Have a personal or library account? Click to login
PPIA, HRPT1, and PGK1 genes as the appropriate combination for RT-qPCR normalization in alveolar and femoral bone remodeling in olanzapine-treated rats Cover

PPIA, HRPT1, and PGK1 genes as the appropriate combination for RT-qPCR normalization in alveolar and femoral bone remodeling in olanzapine-treated rats

Open Access
|Sep 2024

References

  1. K. Okamura, Y. Inagaki, T. K. Matsui, M. Matsubayashi, T. Komeda, M. Ogawa, E. Mori and Y. Tanaka, RT-qPCR analyses on the osteogenic differentiation from human iPS cells: an investigation of reference genes, <em>Sci. Rep.</em> <bold>10</bold>(1) (2020) 1–10; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41598-020-68752-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-020-68752-2</a>">https://doi.org/10.1038/s41598-020-68752-2</ext-link>
  2. X. Tu, J. Delgado-Calle, K. W. Condon, M. Maycas, H. Zhang, N. Carlesso, M. M. Taketo, D. B. Burr, L. I. Plotkin and T. Bellido, Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone, <em>Proc. Natl. Acad. Sci. U S A,</em> <bold>112</bold>(5) (2015) E478–86; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1073/pnas.1409857112" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1073/pnas.1409857112</a>">https://doi.org/10.1073/pnas.1409857112</ext-link>
  3. M. R. Rad, D. Liu, H. He, H. Brooks, M. Xiao, G. E. Wise and S. H. Yao, The role of dentin matrix protein 1 (DMP1) in regulation of osteogenic differentiation of rat dental follicle stem cells (DFSCs), <em>Arch. Oral Biol.</em> <bold>60</bold>(4) (2015) 546–556; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.archoralbio.2014.12.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.archoralbio.2014.12.013</a>">https://doi.org/10.1016/j.archoralbio.2014.12.013</ext-link>
  4. C. Zhang, H. Dai and B. de Crombrugghe, Characterization of Dkk1 gene regulation by the osteo-blast-specific transcription factor Osx, <em>Biochem. Biophys. Res. Commun.</em> <bold>420</bold>(4) (2012) 782–786; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.bbrc.2012.03.073" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bbrc.2012.03.073</a>">https://doi.org/10.1016/j.bbrc.2012.03.073</ext-link>
  5. T. Svingen, H. Letting, N. Hadrup, U. Hass and A. M. Vinggaard, Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions, <em>PeerJ.</em> <bold>3</bold> (2015) 1–15; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.7717/peerj.855" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.7717/peerj.855</a>">https://doi.org/10.7717/peerj.855</ext-link>
  6. J. Vandesompele, K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe and F. Speleman, Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, <em>Genome Biol.</em> <bold>3</bold>(7) (2002) 1–12; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/gb-2002-3-7-research0034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/gb-2002-3-7-research0034</a>">https://doi.org/10.1186/gb-2002-3-7-research0034</ext-link>
  7. S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M. W. Pfaffl, G. L. Shipley, J. Vandesompele and C. T. Wittwer, The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, <em>Clin. Chem.</em> <bold>55</bold>(4) (2009) 611–622; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1373/clinchem.2008.112797" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1373/clinchem.2008.112797</a>">https://doi.org/10.1373/clinchem.2008.112797</ext-link>
  8. J. Huggett, K. Dheda, S. Bustin and A. Zumla, Real-time RT-PCR normalisation; strategies and considerations, <em>Genes Immun.</em> <bold>6</bold>(4) (2005) 279–284; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/sj.gene.6364190" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/sj.gene.6364190</a>">https://doi.org/10.1038/sj.gene.6364190</ext-link>
  9. K. Goossens, M. Van Poucke, A. Van Soom, J. Vandesompele, A. Van Zeveren, and L. J. Peelman, Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos, <em>BMC Dev. Biol.</em> <bold>5</bold>(27) (2005) 1–9; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/1471-213X-5-27" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/1471-213X-5-27</a>">https://doi.org/10.1186/1471-213X-5-27</ext-link>
