Have a personal or library account? Click to login
The tyrosine kinase inhibitor lenvatinib is oxidized by rat cytochromes P450 and affects their expression in rat liver Cover

The tyrosine kinase inhibitor lenvatinib is oxidized by rat cytochromes P450 and affects their expression in rat liver

Open Access
|Sep 2024

References

  1. J. Matsui, Y. Yamamoto, Y. Funahashi, A. Tsuruoka, T. Watanabe, T. Wakabayashi, T. Uenaka and M. Asada, E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition, <em>Int. J. Cancer</em> <bold>122</bold> (2008) 664–671; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/ijc.23131" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/ijc.23131</a>">https://doi.org/10.1002/ijc.23131</ext-link>
  2. Y. Yamamoto, J. Matsui, T. Matsushima, H. Obaishi, K. Miyazaki, K. Nakamura, O. Tohyama, T. Semba, A. Yamaguchi, S. S. Hoshi, F. Mimura, T. Haneda, Y. Fukuda, J. Kamata, K. Takahashi, M. Matsukura, T. Wakabayashi, M. Asada, K. Nomoto, T. Watanabe, Z. Dezso, K. Yoshimatsu, Y. Funahashi and A. Tsuruoka, Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage, <em>Vasc. Cell</em> <bold>6</bold> (2014) Article ID 18 (19 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/2045-824X-6-18" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/2045-824X-6-18</a>">https://doi.org/10.1186/2045-824X-6-18</ext-link>
  3. K. Ikuta, S. Yano, V. T. Trung, M. Hanibuchi, H. Goto, Q. Li, W. Wang, T. Yamada, H. Ogino, S. Kakiuchi, H. Uehara, Y. Sekido, T. Uenaka, Y. Nishioka and S. Sone, E7080, a Multi-tyrosine kinase inhibitor, suppresses the progression of malignant pleural mesothelioma with different proangiogenic cytokine production profiles, <em>Clin. Cancer Res.</em> <bold>15</bold> (2009) 7229–7237; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1158/1078-0432.CCR-09-1980" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1158/1078-0432.CCR-09-1980</a>">https://doi.org/10.1158/1078-0432.CCR-09-1980</ext-link>
  4. A. Nair, S. J. Lemery, J. Yang, A. Marathe, L. Zhao, H. Zhao, X. Jiang, K. He, G. Ladouceur, A. K. Mitra, L. Zhou, E. Fox, S. Aungst, W. Helms, P. Keegan and R. Pazdur, FDA Approval Summary: Lenvatinib for progressive, radio-iodine-refractory differentiated thyroid cancer, <em>Clin. Cancer Res.</em> <bold>21</bold> (2015) 5205–5208; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1158/1078-0432.CCR-15-1377" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1158/1078-0432.CCR-15-1377</a>">https://doi.org/10.1158/1078-0432.CCR-15-1377</ext-link>
  5. A. Nair, K. Reece, M. B. Donoghue, W. (Vivian) Yuan, L. Rodriguez, P. Keegan and R. Pazdur, FDA Supplemental Approval Summary: Lenvatinib for the treatment of unresectable hepatocellular carcinoma, <em>The Oncologist</em> <bold>26</bold> (2021) e484–e491; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/onco.13566" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/onco.13566</a>">https://doi.org/10.1002/onco.13566</ext-link>
  6. L. Fala, Lenvima (lenvatinib) approved in combination with everolimus for patients with advanced renal-cell carcinoma, <em>Oncol. Pract. Manag.</em> <bold>7</bold> (2017); Retrieved from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://oncpracticemanagement.com/issues/2017/february-2017-vol-7-no-2/905-lenvima-lenvatinib-approved-in-combination-with-everolimus-for-patients-with-advanced-renal-cell-carcinoma">https://oncpracticemanagement.com/issues/2017/february-2017-vol-7-no-2/905-lenvima-lenvatinib-approved-in-combination-with-everolimus-for-patients-with-advanced-renal-cell-carcinoma</ext-link>.
