU, Linköping (Sweden), Nov 2022; https://liu.se/en/research/tpmt-nomenclature-committee last access date August 4, 2024.
- E. Y. Krynetski, M. Y. Fessing, C. R. Yates, D. Sun, J. D. Schuetz and W. E. Evans, Promoter and intronic sequences of the human thiopurine S-methyltransferase (TPMT) gene isolated from a human pacl genomic library, Pharm. Res. 14 (1997) 1672–1678; https://doi.org/10.1023/A:1012111325397
- E. Y. Krynetski, N. F. Krynetskaia, Y. Yanishevski and W. E. Evans, Methylation of mercaptopurine, thioguanine, and their nucleotide metabolites by heterologously expressed human thiopurine S-methyltransferase, Mol. Pharmacol. 47(6) (1995) 1141–1147.
- C. Szumlanski, D. Otterness, C. Her, D. Lee, B. Brandriff, D. Kelsell, N. Spurr, L. Lennard, E. Wieben and R. Weinshilboum, Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism, DNA Cell Biol. 15(1) (1996) 17–30; https://doi.org/10.1089/dna.1996.15.17
- H. L. Tai, E. Y. Krynetski, C. R. Yates, T. Loennechen, M. Y. Fessing, N. F. Krynetskaia and W. E. Evans, Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians, Am. J. Human Genet. 58(4) (1996) 694–702.
- M. Milek, J. Murn, Z. Jaksic, J. Lukac Bajalo, J. Jazbec and I. Mlinaric Rascan, Thiopurine S-methyltransferase pharmacogenetics: genotype to phenotype correlation in the Slovenian population, Pharmacology 77(3) (2006) 105–114; https://doi.org/10.1159/000093278
- E. Krynetski and W. E. Evans, Drug methylation in cancer therapy: lessons from the TPMT polymorphism, Oncogene 22 (2003) 7403–7413; https://doi.org/10.1038/sj.onc.1206944
- L. Lennard, C. S. Cartwright, R. Wade, S. M. Richards and A. Vora, Thiopurine methyltransferase genotype-phenotype discordance and thiopurine active metabolite formation in childhood acute lymphoblastic leukaemia, Br. J. Clin. Pharmacol. 76(1) (2013) 125–136; https://doi.org/10.1111/bcp.12066
- A. G. McLennan, The Nudix hydrolase superfamily, Cell Mol. Life Sci. 63 (2006) 123–143; https://doi.org/10.1007/s00018-005-5386-7
- M. Carter, A.-S. Jemth, A. Hagenkort, B. D. G. Page, R. Gustafsson, J. J. Griese, H. Gad, N. C. K. Valerie, M. Desroses, J. Boström, U. Warpman Berglund, T. Helleday and P. Stenmark, Crystal structure, biochemical and cellular activities demonstrate separate functions of MTH1 and MTH2, Nat. Commun. 6 (2015) Article ID 7871 (10 pages); https://doi.org/10.1038/ncomms8871
- NIH – NLM – NCBI, NUDT15 nudix hydrolase 15 [Homo sapiens (human)] – Gene ID: 55270, updated on 8-Jul-2024; https://www.ncbi.nlm.nih.gov/gene/55270; last access date August 4, 2024.
- S.-K. Yang, M. Hong, J. Baek, H. Choi, W. Zhao, Y. Jung, T. Haritunians, B. D. Ye, K.-J. Kim, S. H. Park, S.-K. Park, D.-H. Yang, M. Dubinsky, I. Lee, D. P. B. McGovern, J. Liu and K. Song, A common mis-sense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia, Nat. Genet. 46 (2014) 1017–1020; https://doi.org/10.1038/ng.3060
- D. Yin, X. Xia, J. Zhang, S. Zhang, F. Liao, G. Zhang, Y. Zhang, Q. Hou, X. Yang, H. Wang, Z. Ma, H. Wang, Y. Zhu, W. Zhang, Y. Wang, B. Liu, L. Wang, H. Xu and Y. Shu, Impact of NUDT15 polymorphisms on thiopurines-induced myelotoxicity and thiopurines tolerance dose, Oncotarget 8 (2017) 13575–13585; https://doi.org/10.18632/oncotarget.14594
- J. J. Yang, W. Landier, W. Yang, C. Liu, L. Hageman, C. Cheng, D. Pei, Y. Chen, K. R. Crews, N. Kornegay, F. L. Wong, W. E. Evans, C.-H. Pui, S. Bhatia and M. V. Relling, Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia, J. Clin. Oncol. 33 (2015) 1235–1242; https://doi.org/10.1200/JCO.2014.59.4671
