Have a personal or library account? Click to login
The tyrosine kinase inhibitor lenvatinib is oxidized by rat cytochromes P450 and affects their expression in rat liver Cover

The tyrosine kinase inhibitor lenvatinib is oxidized by rat cytochromes P450 and affects their expression in rat liver

Open Access
|Sep 2024

References

  1. J. Matsui, Y. Yamamoto, Y. Funahashi, A. Tsuruoka, T. Watanabe, T. Wakabayashi, T. Uenaka and M. Asada, E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition, Int. J. Cancer 122 (2008) 664–671; https://doi.org/10.1002/ijc.23131
  2. Y. Yamamoto, J. Matsui, T. Matsushima, H. Obaishi, K. Miyazaki, K. Nakamura, O. Tohyama, T. Semba, A. Yamaguchi, S. S. Hoshi, F. Mimura, T. Haneda, Y. Fukuda, J. Kamata, K. Takahashi, M. Matsukura, T. Wakabayashi, M. Asada, K. Nomoto, T. Watanabe, Z. Dezso, K. Yoshimatsu, Y. Funahashi and A. Tsuruoka, Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage, Vasc. Cell 6 (2014) Article ID 18 (19 pages); https://doi.org/10.1186/2045-824X-6-18
  3. K. Ikuta, S. Yano, V. T. Trung, M. Hanibuchi, H. Goto, Q. Li, W. Wang, T. Yamada, H. Ogino, S. Kakiuchi, H. Uehara, Y. Sekido, T. Uenaka, Y. Nishioka and S. Sone, E7080, a Multi-tyrosine kinase inhibitor, suppresses the progression of malignant pleural mesothelioma with different proangiogenic cytokine production profiles, Clin. Cancer Res. 15 (2009) 7229–7237; https://doi.org/10.1158/1078-0432.CCR-09-1980
  4. A. Nair, S. J. Lemery, J. Yang, A. Marathe, L. Zhao, H. Zhao, X. Jiang, K. He, G. Ladouceur, A. K. Mitra, L. Zhou, E. Fox, S. Aungst, W. Helms, P. Keegan and R. Pazdur, FDA Approval Summary: Lenvatinib for progressive, radio-iodine-refractory differentiated thyroid cancer, Clin. Cancer Res. 21 (2015) 5205–5208; https://doi.org/10.1158/1078-0432.CCR-15-1377
  5. A. Nair, K. Reece, M. B. Donoghue, W. (Vivian) Yuan, L. Rodriguez, P. Keegan and R. Pazdur, FDA Supplemental Approval Summary: Lenvatinib for the treatment of unresectable hepatocellular carcinoma, The Oncologist 26 (2021) e484–e491; https://doi.org/10.1002/onco.13566
  6. L. Fala, Lenvima (lenvatinib) approved in combination with everolimus for patients with advanced renal-cell carcinoma, Oncol. Pract. Manag. 7 (2017); Retrieved from https://oncpracticemanagement.com/issues/2017/february-2017-vol-7-no-2/905-lenvima-lenvatinib-approved-in-combination-with-everolimus-for-patients-with-advanced-renal-cell-carcinoma.