  10. B. Kozera and M. Rapacz, Reference genes in real-time PCR, <em>J. Appl. Genet</em>. <bold>54</bold>(4) (2013) 391–406; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13353-013-0173-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13353-013-0173-x</a>">https://doi.org/10.1007/s13353-013-0173-x</ext-link>
  11. A. Al-Sabah, P. Stadnik, S. J. Gilbert, V. C. Duance and E. J. Blain, Importance of reference gene selection for articular cartilage mechanobiology studies, <em>Osteoarthritis Cartilage</em> <bold>24</bold>(4) (2016) 719–730; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.joca.2015.11.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.joca.2015.11.007</a>">https://doi.org/10.1016/j.joca.2015.11.007</ext-link>
  12. T. He, Y. Huang, J. C. Chak and R. M. Klar, Recommendations for improving accuracy of gene expression data in bone and cartilage tissue engineering, <em>Sci. Rep.</em> <bold>8</bold>(1) (2018) 1–13; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41598-018-33242-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-018-33242-z</a>">https://doi.org/10.1038/s41598-018-33242-z</ext-link>
  13. E. Ragni, M. Viganò, P. Rebulla, R. Giordano and L. Lazzari, What is beyond a qRT-PCR study on mesenchymal stem cell differentiation properties: how to choose the most reliable housekeeping genes, <em>J. Cell Mol. Med</em>. <bold>17</bold>(1) (2013) 168–180; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1582-4934.2012.01660.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1582-4934.2012.01660.x</a>">https://doi.org/10.1111/j.1582-4934.2012.01660.x</ext-link>
  14. X. Yang, J. T. Hatfield, S. J. Hinze, X. Mu, P. J. Anderson and B. C. Powell, Bone to pick: the importance of evaluating reference genes for RT-qPCR quantification of gene expression in craniosynostosis and bone-related tissues and cells, <em>BMC Res. Notes</em> <bold>5</bold>(222) (2012) 1–9; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/1756-0500-5-222" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/1756-0500-5-222</a>">https://doi.org/10.1186/1756-0500-5-222</ext-link>
  15. C. Kirschneck, P. Proff, J. Fanghänel, M. Wolf, J. C. Roldán and P. Römer, Reference genes for valid gene expression studies on rat dental, periodontal and alveolar bone tissue by means of RT-qPCR with a focus on orthodontic tooth movement and periodontitis, <em>Ann. Anat</em>. <bold>204</bold> (2016) 93–105; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.aanat.2015.11.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.aanat.2015.11.005</a>">https://doi.org/10.1016/j.aanat.2015.11.005</ext-link>
  16. H. Han, L. Liu, M. Chen, Y. Liu, H. Wang and L. Chen, The optimal compound reference genes for qRT-PCR analysis in the developing rat long bones under physiological conditions and prenatal dexamethasone exposure model, <em>Reprod. Toxicol</em>. <bold>98</bold> (2020) 242–251; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.reprotox.2020.10.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.reprotox.2020.10.008</a>">https://doi.org/10.1016/j.reprotox.2020.10.008</ext-link>
  17. R. Li, J. Ou, L. Li, Y. Yang, J. Zhao and R. Wu, The Wnt signaling pathway effector TCF7L2 mediates olanzapine-induced weight gain and insulin resistance, <em>Front Pharmacol.</em> <bold>9</bold>(379) (2018) 1–13; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fphar.2018.00379" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fphar.2018.00379</a>">https://doi.org/10.3389/fphar.2018.00379</ext-link>
  18. Ł. Mokros, M. S. Karbownik, K. Nowakowska-Domagała, J. Szemraj, Ł. Wieteska, K. Woźniak, A. Witusik, A. Antczak and T. Pietras, Haloperidol, but not olanzapine, may affect expression of PER1 and CRY1 genes in human glioblastoma cell line, <em>Biol. Rhythm Res.</em> <bold>47</bold>(6) (2016) 865–871; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/09291016.2016.1202379" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/09291016.2016.1202379</a>">https://doi.org/10.1080/09291016.2016.1202379</ext-link>
  19. Y. Yang, M. Shen, L. Li, Y. Long, L. Wang, B. Lang and R. Wu, Olanzapine promotes the occurrence of metabolic disorders in conditional TCF7L2-knockout mice, <em>Front Cell Dev. Biol.</em> <bold>10</bold> (2022) 1–13; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fcell.2022.890472" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fcell.2022.890472</a>">https://doi.org/10.3389/fcell.2022.890472</ext-link>