- A. Gaedigk, S. T. Casey, M. Whirl-Carrillo, N. A. Miller and T. E. Klein, Pharmacogene variation consortium: a global resource and repository for pharmacogene variation, Clin. Pharmacol. Ther. 110(3) (2021) 542–545; https://doi.org/10.1002/cpt.2321
- J. J. Yang, M. Whirl-Carrillo, S. A. Scott, A. J. Turner, M. Schwab, Y. Tanaka, G. Suarez-Kurtz, E. Schaeffeler, T. E. Klein, N. A. Miller and A. Gaedigk, Pharmacogene variation consortium gene introduction: NUDT15, Clin. Pharmacol. Therap. 105(5) (2019) 1091–1094; https://doi.org/10.1002/cpt.1268
- E. Schaeffeler, C. Fischer, D. Brockmeier, D. Wernet, K. Moerike, M. Eichelbaum, U. M. Zanger and M. Schwab, Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants, Pharmacogenetics 14(7) (2004) 407–417; https://doi.org/10.1097/01.fpc.0000114745.08559.db
- M. Stanulla, E. Schaeffeler, T. Flohr, G. Cario, A. Schrauder, M. Zimmermann, K. Welte, W.-D. Ludwig, C. R. Bartram, U. M. Zanger, M. Eichelbaum, M. Schrappe and M. Schwab, Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia, JAMA 293(12) (2005) 1485–1489; https://doi.org/10.1001/jama.293.12.1485
- N. Karas-Kuzelicki, J. Jazbec, M. Milek and I. Mlinaric-Rascan, Heterozygosity at the TPMT gene locus, augmented by mutated MTHFR gene, predisposes to 6-MP related toxicities in childhood ALL patients, Leukemia 23 (2009) 971–974; https://doi.org/10.1038/leu.2008.317
- E. Schaeffeler, S. U. Jaeger, V. Klumpp, J. J. Yang, S. Igel, L. Hinze, M. Stanulla and M. Schwab, Impact of NUDT15 genetics on severe thiopurine-related hematotoxicity in patients with European ancestry, Gen. Med. 21(9) (2019) 2145–2150; https://doi.org/10.1038/s41436-019-0448-7
- L. Dean and M. Kane, Mercaptopurine Therapy and TPMT and NUDT15 Genotype, in Medical Genetics Summaries (Eds. V. M. Pratt, S. A. Scott, M. Pirmohamed, B. Esquivel, B. L. Kattman and A. J. Malheiro); National Center for Biotechnology Information (US), Bethesda (MD), 2012; https://www.ncbi.nlm.nih.gov/books/NBK100660/
- L. L. Goh, C. W. Lim, K. P. Leong and K. H. Ong, TPMT and NUDT15 testing for thiopurine therapy: A major tertiary hospital experience and lessons learned, Front. Pharmacol. 13 (2022) Article ID 837164 (10 pages); https://doi.org/10.3389/fphar.2022.837164
- M. Whirl-Carrillo, R. Huddart, L. Gong, K. Sangkuhl, C. F. Thorn, R. Whaley and T. E. Klein, An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine, Clin. Pharmacol. Ther. 110(3) (2021) 563–572; https://doi.org/10.1002/cpt.2350
- C. J. D. Ross, H. Visscher, J. Sistonen, L. R. Brunham, K. Pussegoda, T. T. Loo, M. J. Rieder, G. Koren, B. C. Carleton, M. R. Hayden, and CPNDS Consortium, The Canadian Pharmacogenomics Network for Drug Safety: A model for safety pharmacology, Thyroid 20(7) (2010) 681–687; https://doi.org/10.1089/thy.2010.1642
- V. M. Pratt, L. H. Cavallari, M. L. Fulmer, A. Gaedigk, H. Hachad, Y. Ji, L. V. Kalman, R. C. Ly, A. M. Moyer, S. A. Scott, R. H. N. van Schaik, M. Whirl-Carrillo and K. E. Weck, TPMT and NUDT15 genotyping recommendations: A joint consensus recommendation of the Association for Molecular Pathology, Clinical Pharmacogenetics Implementation Consortium, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, European Society for Pharmacogenomics and Personalized Therapy, and Pharmacogenomics Knowledgebase, J. Mol. Diagn. 24(10) (2022) 1051–1063; https://doi.org/10.1016/j.jmoldx.2022.06.007
- PharmGKB, Azathioprine; https://www.pharmgkb.org/chemical/PA448515/prescribingInfo, last access date August 4, 2024.
- PharmGKB, Mercaptopurine; https://www.pharmgkb.org/chemical/PA450379/prescribing Info, last access date August 4, 2024.
- PharmGKB, Thioguanine; https://www.pharmgkb.org/chemical/PA451663/prescribingInfo, last access date August 4, 2024.