  7. S. Arora, S. Balasubramaniam, W. Zhang, L. Zhang, R. Sridhara, D. Spillman, J. P. Mathai, B. Scott, S. J. Golding, M. Coory, R. Pazdur and J. A. Beaver, FDA Approval Summary: Pembrolizumab plus lenvatinib for endometrial carcinoma, a collaborative international review under project orbis, Clin. Cancer Res. 26 (2020) 5062–5067; https://doi.org/10.1158/1078-0432.CCR-19-3979
  8. A. Kawazoe, S. Fukuoka, Y. Nakamura, Y. Kuboki, M. Wakabayashi, S. Nomura, Y. Mikamoto, H. Shima, N. Fujishiro, T. Higuchi, A. Sato, T. Kuwata and K. Shitara, Lenvatinib plus pembrolizumab in patients with advanced gastric cancer in the first-line or second-line setting (EPOC1706): an open-label, single-arm, phase 2 trial, Lancet Oncol. 21 (2020) 1057–1065; https://doi.org/10.1016/S1470-2045(20)30271-0
  9. J. Capdevila, N. Fazio, C. Lopez, A. Teulé, J. W. Valle, S. Tafuto, A. Custodio, N. Reed, M. Raderer, E. Grande, R. Garcia-Carbonero, P. Jimenez-Fonseca, J. Hernando, A. Bongiovanni, F. Spada, V. Alonso, L. Antonuzzo, A. Spallanzani, A. Berruti, A. La Casta, I. Sevilla, P. Kump, D. Giuffrida, X. Merino, L. Trejo, P. Gajate, I. Matos, A. Lamarca, T. Ibrahim, Lenvatinib in patients with advanced grade 1/2 pancreatic and gastrointestinal neuroendocrine tumors: Results of the Phase II TALENT Trial (GETNE1509), J. Clin. Oncol. 39 (2021) 2304–2312; https://doi.org/10.1200/JCO.20.03368
  10. K. Bajbouj, R. Qaisar, M. A. Alshura, Z. Ibrahim, M. B. Alebaji, A. W. Ani, H. M. Janajrah, M. M. Bilalaga, A. I. Omara, R. S. Abou Assaleh, M. M. Saber-Ayad and A. B. Elmoselhi, Synergistic anti-angiogenic effect of combined VEGFR kinase inhibitors, lenvatinib, and regorafenib: A therapeutic potential for breast cancer, Int. J. Mol. Sci. 23 (2022) Article ID 4408 (10 pages); https://doi.org/10.3390/ijms23084408
  11. A.-C. Dubbelman, H. Rosing, C. Nijenhuis, A. D. R. Huitema, M. Mergui-Roelvink, A. Gupta, D. Verbel, G. Thompson, R. Shumaker, J. H. M. Schellens and J. H. Beijnen, Pharmacokinetics and excretion of 14C-lenvatinib in patients with advanced solid tumors or lymphomas, Invest. New Drugs 33 (2015) 233–240; https://doi.org/10.1007/s10637-014-0181-7
  12. K. Inoue, H. Mizuo, S. Kawaguchi, K. Fukuda, K. Kusano and T. Yoshimura, Oxidative metabolic pathway of lenvatinib mediated by aldehyde oxidase, Drug Metab. Dispos. 42 (2014) 1326–1333; https://doi.org/10.1124/dmd.114.058073
  13. R. Shumaker, J. Aluri, J. Fan, G. Martinez, G. A. Thompson and M. Ren, Effects of ketoconazole on the pharmacokinetics of lenvatinib (E7080) in healthy participants, Clin. Pharmacol. Drug Dev. 4 (2015) 155–160; https://doi.org/10.1002/cpdd.140
  14. K. Vavrová, R. Indra, P. Pompach, Z. Heger and P. Hodek, The impact of individual human cyto-chrome P450 enzymes on oxidative metabolism of anticancer drug lenvatinib, Biomed. Pharmacother. 145 (2022) Article ID 112391 (10 pages); https://doi.org/10.1016/j.biopha.2021.112391
  15. R. Indra, P. Pompach, V. Martínek, P. Takácsová, K. Vavrová, Z. Heger, V. Adam, T. Eckschlager, K. Kopečková, V. M. Arlt and M. Stiborová, Identification of human enzymes oxidizing the anti-thyroid-cancer drug vandetanib and explanation of the high efficiency of cytochrome P450 3A4 in its oxidation, Int. J. Mol. Sci. 20 (2019) Article ID 3392 (22 pages); https://doi.org/10.3390/ijms20143392
  16. R. Indra, K. Vavrová, P. Pompach, Z. Heger and P. Hodek, Identification of enzymes oxidizing the tyrosine kinase inhibitor cabozantinib: Cabozantinib is predominantly oxidized by CYP3A4 and its oxidation is stimulated by cyt b5 activity, Biomedicines 8 (2020) Article ID 547 (14 pages); https://doi.org/10.3390/biomedicines8120547
  17. P. Pannucci, J. March, S. L. Cooper, S. J. Hill and J. Woolard, Effects of axitinib and lenvatinib on cardiovascular function and haemodynamic, Cardiovasc. Res. 118 (2022) Article ID cvac066.210 (1 page); https://doi.org/10.1093/cvr/cvac066.210
  18. Y. Cui, Y. Li, C. Guo, Y. Li, Y. Ma and Z. Dong, Pharmacokinetic interactions between canagliflozin and sorafenib or lenvatinib in rats, Molecules 27 (2022) Article ID 5419 (15 pages); https://doi.org/10.3390/molecules27175419.
  19. Y. Cui, Y. Li, L. Fan, J. An, X. Wang, R. Fu and Z. Dong, UPLC-MS/MS method for the determination of lenvatinib in rat plasma and its application to drug-drug interaction studies, J. Pharm. Biomed. Anal. 206 (2021) Article ID 114360 (7 pages); https://doi.org/10.1016/j.jpba.2021.114360.