  7. S. Arora, S. Balasubramaniam, W. Zhang, L. Zhang, R. Sridhara, D. Spillman, J. P. Mathai, B. Scott, S. J. Golding, M. Coory, R. Pazdur and J. A. Beaver, FDA Approval Summary: Pembrolizumab plus lenvatinib for endometrial carcinoma, a collaborative international review under project orbis, <em>Clin. Cancer Res.</em> <bold>26</bold> (2020) 5062–5067; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1158/1078-0432.CCR-19-3979" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1158/1078-0432.CCR-19-3979</a>">https://doi.org/10.1158/1078-0432.CCR-19-3979</ext-link>
  8. A. Kawazoe, S. Fukuoka, Y. Nakamura, Y. Kuboki, M. Wakabayashi, S. Nomura, Y. Mikamoto, H. Shima, N. Fujishiro, T. Higuchi, A. Sato, T. Kuwata and K. Shitara, Lenvatinib plus pembrolizumab in patients with advanced gastric cancer in the first-line or second-line setting (EPOC1706): an open-label, single-arm, phase 2 trial, <em>Lancet Oncol.</em> <bold>21</bold> (2020) 1057–1065; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S1470-2045(20)30271-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S1470-2045(20)30271-0</a>">https://doi.org/10.1016/S1470-2045(20)30271-0</ext-link>
  9. J. Capdevila, N. Fazio, C. Lopez, A. Teulé, J. W. Valle, S. Tafuto, A. Custodio, N. Reed, M. Raderer, E. Grande, R. Garcia-Carbonero, P. Jimenez-Fonseca, J. Hernando, A. Bongiovanni, F. Spada, V. Alonso, L. Antonuzzo, A. Spallanzani, A. Berruti, A. La Casta, I. Sevilla, P. Kump, D. Giuffrida, X. Merino, L. Trejo, P. Gajate, I. Matos, A. Lamarca, T. Ibrahim, Lenvatinib in patients with advanced grade 1/2 pancreatic and gastrointestinal neuroendocrine tumors: Results of the Phase II TALENT Trial (GETNE1509), <em>J. Clin. Oncol.</em> <bold>39</bold> (2021) 2304–2312; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1200/JCO.20.03368" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1200/JCO.20.03368</a>">https://doi.org/10.1200/JCO.20.03368</ext-link>
  10. K. Bajbouj, R. Qaisar, M. A. Alshura, Z. Ibrahim, M. B. Alebaji, A. W. Ani, H. M. Janajrah, M. M. Bilalaga, A. I. Omara, R. S. Abou Assaleh, M. M. Saber-Ayad and A. B. Elmoselhi, Synergistic anti-angiogenic effect of combined VEGFR kinase inhibitors, lenvatinib, and regorafenib: A therapeutic potential for breast cancer, <em>Int. J. Mol. Sci.</em> <bold>23</bold> (2022) Article ID 4408 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms23084408" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms23084408</a>">https://doi.org/10.3390/ijms23084408</ext-link>
  11. A.-C. Dubbelman, H. Rosing, C. Nijenhuis, A. D. R. Huitema, M. Mergui-Roelvink, A. Gupta, D. Verbel, G. Thompson, R. Shumaker, J. H. M. Schellens and J. H. Beijnen, Pharmacokinetics and excretion of 14C-lenvatinib in patients with advanced solid tumors or lymphomas, <em>Invest. New Drugs</em> <bold>33</bold> (2015) 233–240; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10637-014-0181-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10637-014-0181-7</a>">https://doi.org/10.1007/s10637-014-0181-7</ext-link>
  12. K. Inoue, H. Mizuo, S. Kawaguchi, K. Fukuda, K. Kusano and T. Yoshimura, Oxidative metabolic pathway of lenvatinib mediated by aldehyde oxidase, <em>Drug Metab. Dispos.</em> <bold>42</bold> (2014) 1326–1333; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1124/dmd.114.058073" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1124/dmd.114.058073</a>">https://doi.org/10.1124/dmd.114.058073</ext-link>