- M. Maillard, R. Nishii, W. Yang, K. Hoshitsuki, D. Chepyala, S. H. R. Lee, J. Q. Nguyen, M. V. Relling, K. R. Crews, M. Leggas, M. Singh, J. L. Y. Suang, A. E. J. Yeoh, S. Jeha, H. Inaba, C.-H. Pui, S. E. Karol, A. Trehan, P. Bhatia, F. G. Antillon Klussmann, D. Bhojwani, C. E. Haidar and J. J. Yang, Additive effects of TPMT and NUDT15 on thiopurine toxicity in children with acute lymphoblastic leukemia across multiethnic populations, J. Natl. Cancer Inst. 116(5) (2024) 702–710; https://doi.org/10.1093/jnci/djae004
- T. R. Yakushi, Y. Qu, M. M. Moradian and R. T. Ramjit, Comprehensive evaluation of how TPMT genotype influences thiopurine treatment, Transl. Biomed. 13(12) (2022) 1–11; https://doi.org/10.36648/2172
- D. F. Carr, R. M. Turner and M. Pirmohamed, Pharmacogenomics of anticancer drugs: Personalising the choice and dose to manage drug response, Br. J. Clin. Pharmacol. 87(2) (2021) 237–255; https://doi.org/10.1111/bcp.14407
- D. Desai, A. Jena, V. Sharma and T. Hibi, Time to incorporate preemptive NUDT15 testing before starting thiopurines in inflammatory bowel disease in Asia and beyond: a review, Expert Rev. Clin. Pharmacol. 16 (2023) 643–653; https://doi.org/10.1080/17512433.2023.2232300
- O. Dewit, T. Moreels, F. Baert, H. Peeters, C. Reenaers, M. de Vos, P. Van Hootegem, V. Muls, G. Veereman, F. Mana, M. Van Outryve, J. Holvoet, S. Naegels, H. Piessevaux, Y. Horsmans, J. L. Gala and Belgian Inflammatory Bowel Disease Research Group (BIRD), Limitations of extensive TPMT genotyping in the management of azathioprine-induced myelosuppression in IBD patients, Clin. Biochem. 44(13) (2011) 1062–1066; https://doi.org/10.1016/j.clinbiochem.2011.06.079
- K. Zarca, I. Durand-Zaleski, M.-A. Loriot, G. Chatellier and N. Pallet, Modeling the outcome of systematic TPMT genotyping or phenotyping before azathioprine prescription: A cost-effectiveness analysis, Mol. Diagn. Ther. 23 (2019) 429–438; https://doi.org/10.1007/s40291-019-00398-x
- A. A. Omar, L. Basiouny, A. S. Elnoby, A. Zaki and M. Abouzid, St. Jude Total Therapy studies from I to XVII for childhood acute lymphoblastic leukemia: a brief review, J. Egypt. Natl. Cancer Inst. 34 (2022) Article ID 25 (20 pages); https://doi.org/10.1186/s43046-022-00126-3
- L. M. Roy, R. M. Zur, E. Uleryk, C. Carew, S. Ito and W. J. Ungar, Thiopurine S-methyltransferase testing for averting drug toxicity in patients receiving thiopurines: a systematic review, Pharmacogenomics 17(6) (2016) 633–656; https://doi.org/10.2217/pgs.16.12
- NIH – NLM – NCBI, Genetic Testing Registry (GTR), Clinical and Research Tests for Thiopurine; https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=thiopurine; last access date August 4, 2024.
- R. M. Weinshilboum, F. A. Raymond and P. A. Pazmiño, Human erythrocyte thiopurine methyltransferase: radiochemical microassay and biochemical properties, Clin. Chim. Acta 85(3) (1978) 323–333; https://doi.org/10.1016/0009-8981(78)90311-x
- M. Tinel, A. Berson, D. Pessayre, P. Letteron, M. P. Cattoni, Y. Horsmans and D. Larrey, Pharmacogenetics of human erythrocyte thiopurine methyltransferase activity in a French population, Br. J. Clin. Pharmacol. 32(6) (1991) 729–734.
- U. Hindorf and M. L. Appell, Genotyping should be considered the primary choice for pre-treatment evaluation of thiopurine methyltransferase function, J. Crohns Colitis 6(6) (2012) 655–659; https://doi.org/10.1016/j.crohns.2011.11.014
- T. Larussa, E. Suraci, M. Lentini, I. Nazionale, L. Gallo, L. Abenavoli, M. Imeneo, F. S. Costanzo, G. Cuda and F. Luzza, High prevalence of polymorphism and low activity of thiopurine methyltransferase in patients with inflammatory bowel disease, Eur. J. Intern. Med. 23(3) (2012) 273–277; https://doi.org/10.1016/j.ejim.2011.12.002
- T. Kröplin, C. Fischer and H. Iven, Inhibition of thiopurine S-methyltransferase activity by impurities in commercially available substrates: a factor for differing results of TPMT measurements, Eur. J. Clin. Pharmacol. 55(4) (1999) 285–291.