  20. S. Talari, A. Vejendla, S. M. Boddapati and J. Kalidindi, LC-MS/MS method development and validation of lenvatinib and its related impurities in rat plasma: Application to a pharmacokinetic study, Curr. Pharm. Anal. 18 (2022) 614–628; https://doi.org/10.2174/1573412918666220330004440
  21. M. Stiborová, V. Martínek, H. Rýdlová, T. Koblas and P. Hodek, Expression of cytochrome P450 1A1 and its contribution to oxidation of a potential human carcinogen 1-phenylazo-2-naphthol (Sudan I) in human livers, Cancer Lett. 220 (2005) 145–154; https://doi.org/10.1016/j.canlet.2004.07.036
  22. V. Kotrbová, B. Mrázová, M. Moserová, V. Martínek, P. Hodek, J. Hudeček, E. Frei and M. Stiborová, Cytochrome b5 shifts oxidation of the anticancer drug ellipticine by cytochromes P450 1A1 and 1A2 from its detoxication to activation, thereby modulating its pharmacological efficacy, Biochem. Pharmacol. 82 (2011) 669–680; https://doi.org/10.1016/j.bcp.2011.06.003
  23. M. Šulc, R. Indra, M. Moserová, H. H. Schmeiser, E. Frei, V. M. Arlt and M. Stiborová, The impact of individual cytochrome P450 enzymes on oxidative metabolism of benzo[a]pyrene in human livers, Environ. Mol. Mutagen. 57 (2016) 229–235; https://doi.org/10.1002/em.22001
  24. P. Hodek, J. Koblihová, R. Kizek, E. Frei, V. M. Arlt and M. Stiborová, The relationship between DNA adduct formation by benzo[a]pyrene and expression of its activation enzyme cytochrome P450 1A1 in rat, Environ. Toxicol. Pharmacol. 36 (2013) 989–996; https://doi.org/10.1016/j.etap.2013.09.004
  25. M. Stiborová, H. Dračínská, V. Martínek, D. Svášková, P. Hodek, J. Milichovský, Ž. Hejduková, J. Brotánek, H. H. Schmeiser and E. Frei, Induced expression of cytochrome P450 1A and NAD(P) H:quinone oxidoreductase determined at mRNA, protein, and enzyme activity levels in rats exposed to the carcinogenic azo dye 1-phenylazo-2-naphthol (Sudan I), Chem. Res. Toxicol. 26 (2013) 290–299; https://doi.org/10.1021/tx3004533
  26. M. Martignoni, R. de Kanter, P. Grossi, A. Mahnke, G. Saturno and M. Monshouwer, An in vivo and in vitro comparison of CYP induction in rat liver and intestine using slices and quantitative RT-PCR, Chem. Biol. Interact. 151 (2004) 1–11; https://doi.org/10.1016/j.cbi.2004.10.002
  27. D. E. Ryan, D. R. Koop, P. E. Thomas, M. J. Coon and W. Levin, Evidence that isoniazid and ethanol induce the same microsomal cytochrome P-450 in rat liver, an isozyme homologous to rabbit liver cytochrome P-450 isozyme 3a, Arch. Biochem. Biophys. 246 (1986) 633–644; https://doi.org/10.1016/0003-9861(86)90319-X
  28. E. L. LeCluyse, Pregnane X receptor: molecular basis for species differences in CYP3A induction by xenobiotics, Chem. Biol. Interact. 134 (2001) 283–289; https://doi.org/10.1016/S0009-2797(01)00163-6
  29. P. Hodek, L. Bořek-Dohalská, B. Sopko, M. Šulc, S. Smrček, J. Hudeček, J. Janků and M. Stiborová, Structural requirements for inhibitors of cytochromes P450 2B: Assessment of the enzyme interaction with diamondoids, J. Enzyme Inhib. Med. Chem. 20 (2005) 25–33; https://doi.org/10.1080/14756360400024324
  30. C. S. Yang, Y. Y. Tu, D. R. Koop and M. J. Coon, Metabolism of nitrosamines by purified rabbit liver cytochrome P-450 isozymes, Cancer Res. 45 (1985) 1140–1145.