  20. H. Li, S. Peng, S. Li, S. Liu, Y. Lv, N. Yang, L. Yu, Y. Deng, Z. Zhang, M. Fang, Y. Huo, Y. Chen, T. Sun and W. Li, Chronic olanzapine administration causes metabolic syndrome through inflammatory cytokines in rodent models of insulin resistance, <em>Sci. Rep</em>. <bold>9</bold> (2019) 1–12; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41598-018-36930-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-018-36930-y</a>">https://doi.org/10.1038/s41598-018-36930-y</ext-link>
  21. A. Pałasz, P. Żarczyński, K. Bogus, K. Mordecka-Chamera, A. Della Vecchia, J. Skałbania, J. J. Worthington, M. Krzystanek and M. Żarczyńska, Modulatory effect of olanzapine on SMIM20/phoenixin, NPQ/spexin and NUCB2/nesfatin-1 gene expressions in the rat brainstem, <em>Pharmacol. Reports</em> <bold>73</bold>(4) (2021) 1188–1194; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s43440-021-00267-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s43440-021-00267-7</a>">https://doi.org/10.1007/s43440-021-00267-7</ext-link>
  22. S. S. Evers, G. J. Boersma, K. L. Tamashiro, A. J. Scheurink and G. van Dijk, Roman high and low avoidance rats differ in their response to chronic olanzapine treatment at the level of body weight regulation, glucose homeostasis, and cortico-mesolimbic gene expression, <em>J. Psychopharmacol.</em> <bold>31</bold>(11) (2017) 1437–1452; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1177/0269881117724749" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/0269881117724749</a>">https://doi.org/10.1177/0269881117724749</ext-link>
  23. M. He, Q. Zhang, C. Deng, T. Jin, X. Song, H. Wang and X. Huang, Time-dependent effects of olanzapine treatment on the expression of histidine decarboxylase, H1 and H3 receptor in the rat brain: The roles in olanzapine-induced obesity, <em>Psychoneuroendocrinology</em> <bold>85</bold> (2017) 190–199; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.psyneuen.2017.08.022" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.psyneuen.2017.08.022</a>">https://doi.org/10.1016/j.psyneuen.2017.08.022</ext-link>
  24. A. Uçok and W. Gaebel, Side effects of atypical antipsychotics: a brief overview, <em>World Psychiatry</em> <bold>7</bold>(1) (2008) 58–62; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/j.2051-5545.2008.tb00154.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/j.2051-5545.2008.tb00154.x</a>">https://doi.org/10.1002/j.2051-5545.2008.tb00154.x</ext-link>
  25. V. O’Keane and A. M. Meaney, Antipsychotic drugs: a new risk factor for osteoporosis in young women with schizophrenia? <em>J. Clin. Psychopharmacol.</em> <bold>25</bold>(1) (2005) 26–31; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1097/01.jcp.0000150223.31007.e0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/01.jcp.0000150223.31007.e0</a>">https://doi.org/10.1097/01.jcp.0000150223.31007.e0</ext-link>
  26. Y. Roke, P. N. van Harten, J. K. Buitelaar, D. E. Tenback, L. G. B. A. Quekel, Y. B. de Rijke and A. M. Boot, Bone mineral density in male adolescents with autism spectrum disorders and disruptive behavior disorder with or without antipsychotic treatment, <em>Eur. J. Endocrinol.</em> <bold>167</bold>(6) (2012) 855–863; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1530/EJE-12-0521" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1530/EJE-12-0521</a>">https://doi.org/10.1530/EJE-12-0521</ext-link>
  27. B. Zhang, L. Deng, H. Wu, X. Lu, L. Peng, R. Wu, W. Guo, J. Chen, L. Li and J. Zhao, Relationship between long-term use of a typical antipsychotic medication by Chinese schizophrenia patients and the bone turnover markers serum osteocalcin and β-CrossLaps, <em>Schizophr. Res</em>. <bold>176</bold>(2–3) (2016) 259–263; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.schres.2016.06.034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.schres.2016.06.034</a>">https://doi.org/10.1016/j.schres.2016.06.034</ext-link>
  28. D. Becker, O. Liver, R. Mester, M. Rapoport, A. Weizman and M. Weiss, Risperidone, but not olanzapine, decreases bone mineral density in female premenopausal schizophrenia patients, <em>J. Clin. Psychiatry</em> <bold>64</bold>(7) (2003) 761–766; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.4088/jcp.v64n0704" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4088/jcp.v64n0704</a>">https://doi.org/10.4088/jcp.v64n0704</ext-link>