- L. Ben Salah, M. Belkhiria el Haj Amor, C. Chbili, S. Khlifi, N. Fathallah, I. Bougmiza, E. Ben Jazia, N. Houdret, C. Ben Salem and S. Saguem, Analysis of thiopurine S-methyltransferase phenotypegenotype in a Tunisian population with Crohn’s disease, Eur. J. Drug Metab. Pharmacokin. 38 (2013) 241–244; https://doi.org/10.1007/s13318-013-0127-z
- R. Tamm, R. Mägi, R. Tremmel, S. Winter, E. Mihailov, A. Smid, A. Möricke, K. Klein, M. Schrappe, M. Stanulla, R. Houlston, R. Weinshilboum, I. Mlinarič Raščan, A. Metspalu, L. Milani, M. Schwab and E. Schaeffeler, Polymorphic variation in TPMT is the principal determinant of TPMT pheno-type: A meta-analysis of three genome-wide association studies, Clin. Pharmacol. Ther. 101(5) (2017) 684–695; https://doi.org/10.1002/cpt.540
- D. Pecher, S. Dokupilová, Z. Zelinková, M. Peppelenbosch, V. Mikušová and P. Mikuš, Determination of thiopurine S-methyltransferase activity by hydrophilic interaction liquid chromatography hyphenated with mass spectrometry, J. Pharm. Biomed. Anal. 142 (2017) 244–251; https://doi.org/10.1016/j.jpba.2017.05.016
- L. Wilson, S. Tuson, L. Yang and D. Loomes, Real-world use of azathioprine metabolites changes clinical management of inflammatory bowel disease, J. Can. Assoc. Gastroenterol. 4(3) (2020) 101–109; https://doi.org/10.1093/jcag/gwaa005
- Y. González-Lama and J. P. Gisbert, Monitoring thiopurine metabolites in inflammatory bowel disease, Frontline Gastroenterol. 7 (2016) 301–307; https://doi.org/10.1136/flgastro-2015-100681
- P. Sousa, M. M. Estevinho, C. C. Dias, P. Ministro, U. Kopylov, S. Danese, L. Peyrin-Biroulet and F. Magro, Thiopurines’ metabolites and drug toxicity: A meta-analysis, J. Clin. Med. 9(7) (2020) Article ID 2216 (29 pages); https://doi.org/10.3390/jcm9072216101
- T. Dervieux and R. Boulieu, Simultaneous determination of 6-thioguanine and methyl 6-mercaptopurine nucleotides of azathioprine in red blood cells by HPLC, Clin. Chem. 44(3) (1998) 551–555.
- G. Cangemi, A. Barabino, S. Barco, A. Parodi, S. Arrigo and G. Melioli, A validated HPLC method for the monitoring of thiopurine metabolites in whole blood in paediatric patients with inflammatory bowel disease, Int. J. Immunopathol. Pharmacol. 25(2) (2012) 435–444; https://doi.org/10.1177/039463201202500213
- M. F. Neurath, R. Kiesslich, U. Teichgräber, C. Fischer, U. Hofmann, M. Eichelbaum, P. R. Galle and M. Schwab, 6-Thioguanosine diphosphate and triphosphate levels in red blood cells and response to azathioprine therapy in Crohn’s Disease, Clin. Gastroenterol. Hepatol. 3(10) (2005) 1007–1014; https://doi.org/10.1016/S1542-3565(05)00697-X
- Q. Miao, Y.-J. Bai, J.-L. Zhang, Yi Li, Z.-Z. Su, L. Yan, L.-L. Wang and Y.-G. Zou, Highly sensitive and rapid determination of azathioprine metabolites in whole blood lysate by liquid chromatography-tandem mass spectrometry, J. Chromatogr. B 1136 (2020) Article ID 121802; https://doi.org/10.1016/j.jchromb.2019.121802
- K. Lampič, J. Trontelj, H. Prosen, D. Drobne, A. Šmid and T. Vovk, Determination of 6-thioguanine and 6-methylmercaptopurine in dried blood spots using liquid chromatography-tandem mass spectrometry: Method development, validation and clinical application, Clin. Chim. Acta 499 (2019) 24–33; https://doi.org/10.1016/j.cca.2019.08.024
- I.-Y. Yoo, K. Lee, O.-J. Ji, H. I. Woo and S.-Y. Lee, Evaluation of stability of thiopurine metabolites using a validated LC-MS/MS method, Ann. Lab. Med. 38(3) (2018) 255–260; https://doi.org/10.3343/alm.2018.38.3.255
- P. W. Lowry, C. L. Franklin, A. L. Weaver, M. G. Pike, D. C. Mays, W. J. Tremaine, J. J. Lipsky and W. J. Sandborn, Measurement of thiopurine methyltransferase activity and azathioprine metabolites in patients with inflammatory bowel disease, Gut 49 (2001) 665–670; https://doi.org/10.1136/gut.49.5.665
- P. de Graaf, N. K. H. de Boer, B. Jharap, C. J. J. Mulder, A. A. van Bodegraven and A. I. Veldkamp, Stability of thiopurine metabolites: A potential analytical bias, Clin. Chem. 54(1) (2008) 216–218; https://doi.org/10.1373/clinchem.2007.092676