  31. M. Stiborová, L. Borek-Dohalská, D. Aimová, V. Kotrbová, K. Kukacková, K. Janouchová, M. Rupertová, H. Ryslavá, J. Hudecek and E. Frei, Oxidation pattern of the anticancer drug ellipticine by hepatic microsomes – similarity between human and rat systems, Gen. Physiol. Biophys. 25 (2006) 245–261.
  32. M. Martignoni, G. M. M. Groothuis and R. de Kanter, Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction, Expert Opin. Drug Metab. Toxicol. 2 (2006) 875–894; https://doi.org/10.1517/17425255.2.6.875
  33. K. J. Wiechelman, R. D. Braun and J. D. Fitzpatrick, Investigation of the bicinchoninic acid protein assay: Identification of the groups responsible for color formation, Anal. Biochem. 175 (1988) 231–237; https://doi.org/10.1016/0003-2697(88)90383-1
  34. M. D. Burke, S. Thompson, R. J. Weaver, C. R. Wolf and R. T. Mayers, Cytochrome P450 specificities of alkoxyresorufin O-dealkylation in human and rat liver, Biochem. Pharmacol. 48 (1994) 923–936; https://doi.org/10.1016/0006-2952(94)90363-8
  35. V. Martínek and M. Stiborová, Metabolism of carcinogenic azo dye Sudan I by rat, rabbit, minipig and human hepatic microsomes, Collect. Czechoslov. Chem. Commun. 67 (2002) 1883–1898; https://doi.org/10.1135/cccc20021883
  36. M. A. Correia, Human and rat liver cytochromes P450: functional markers, diagnostic inhibitor probes, and parameters frequently used in P450 studies, Cytochrome P 450 (2005) 619–657.
  37. M. Stiborová, R. Indra, E. Frei, K. Kopečková, H. H. Schmeiser, T. Eckschlager, V. Adam, Z. Heger, V. M. Arlt and V. Martínek, Cytochrome b 5 plays a dual role in the reaction cycle of cytochrome P450 3A4 during oxidation of the anticancer drug ellipticine, Monatsh. Chem.-Chem. Mon. 148 (2017) 1983–1991; https://doi.org/10.1007/s00706-017-1986-9
  38. M. Stiborová, H. Dračínská, J. Mizerovská, E. Frei, H. H. Schmeiser, J. Hudeček, P. Hodek, D. H. Philips and V. M. Arlt, The environmental pollutant and carcinogen 3-nitrobenzanthrone induces cytochrome P450 1A1 and NAD(P)H:quinone oxidoreductase in rat lung and kidney, thereby enhancing its own genotoxicity, Toxicology 247 (2008) 11–22; https://doi.org/10.1016/j.tox.2008.01.018
  39. A.-C. Dubbelman, C. M. Nijenhuis, R. S. Jansen, H. Rosing, H. Mizuo, S. Kawaguchi, D. Critchley, R. Shumaker, J. H. Schellens and J. H. Beijnen, Metabolite profiling of the multiple tyrosine kinase inhibitor lenvatinib: a cross-species comparison, Invest. New Drugs 34 (2016) 300–318; https://doi.org/10.1007/s10637-016-0342-y
  40. E. L. LeCluyse, Pregnane X receptor: molecular basis for species differences in CYP3A induction by xenobiotics, Chem. Biol. Interact. 134 (2001) 283–289; https://doi.org/10.1016/S0009-2797(01)00163-6
  41. A. D. Rodrigues, Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes, Biochem. Pharmacol. 57 (1999) 465–480; https://doi.org/10.1016/s0006-2952(98)00268-8
  42. K. Inoue, H. Mizuo, S. Kawaguchi, K. Fukuda, K. Kusano and T. Yoshimura, Oxidative metabolic pathway of lenvatinib mediated by aldehyde oxidase, Drug Metab. Dispos. 42 (2014) 1326–1333; https://doi.org/10.1124/dmd.114.058073
  43. Y. Shao, X. Yin, D. Kang, B. Shen, Z. Zhu, X. Li, H. Li, L. Xie, G. Wang and Y. Liang, An integrated strategy for the quantitative analysis of endogenous proteins: A case of gender-dependent expression of P450 enzymes in rat liver microsome, Talanta 170 (2017) 514–522; https://doi.org/10.1016/j.talanta.2017.04.050