  29. A. M. Meaney and V. O’Keane, Bone mineral density changes over a year in young females with schizophrenia: Relationship to medication and endocrine variables, <em>Schizophr. Res.</em> <bold>93</bold>(1–3) (2007) 136–143; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.schres.2007.01.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.schres.2007.01.013</a>">https://doi.org/10.1016/j.schres.2007.01.013</ext-link>
  30. Y. Chen and B. A. Alman, Wnt pathway, an essential role in bone regeneration, <em>J. Cell Biochem.</em> <bold>106</bold>(3) (2009) 353–362; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/jcb.22020" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/jcb.22020</a>">https://doi.org/10.1002/jcb.22020</ext-link>
  31. M. Drevensek, S. Sprogar, I. Boras and G. Drevensek, Effects of endothelin antagonist tezosentan on orthodontic tooth movement in rats, <em>Am. J. Orthod. Dentofacial Orthop.</em> <bold>129</bold>(4) (2006) 555–558; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ajodo.2005.12.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ajodo.2005.12.016</a>">https://doi.org/10.1016/j.ajodo.2005.12.016</ext-link>
  32. S. Sprogar, T. Vaupotic, A. Cör, M. Drevensek and G. Drevensek, The endothelin system mediates bone modeling in the late stage of orthodontic tooth movement in rats, <em>Bone</em> <bold>43</bold>(4) (2008) 740–747; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.bone.2008.06.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bone.2008.06.012</a>">https://doi.org/10.1016/j.bone.2008.06.012</ext-link>
  33. A. Plut, S. Sprogar, G. Drevenšek, S. Hudoklin, J. Zupan, J. Marc and M. Drevenšek, Bone remodeling during orthodontic tooth movement in rats with type 2 diabetes, <em>Am. J. Orthod. Dentofacial Orthop.</em> <bold>148</bold>(6) (2015) 1017–1025; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ajodo.2015.05.031" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ajodo.2015.05.031</a>">https://doi.org/10.1016/j.ajodo.2015.05.031</ext-link>
  34. C. L. Andersen, J. L. Jensen and T. F. Ørntoft, Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets, <em>Cancer Res.</em> <bold>64</bold>(15) (2004) 5245–5250; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1158/0008-5472.CAN-04-0496" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1158/0008-5472.CAN-04-0496</a>">https://doi.org/10.1158/0008-5472.CAN-04-0496</ext-link>
  35. N. Silver, S. Best, J. Jiang and S. L. Thein, Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR, <em>BMC Mol. Biol.</em> <bold>7</bold>(33) (2006) 1–9; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/https://doi.org/10.1186/1471-2199-7-33">https://doi.org/https://doi.org/10.1186/1471-2199-7-33</ext-link>
  36. M. W. Pfaffl, A. Tichopad, C. Prgomet and T. P. Neuvians, Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations, <em>Biotechnol. Lett.</em> <bold>26</bold>(6) (2004) 509–515; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1023/b:bile.0000019559.84305.47" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1023/b:bile.0000019559.84305.47</a>">https://doi.org/10.1023/b:bile.0000019559.84305.47</ext-link>
  37. R. P. F. Abuna, F. S. Oliveira, J. I. R. Ramos, H. B. Lopes, G. P. Freitas, A. T. P. Souza, M. M. Beloti and A. L. Rosa, Selection of reference genes for quantitative real-time polymerase chain reaction studies in rat osteoblasts, <em>J. Cell Physiol.</em> <bold>234</bold>(1) (2018) 749–756; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/jcp.26886" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/jcp.26886</a>">https://doi.org/10.1002/jcp.26886</ext-link>
  38. G. Elberg, D. Elberg, C. J. Logan, L. Chen and M. A. Turman, Limitations of commonly used internal controls for real-time RT-PCR analysis of renal epithelial-mesenchymal cell transition, <em>Nephron Exp. Nephrol.</em> <bold>102</bold>(3–4) (2006) 113–122; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1159/000090070" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1159/000090070</a>">https://doi.org/10.1159/000090070</ext-link>
  39. T. Fink, P. Lund, L. Pilgaard, J. G. Rasmussen, M. Duroux and V. Zachar, Instability of standard PCR reference genes in adipose-derived stem cells during propagation, differentiation and hypoxic exposure, <em>BMC Mol. Biol.</em> <bold>9</bold>(98) (2008) 1–9; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/1471-2199-9-98" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/1471-2199-9-98</a>">https://doi.org/10.1186/1471-2199-9-98</ext-link>