- H. Yu, D. Li, D. Xiang, X. Li, L. Liu, D. Liu and X. Gong, Development and validation of a novel HPLC-UV method for simultaneous determination of azathioprine metabolites in human red blood cells, Heliyon 9 (2023) Article ID e13870 (9 pages); https://doi.org/10.1016/j.heliyon.2023.e13870
- L. Lennard, Implementation of TPMT testing, Br. J. Clin. Pharmacol. 77(4) (2014) 704–714; https://doi.org/10.1111/bcp.12226
- Y. Kakuta, M. Kato, Y. Shimoyama, T. Naito, R. Moroi, M. Kuroha, H. Shiga, Y. Kinouchi and A. Masamune, Usefulness and difficulties with the thiopurine pharmacogenomic NUDT15 genotyping test: Analysis of real-world data in Japan, J. Pharmacol. Sci. 153(3) (2023) 161–169; https://doi.org/10.1016/j.jphs.2023.09.002
- K. W. Weitzel, D. M. Smith, A. R. Elsey, B. Q. Duong, B. Burkley, M. Clare-Salzler, Y. Gong, T. A. Higgins, B. Kong, T. Langaee, C. W. McDonough, B. J. Staley, T. T. Vo, D. T. Wake, L. H. Cavallari and J. A. Johnson, Implementation of standardized clinical processes for TPMT testing in a diverse multidisciplinary population: Challenges and lessons learned, Clin. Trans. Sci. 11(2) (2018) 175–181; https://doi.org/10.1111/cts.12533
- S. A. Morris, A. T. Alsaidi, A. Verbyla, A. Cruz, C. Macfarlane, J. Bauer and J. N. Patel, Cost effectiveness of pharmacogenetic testing for drugs with clinical pharmacogenetics implementation consortium (CPIC) guidelines: A systematic review, Clin. Pharmacol. Therap. 112(6) (2022) 1318–1328; https://doi.org/10.1002/cpt.2754
- G. Suarez-Kurtz, Population impact of pharmacogenetic tests in admixed populations across the Americas, Pharmacogenomics J. 21 (2021) 216–221; https://doi.org/10.1038/s41397-020-00200-w
- Y. Zhou and V. M. Lauschke, Population pharmacogenomics: an update on ethnogeographic differences and opportunities for precision public health, Hum. Genet. 141 (2022) 1113–1136; https://doi.org/10.1007/s00439-021-02385-x
- K. J. Karczewski, L. C. Francioli, G. Tiao, B. B. Cummings, J. Alföldi, Q. Wang, R. L. Collins, K. M. Laricchia, A. Ganna, D. P. Birnbaum, L. D. Gauthier, H. Brand, M. Solomonson, N. A. Watts, D. Rhodes, M. Singer-Berk, E. M. England, E. G. Seaby, J. A. Kosmicki, R. K. Walters, K. Tashman, Y. Farjoun, E. Banks, T. Poterba, A. Wang, C. Seed, N. Whiffin, J. X. Chong, K. E. Samocha, E. Pierce-Hoffman, Z. Zappala, A. H. O’Donnell-Luria, E. V. Minikel, B. Weisburd, M. Lek, J. S. Ware, C. Vittal, I. M. Armean, L. Bergelson, K. Cibulskis, K. M. Connolly, M. Covarrubias, S. Donnelly, S. Ferriera, S. Gabriel, J. Gentry, N. Gupta, T. Jeandet, D. Kaplan, C. Llanwarne, R. Munshi, S. Novod, N. Petrillo, D. Roazen, V. Ruano-Rubio, A. Saltzman, M. Schleicher, J. Soto, K. Tibbetts, C. Tolonen, G. Wade, M. E. Talkowski, Genome Aggregation Database Consortium, B. M. Neale, M. J. Daly and D. G. MacArthur, The mutational constraint spectrum quantified from variation in 141,456 humans, Nature 581 (2020) 434–443; https://doi.org/10.1038/s41586-020-2308-7
- NIH – NLM – NCBI, dbSNP; https://www.ncbi.nlm.nih.gov/snp/; last access date July 23, 2024.
- E.-M. S. Grimm-Günter, M. Milbrandt, B. Merkl, M. Paulsson and M. Plomann, PACSIN proteins bind tubulin and promote microtubule assembly, Exp. Cell. Res. 314(10) (2008) 1991–2003; https://doi.org/10.1016/j.yexcr.2008.03.015
- H. Wint, J. Li, T. Abe, H. Yamada, T. Higaki, Y. Nasu, M. Watanabe, K. Takei and T. Takeda, Pacsin 2-dependent N-cadherin internalization regulates the migration behaviour of malignant cancer cells, J. Cell Sci. 136(10) (2023) jcs260827; https://doi.org/10.1242/jcs.260827
- G. Stocco, W. Yang, K. R. Crews, W. E. Thierfelder, G. Decorti, M. Londero, R. Franca, M. Rabusin, M. G. Valsecchi, D. Pei, C. Cheng, S. W. Paugh, L. B. Ramsey, B. Diouf, J. R. McCorkle, T. S. Jones, C.-H. Pui, M. V. Relling and W. E. Evans, PACSIN2 polymorphism influences TPMT activity and mercaptopurine-related gastrointestinal toxicity, Hum. Mol. Genet. 21(21) (2012) 4793–4804; https://doi.org/10.1093/hmg/dds302
- R. Franca, G. Stocco, D. Favretto, N. Giurici, I. del Rizzo, F. Locatelli, L. Vinti, A. Biondi, A. Colom-bini, F. Fagioli, E. Barisone, M. Pelin, S. Martellossi, A. Ventura, G. Decorti and M. Rabusin, PACSIN2 rs2413739 influence on thiopurine pharmacokinetics: validation studies in pediatric patients, Pharmacogenomics J. 20 (2020) 415–425; https://doi.org/10.1038/s41397-019-0130-0