  44. D. J. Waxman, J. J. Morrissey and G. A. LeBlanc, Female-predominant rat hepatic P-450 forms j (IIE1) and 3 (IIA1) are under hormonal regulatory controls distinct from those of the sex-specific P-450 forms, Endocrinology 124 (1989) 2954–2966; https://doi.org/10.1210/endo-124-6-2954
  45. Y. Asaoka, H. Sakai, J. Sasaki, M. Goryo, T. Yanai, T. Masegi and K. Okada, Changes in the gene expression and enzyme activity of hepatic cytochrome P450 in juvenile Sprague-Dawley rats, J. Vet. Med. Sci. 72 (2010) 471–479; https://doi.org/10.1292/jvms.09-0397
  46. M. Endo, Y. Takahashi, Y. Sasaki, T. Saito and T. Kamataki, Novel gender-related regulation of CYP2C12 gene expression in rats, Mol. Endocrinol. 19 (2005) 1181–1190; https://doi.org/10.1210/me.2004-0063
  47. S. S. Sundseth, J. A. Alberta and D. J. Waxman, Sex-specific, growth hormone-regulated transcription of the cytochrome P450 2C11 and 2C12 genes, J. Biol. Chem. 267 (1992) 3907–3914; https://doi.org/10.1016/S0021-9258(19)50612-3
  48. H. Hammer, F. Schmidt, P. Marx-Stoelting, O. Pötz and A. Braeuning, Cross-species analysis of hepatic cytochrome P450 and transport protein expression, Arch. Toxicol. 95 (2021) 117–133; https://doi.org/10.1007/s00204-020-02939-4
  49. Y. Yamazoe, N. Murayama, M. Shimada, K. Yamauchi, K. Nagata, S. Imaoka, Y. Funae and R. Kato, A sex-specific form of cytochrome P-450 catalyzing propoxycoumarin O-depropylation and its identity with testosterone 6β-hydroxylase in untreated rat livers: reconstitution of the activity with microsomal lipids, J. Biochem. (Tokyo) 104 (1988) 785–790; https://doi.org/10.1093/oxfordjournals.jbchem.a122550
  50. C. R. Jones and R. A. Lubet, Induction of a pleiotropic response by phenobarbital and related compounds: Response in various inbred strains of rats, response in various species and the induction of aldehyde dehydrogenase in Copenhagen rats, Biochem. Pharmacol. 44 (1992) 1651–1660.
  51. Rat Genome Database, Retrieved August 14, 2023, from https://rgd.mcw.edu/
  52. N. Shimojo, T. Ishizaki, S. Imaoka, Y. Funae, S. Fuji and K. Okuda, Changes in amounts of cyto-chrome P450 isozymes and levels of catalytic activities in hepatic and renal microsomes of rats with streptozocin-induced diabetes, Biochem. Pharmacol. 46 (1993) 621–627; https://doi.org/10.1016/0006-2952(93)90547-A
  53. K. Inoue, N. Asai, H. Mizuo, K. Fukuda, K. Kusano and T. Yoshimura, Unique metabolic pathway of [14C] lenvatinib after oral administration to male cynomolgus monkey, Drug Metab. Dispos. 40 (2012) 662–670; https://doi.org/10.1124/dmd.111.043281
  54. K. Iwanaga, T. Honjo, M. Miyazaki and M. Kakemi, Time-dependent changes in hepatic and intestinal induction of cytochrome P450 3A after administration of dexamethasone to rats, Xenobiotica 43 (2013) 765–773; https://doi.org/10.3109/00498254.2012.761741
  55. J. Asteinza, R. Camacho-Carranza, R. E. Reyes-Reyes, V. Dorado-González and J. J. Espinosa-Aguirre, Induction of cytochrome P450 enzymes by albendazole treatment in the rat, Environ. Toxicol. Pharmacol. 9 (2000) 31–37; https://doi.org/10.1016/S1382-6689(00)00059-4
  56. S. Safe, Molecular biology of the Ah receptor and its role in carcinogenesis, Toxicol. Lett. 120 (2001) 1–7; https://doi.org/10.1016/S0378-4274(01)00301-0
  57. M. Degawa, S. Miura, K. Yoshinari and Y. Hashimoto, Altered expression of hepatic CYP1A enzymes in rat hepatocarcinogenesis, Jpn. J. Cancer Res. 86 (1995) 535–539; https://doi.org/10.1111/j.1349-7006.1995.tb02431.x
  58. J. P. Chovan, S. C. Ring, E. Yu and J. P. Baldino, Cytochrome P450 probe substrate metabolism kinetics in Sprague Dawley rats, Xenobiotica 37 (2007) 459–473; https://doi.org/10.1080/00498250701245250