  40. S. Selvey, E. W. Thompson, K. Matthaei, R. A. Lea, M. G. Irving and L. R. Griffiths, Beta-actin – an unsuitable internal control for RT-PCR, <em>Mol. Cell Probes</em> <bold>15</bold>(5) (2001) 307–311; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1006/mcpr.2001.0376" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1006/mcpr.2001.0376</a>">https://doi.org/10.1006/mcpr.2001.0376</ext-link>
  41. D. Studer, S. Lischer, W. Jochum, M. Ehrbar, M. Zenobi-Wong and K. Maniura-Weber, Ribosomal protein L13a as a reference gene for human bone marrow-derived mesenchymal stromal cells during expansion, adipo-, chondro-, and osteogenesis, <em>Tissue Eng. Part C Methods</em> <bold>18</bold>(10) (2012) 761–771; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1089/ten.TEC.2012.0081" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1089/ten.TEC.2012.0081</a>">https://doi.org/10.1089/ten.TEC.2012.0081</ext-link>
  42. C. Tricarico, P. Pinzani, S. Bianchi, M. Paglierani, V. Distante, M. Pazzagli, S. A. Bustin and C. Orlando, Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies, <em>Anal. Biochem.</em> <bold>309</bold>(2) (2002) 293–300; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/s0003-2697(02)00311-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/s0003-2697(02)00311-1</a>">https://doi.org/10.1016/s0003-2697(02)00311-1</ext-link>
  43. F. G. Quiroz, O. M. Posada, D. Gallego-Perez, N. Higuita-Castro, C. Sarassa, D. J. Hansford, P. Agudelo-Florez and L. E López, Housekeeping gene stability influences the quantification of osteogenic markers during stem cell differentiation to the osteogenic lineage, <em>Cytotechnology</em> <bold>62</bold>(2) (2010) 109–120; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10616-010-9265-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10616-010-9265-1</a>">https://doi.org/10.1007/s10616-010-9265-1</ext-link>
  44. H. Ma, Q. Yang, D. Li and J. Liu, Validation of suitable reference genes for quantitative polymerase chain reaction analysis in rabbit bone marrow mesenchymal stem cell differentiation, <em>Mol. Med. Rep.</em> <bold>12</bold>(2) (2015) 2961–2968; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3892/mmr.2015.3776" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3892/mmr.2015.3776</a>">https://doi.org/10.3892/mmr.2015.3776</ext-link>
  45. A. S. Stephens, S. R. Stephens and N. A. Morrison, Internal control genes for quantitative RT-PCR expression analysis in mouse osteoblasts, osteoclasts and macrophages, <em>BMC Res. Notes</em> <bold>4</bold>(410) (2011) 1–9; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/1756-0500-4-410" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/1756-0500-4-410</a>">https://doi.org/10.1186/1756-0500-4-410</ext-link>
  46. M. Lunder, G. Drevenšek, D. Černe, J. Marc, M. Janić and M. Šabovič, Treatment with low-dose atorvastatin, losartan, and their combination increases expression of vasoactive-related genes in rat aortas, <em>J. Cardiovasc. Pharmacol. Ther</em>. <bold>18</bold>(2) (2013) 177–1783; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1177/1074248412463966" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/1074248412463966</a>">https://doi.org/10.1177/1074248412463966</ext-link>
  47. M. Janic, M. Lunder, D. Cerne, J. Marc, A. Jerin, M. Skitek, G. Drevensek and M. Sabovic, The “rise-peak-fall” pattern of time dependency of the cardiovascular pleiotropic effects of treatment with low-dose atorvastatin, losartan, and a combination thereof in rats, <em>J. Cardiovas.c Pharmacol.</em> <bold>68</bold>(1) (2016) 74–80; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1097/FJC.0000000000000393" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/FJC.0000000000000393</a>">https://doi.org/10.1097/FJC.0000000000000393</ext-link>
DOI: https://doi.org/10.2478/acph-2024-0029 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 511 - 524
Accepted on: Aug 8, 2024
Published on: Sep 14, 2024
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2024 Saranda Disha-Ibrahimi, Gorazd Drevenšek, Martina Drevenšek, Janja Marc, Irena Prodan Žitnik, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.