- A. Smid, N. Karas-Kuzelicki, J. Jazbec and I. Mlinaric-Rascan, PACSIN2 polymorphism is associated with thiopurine-induced hematological toxicity in children with acute lymphoblastic leukaemia undergoing maintenance therapy, Sci. Rep. 6 (2016) Article ID 30244 (10 pages); https://doi.org/10.1038/srep30244
- T. Moriyama, S. Liu, J. Li, J. Meyer, X. Zhao, W. Yang, Y. Shao, R. Heath, A. Hnízda, W. L. Carroll and J. J. Yang, Mechanisms of NT5C2-mediated thiopurine resistance in acute lymphoblastic leukemia, Mol. Cancer Ther. 18(10) (2019) 1887–1895; https://doi.org/10.1158/1535-7163.MCT-18-1112
- C. Jiang, W. Yang, T. Moriyama, C. Liu, C. Smith, W. Yang, M. Qian, Z. Li, M. Tulstrup, K. Schmiegelow, K. R. Crews, H. Zhang, C.-H. Pui, W. Evans, M. Relling, S. Bhatia and J. J. Yang, Effects of NT5C2 germline variants on 6-mecaptopurine metabolism in children with acute lymphoblastic leukemia, Clin. Pharmacol. Ther. 109(6) (2021) 1538–1545; https://doi.org/10.1002/cpt.2095
- M. Tulstrup, M. Grosjean, S. N. Nielsen, K. Grell, B. O. Wolthers, P. S. Wegener, O. G. Jonsson, B. Lund, A. Harila-Saari, J. Abrahamsson, G. Vaitkeviciene, K. Pruunsild, N. Toft, M. Holm, E. Hulegårdh, S. Liestøl, L. Griskevicius, M. Punab, J. Wang, W. L. Carroll, Z. Zhang, M. D. Dalgaard, R. Gupta, J. Nersting and K. Schmiegelow, NT5C2 germline variants alter thiopurine metabolism and are associated with acquired NT5C2 relapse mutations in childhood acute lymphoblastic leukaemia, Leukemia 32 (2018) 2527–2535; https://doi.org/10.1038/s41375-018-0245-3
- T. Moriyama, J. Meyer, S. Liu, X. Zhao, Z. Ying, W. L. Carroll and J. J. Yang, NT5C2 as a major contributor to thiopurine resistance at ALL relapse via multiple mechanisms, Blood 126(23) (2015) Article ID 446; https://doi.org/10.1182/blood.V126.23.446.446
- S. Somazu, Y. Tanaka, M. Tamai, A. Watanabe, K. Kagami, M. Abe, D. Harama, T. Shinohara, K. Akahane, K. Goi, K. Sugita, T. Moriyama, J. Yang, H. Goto, M. Minegishi, S. Iwamoto, J. Takita and T. Inukai, NUDT15 polymorphism and NT5C2 and PRPS1 mutations influence thiopurine sensitivity in acute lymphoblastic leukaemia cells, J. Cell. Mol. Med. 25(22) (2021) 10521–10533; https://doi.org/10.1111/jcmm.16981
- Y. Lee, E. J. Jang, H.-Y. Yoon, J. Yee and H.-S. Gwak, Effect of ITPA polymorphism on adverse drug reactions of 6-mercaptopurine in pediatric patients with acute lymphoblastic leukemia: a systematic review and meta-analysis, Pharmaceuticals (Basel) 15(4) (2022) Article ID 416 (12 pages); https://doi.org/10.3390/ph15040416
- J. M. Van Dieren, B. E. Hansen, E. J. Kuipers, E. E. S. Nieuwenhuis and C. J. Van der Woude, Meta-analysis: Inosine triphosphate pyrophosphatase polymorphisms and thiopurine toxicity in the treatment of inflammatory bowel disease, Aliment. Pharmacol. Ther. 26(5) (2007) 643–652; https://doi.org/10.1111/j.1365-2036.2007.03412.x
- R. Steponaitiene, J. Kupcinskas, S. Survilaite, G. Varkalaite, L. Jonaitis, G. Kiudelis, G. Denapiene, J. Valantinas, J. Skieceviciene and L. Kupcinskas, TPMT and ITPA genetic variants in Lithuanian inflammatory bowel disease patients: Prevalence and azathioprine-related side effects, Adv. Med. Sci. 61(1) (2016) 135–140; https://doi.org/10.1016/j.advms.2015.09.008
- A. Jena, N. Grover, P. Bhatia, M. Singh, D. Lad, K. K. Prasad, H. Singh, U. Dutta and V. Sharma, ITPA polymorphisms do not predict additional risk beyond TPMT and NUDT15 for thiopurine-induced cytopenia in inflammatory bowel disease ITPA polymorphisms do not predict additional risk beyond TPMT and NUDT15 for thiopurine-induced cytopenia in inflammatory bowel disease [Los polimorfismos de ITPA no predicen un riesgo adicional más allá de TPMT y NUDT15 para citopenia inducida por tiopurina en la enfermedad inflamatoria intestinal], Rev. Gastroenterol. Mex. (Engl. Ed.) 89(1) (2024) 25–30; https://doi.org/10.1016/j.rgmxen.2021.11.017