  59. G. Mikus and K. I. Foerster, Role of CYP3A4 in kinase inhibitor metabolism and assessment of CYP3A4 activity, Transl. Cancer Res. 6 (2017) s1592-s1599; http://doi.org/10.21037/tcr.2017.09.10
  60. Q. Lin, Y. Li, X. Lu, R. Wang, N. Pang, R. Xu, J. Cai and G. Hu, Characterization of genetic variation in CYP3A4 on the metabolism of cabozantinib in vitro, Chem. Res. Toxicol. 32 (2019) 1583–1590; https://doi.org/10.1021/acs.chemrestox.9b00100
  61. G. M. Amaya, R. Durandis, D. S. Bourgeois, J. A. Perkins, A. A. Abouda, K. J. Wines, M. Mohamud, S. A. Starks, R. N. Daniels and K. D. Jackson, Cytochromes P450 1A2 and 3A4 catalyze the metabolic activation of sunitinib, Chem. Res. Toxicol. 31 (2018) 570–584; https://doi.org/10.1021/acs.chemrestox.8b00005
  62. K. D. Hardy, M. D. Wahlin, I. Papageorgiou, J. D. Unadkat, A. E. Rettie and S. D. Nelson, Studies on the role of metabolic activation in tyrosine kinase inhibitor-dependent hepatotoxicity: Induction of CYP3A4 enhances the cytotoxicity of lapatinib in HepaRG cells, Drug Metab. Dispos. 42 (2014) 162–171; https://doi.org/10.1124/dmd.113.054817
  63. D. Mckillop, A. D. McCormick, A. Millar, G. S. Miles, P. J. Phillips and M. Hutchison, Cytochrome P450-dependent metabolism of gefitinib, Xenobiotica 35 (2005) 39–50; https://doi.org/10.1080/00498250400026464
  64. C. Lu and A. P. Li, Species comparison in P450 induction: effects of dexamethasone, omeprazole, and rifampin on P450 isoforms 1A and 3A in primary cultured hepatocytes from man, Sprague-Dawley rat, minipig, and beagle dog, Chem. Biol. Interact. 134 (2001) 271–281; https://doi.org/10.1016/S0009-2797(01)00162-4
  65. O. Kuzbari, C. M. Peterson, M. R. Franklin, L. B. Hathaway, E. B. Johnstone, A. O. Hammoud and J. G. Lamb, Comparative analysis of human CYP3A4 and rat CYP3A1 induction and relevant gene expression by bisphenol A and diethylstilbestrol: Implications for toxicity testing paradigms, Reprod. Toxicol. 37 (2013) 24–30; https://doi.org/10.1016/j.reprotox.2013.01.005
  66. EMA, Lenvima, Eur. Med. Agency. Text; Retrieved August 21, 2023, from https://www.ema.europa.eu/en/medicines/human/EPAR/lenvima
  67. M. Kolarik, R. Indra, V. Adam, Z. Heger, K. Kopeckova, V. M. Arlt and M. Stiborova, Tyrosine kinase inhibitors vandetanib, lenvatinib and cabozantinib modulate oxidation of an anticancer agent ellipticine catalyzed by cytochromes P450 in vitro, Neuroendocrinol. Lett. 39 (2018) 515–524.
  68. R. Shumaker, M. Ren, J. Aluri, C. E. Dutcus, C. Rance and C. He, An open-label phase 1 study to determine the effect of lenvatinib on the pharmacokinetics of midazolam, a CYP3A4 substrate, in patients with advanced solid tumors, Eur. J. Drug Metab. Pharmacokinet. 45 (2020) 373–383; https://doi.org/10.1007/s13318-020-00607-7
  69. A. Mode, R. AhIgren, O. Lahuna and J.-Å. Gustafsson, Gender differences in rat hepaticCYP2C gene expression regulation by growth hormone, Growth Horm. IGF Res. 8 (1998) 61–67; https://doi.org/10.1016/S1096-6374(98)80025-7
  70. D. J. Waxman and T. K. Chang, Hormonal Regulation of Liver Cytochrome P450 Enzymes, in Cytochrome P450 (Ed. Ortiz de Montellano) Springer, Boston 2005, pp. 347–376; https://doi.org/10.1007/0-387-27447-2_9
DOI: https://doi.org/10.2478/acph-2024-0027 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 441 - 459
Accepted on: Jun 20, 2024
Published on: Sep 14, 2024
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2024 Radek Indra, Sandra Jelínková, Katarína Kollárová, Petra Zahumenská, Josef Dvořák, Šárka Dušková, Helena Dračínská, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.