- Y. S. Jung, J. H. Cheon, J. J. Park, C. M. Moon, E. S. Kim, J. H. Lee, S. W. Kim, J. H. Kim, S. P. Hong, T. I. Kim and W. H. Kim, Correlation of genotypes for thiopurine methyltransferase and inosine triphosphate pyrophosphatase with long-term clinical outcomes in Korean patients with inflammatory bowel diseases during treatment with thiopurine drugs, J. Hum. Genet. 55 (2010) 121–123; https://doi.org/10.1038/jhg.2009.125
- Q. Miao, L. Yan, Y. Zhou, Y. Li, Y. Zou, L. Wang, Y. Bai and J. Zhang, Association of genetic variants in TPMT, ITPA, and NUDT15 with azathioprine-induced myelosuppression in southwest china patients with autoimmune hepatitis, Sci. Rep. 11 (2021) Article ID 7984 (8 pages); https://doi.org/10.1038/s41598-021-87095-0
- T. Adam de Beaumais, M. Fakhoury, Y. Medard, S. Azougagh, D. Zhang, K. Yakouben and E. Jacqz-Aigrain, Determinants of mercaptopurine toxicity in paediatric acute lymphoblastic leukemia maintenance therapy, Br. J. Clin. Pharmacol. 71(4) (2011) 575–584; https://doi.org/10.1111/j.1365-2125.2010.03867.x
- R. Choi, M.-N. Lee, K. Kim, S.-Y. Baek, T. J. Kim, S. N. Hong, Y.-H. Kim and S.-Y. Lee, Effects of various genetic polymorphisms on thiopurine treatment-associated outcomes for Korean patients with Crohn’s disease, Br. J. Clin. Pharmacol. 86(11) (2020) 2302–2313; https://doi.org/10.1111/bcp.14339
- T. Gerbek, M. Ebbesen, J. Nersting, T. L. Frandsen, M. L. Appell and K. Schmiegelow, Role of TPMT and ITPA variants in mercaptopurine disposition, Cancer Chemother. Pharmacol. 81 (2018) 579–586; https://doi.org/10.1007/s00280-018-3525-8
- B. Moradveisi, S. Muwakkit, F. Zamani, E. Ghaderi, E. Mohammadi and N. K. Zgheib, ITPA, TPMT, and NUDT15 genetic polymorphisms predict 6-mercaptopurine toxicity in Middle Eastern children with acute lymphoblastic leukemia, Front. Pharmacol. 10 (2019) Article ID 916 (8 pages); https://doi.org/10.3389/fphar.2019.00916
- B. Boonyawat, C. Monsereenusorn, A. Photia, N. Lertvivatpong, V. Kaewchaivijit, P. Jindatanmanusan and P. Rujkijyanont, ITPA:c.94C>A and NUDT15:c.415C>T polymorphisms and their relation to mercaptopurine-related myelotoxicity in childhood leukemia in Thailand, Appl. Clin. Genet. 14 (2021) 341–351; https://doi.org/10.2147/TACG.S318912
- A. Smid, N. Karas-Kuzelicki, M. Milek, J. Jazbec and I. Mlinaric-Rascan, Association of ITPA genotype with event-free survival and relapse rates in children with acute lymphoblastic leukemia undergoing maintenance therapy, PLoS ONE 9(10) (2014) Article ID e109551 (10 pages); https://doi.org/10.1371/journal.pone.0109551
- J. Ereño-Orbea, T. Majtan, I. Oyenarte, J. P. Kraus and L. A. Martínez-Cruz, Structural insight into the molecular mechanism of allosteric activation of human cystathionine β-synthase by S-adeno-sylmethionine, Proc. Natl. Acad. Sci. USA 111(37) (2014) E3845-E3852; https://doi.org/10.1073/pnas.1414545111
- T. H. Scheuermann, C. Keeler and M. E. Hodsdon, Consequences of binding an S-adenosylmethionine analogue on the structure and dynamics of the thiopurine methyltransferase protein backbone, Biochemistry 43(38) (2004) 12198–12209; https://doi.org/10.1021/bi0492556
- M. Milek, N. Karas Kuzelicki, A. Smid and I. Mlinaric-Rascan, S-adenosylmethionine regulates thiopurine methyltransferase activity and decreases 6-mercaptopurine cytotoxicity in MOLT lymphoblasts, Biochem. Pharmacol. 77(12) (2009) 1845–1853; https://doi.org/10.1016/j.bcp.2009.03.006
- N. Karas-Kuzelicki, M. Milek and I. Mlinaric-Rascan, MTHFR and TYMS genotypes influence TPMT activity and its differential modulation in males and females, Clin. Biochem. 43(1–2) (2010) 37–42; https://doi.org/10.1016/j.clinbiochem.2009.09.003
- M.-N. Lee, B. Kang, S. Y. Choi, M. J. Kim, S. Y. Woo, J.-W. Kim, Y. H. Choe and S.-Y. Lee, Impact of genetic polymorphisms on 6-thioguanine nucleotide levels and toxicity in pediatric patients with IBD treated with azathioprine, Inflamm. Bowel Dis. 21(12) (2015) 2897–2908; https://doi.org/10.1097/MIB.0000000000000570
- NIH – NLM - NCBI, Genetic Testing Registry (GTR), Clinical and Research Tests for NUDT15; https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=NUDT15; last access date April 17, 2024.
- R. J. Marrero, E. J. Cicali, M. J. Arwood, E. Eddy, D. DeRemer, B. H. Ramnaraign, K. C. Daily, D. Jones Jr, K. J. Cook, L. H. Cavallari, K. Wiisanen Weitzel, T. Langaee, K. J. Newsom, P. Starostik, M. J. Clare-Salzer, J. A. Johnson, T. J. George and R. M. Cooper-DeHoff, how to transition from single-gene pharmacogenetic testing to preemptive panel-based testing: A tutorial, Clin. Pharmacol. Ther. 108(3) (2020) 557–565; https://doi.org/10.1002/cpt.1912
- J. Hayward, J. McDermott, N. Qureshi and W. Newman, Pharmacogenomic testing to support prescribing in primary care: a structured review of implementation models, Pharmacogenomics 22(12) (2021) 761–776; https://doi.org/10.2217/pgs-2021-0032
- C. H. van der Wouden, E. Paasman, M. Teichert, M. R. Crone, H.-J. Guchelaar and J. J. Swen, Assessing the Implementation of pharmacogenomic panel-testing in primary care in the Netherlands utilizing a theoretical framework, J. Clin. Med. 9(3) (2020) Article ID 814 (19 pages); https://doi.org/10.3390/jcm9030814
- M. B. Rosenman, B. Decker, K. D. Levy, A. M. Holmes, V. M. Pratt and M. T. Eadon, Lessons learned when introducing pharmacogenomic panel testing into clinical practice, Value Health 20(1) (2017) 54–59; https://doi.org/10.1016/j.jval.2016.08.727
- C. H. van der Wouden, H.-J. Guchelaar and J. J. Swen, Precision medicine using pharmacogenomic panel-testing: current status and future perspectives, Adv. Mol. Pathol. 3 (2020) 131–142; https://doi.org/10.1016/j.yamp.2020.07.012
- H. Xin, C. Fischer, M. Schwab and U. Klotz, Effects of aminosalicylates on thiopurine S-methyltransferase activity: an ex vivo study in patients with inflammatory bowel disease, Aliment. Pharmacol. Ther. 21(9) (2005) 1105–1109; https://doi.org/10.1111/j.1365-2036.2005.02460.x
- R. A. Lysaa, T. Giverhaug, H. L. Wold and J. Aarbakke, Inhibition of human thiopurine methyltransferase by furosemide, bendroflumethiazide and trichlormethiazide, Eur. J. Clin. Pharmacol. 49 (1996) 393–396; https://doi.org/10.1007/s002280050038
- K. Oselin and K. Anier, Inhibition of human thiopurine S-methyltransferase by various nonsteroidal anti-inflammatory drugs in vitro: a mechanism for possible drug interactions, Drug Metab. Dispos. 35(9) (2007) 1452–1454; https://doi.org/10.1124/dmd.107.016287
- J. P. A. Houwen, A. C. G. Egberts, A. de Boer, E. M. van Maarseveen, R. H. J. Houwen and A. Lalmohamed, Influence of allopurinol on thiopurine associated toxicity: A retrospective population-based cohort study, Br. J. Clin. Pharmacol. 87(5) (2021) 2333–2340; https://doi.org/10.1111/bcp.14625
- J. Brackett, E. S. Schafer, D. H. Leung and M. B. Bernhardt, Use of allopurinol in children with acute lymphoblastic leukemia to reduce skewed thiopurine metabolism, Pediatr. Blood Cancer 61(6) (2014) 1114–1117; https://doi.org/10.1002/pbc.24913
- S. F. Chavoushi, B. Jharap, P. Friedrich, K. Smid, G. J. Peters and M. Malingré, Thiopurines with low-dose allopurinol (ThiLDA) – a prospective clinical one-way crossover trial, Eur. J. Clin. Pharmacol. 75 (2019) 1669–1674; https://doi.org/10.1007/s00228-019-02760-8
- G. Nakafero, T. Card, M. J. Grainge, H. C. Williams, M. W. Taal, G. P. Aithal, C. P. Fox, C. D. Mallen, D. A. van der Windt, M. D. Stevenson, R. D. Riley and A. Abhishek, Risk-stratified monitoring for thiopurine toxicity in immune-mediated inflammatory diseases: prognostic model development, validation, and, health economic evaluation, eClin. Med. 64 (2023) Article ID 102213 (13 pages); https://doi.org/10.1016/j.eclinm.2023.102213
- G. Milosevic, N. Kotur, N. Krstovski, J. Lazic, B. Zukic, B. Stankovic, D. Janic, T. Katsila, G. P. Patrinos, S. Pavlovic and L. Dokmanovic, Variants in TPMT, ITPA, ABCC4 and ABCB1 genes as predictors of 6-mercaptopurine induced toxicity in children with acute lymphoblastic leukemia, J. Med. Biochem. 37(3) (2018) 320–327; https://doi.org/10.1515/jomb-2017-0060
- N. H. Nguyen, D. Picetti, P. S. Dulai, V. Jairath, W. J. Sandborn, L. Ohno-Machado, P. L. Chen and S. Singh, Machine learning-based prediction models for diagnosis and prognosis in inflammatory bowel diseases: A systematic review, J. Crohns Colitis 16(3) (2022) 398–413; https://doi.org/10.1093/ecco-jcc/jjab155
- L. Arosa, M. Camba-Gómez, O. Golubnitschaja and J. Conde-Aranda, Predictive, preventive and personalised approach as a conceptual and technological innovation in primary and secondary care of inflammatory bowel disease benefiting affected individuals and populations, EPMA J. 15 (2024) 111–123; https://doi.org/10.1007/s13167-024-00351-x