  13. R. Shumaker, J. Aluri, J. Fan, G. Martinez, G. A. Thompson and M. Ren, Effects of ketoconazole on the pharmacokinetics of lenvatinib (E7080) in healthy participants, <em>Clin. Pharmacol. Drug Dev.</em> <bold>4</bold> (2015) 155–160; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/cpdd.140" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/cpdd.140</a>">https://doi.org/10.1002/cpdd.140</ext-link>
  14. K. Vavrová, R. Indra, P. Pompach, Z. Heger and P. Hodek, The impact of individual human cyto-chrome P450 enzymes on oxidative metabolism of anticancer drug lenvatinib, <em>Biomed. Pharmacother.</em> <bold>145</bold> (2022) Article ID 112391 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biopha.2021.112391" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biopha.2021.112391</a>">https://doi.org/10.1016/j.biopha.2021.112391</ext-link>
  15. R. Indra, P. Pompach, V. Martínek, P. Takácsová, K. Vavrová, Z. Heger, V. Adam, T. Eckschlager, K. Kopečková, V. M. Arlt and M. Stiborová, Identification of human enzymes oxidizing the anti-thyroid-cancer drug vandetanib and explanation of the high efficiency of cytochrome P450 3A4 in its oxidation, <em>Int. J. Mol. Sci.</em> <bold>20</bold> (2019) Article ID 3392 (22 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms20143392" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms20143392</a>">https://doi.org/10.3390/ijms20143392</ext-link>
  16. R. Indra, K. Vavrová, P. Pompach, Z. Heger and P. Hodek, Identification of enzymes oxidizing the tyrosine kinase inhibitor cabozantinib: Cabozantinib is predominantly oxidized by CYP3A4 and its oxidation is stimulated by cyt b5 activity, <em>Biomedicines</em> <bold>8</bold> (2020) Article ID 547 (14 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/biomedicines8120547" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/biomedicines8120547</a>">https://doi.org/10.3390/biomedicines8120547</ext-link>
  17. P. Pannucci, J. March, S. L. Cooper, S. J. Hill and J. Woolard, Effects of axitinib and lenvatinib on cardiovascular function and haemodynamic, <em>Cardiovasc. Res.</em> <bold>118</bold> (2022) Article ID cvac066.210 (1 page); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/cvr/cvac066.210" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/cvr/cvac066.210</a>">https://doi.org/10.1093/cvr/cvac066.210</ext-link>
  18. Y. Cui, Y. Li, C. Guo, Y. Li, Y. Ma and Z. Dong, Pharmacokinetic interactions between canagliflozin and sorafenib or lenvatinib in rats, <em>Molecules</em> <bold>27</bold> (2022) Article ID 5419 (15 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/molecules27175419" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/molecules27175419</a>">https://doi.org/10.3390/molecules27175419</ext-link>.
  19. Y. Cui, Y. Li, L. Fan, J. An, X. Wang, R. Fu and Z. Dong, UPLC-MS/MS method for the determination of lenvatinib in rat plasma and its application to drug-drug interaction studies, <em>J. Pharm. Biomed. Anal.</em> <bold>206</bold> (2021) Article ID 114360 (7 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jpba.2021.114360" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jpba.2021.114360</a>">https://doi.org/10.1016/j.jpba.2021.114360</ext-link>.
  20. S. Talari, A. Vejendla, S. M. Boddapati and J. Kalidindi, LC-MS/MS method development and validation of lenvatinib and its related impurities in rat plasma: Application to a pharmacokinetic study, <em>Curr. Pharm. Anal.</em> <bold>18</bold> (2022) 614–628; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2174/1573412918666220330004440" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2174/1573412918666220330004440</a>">https://doi.org/10.2174/1573412918666220330004440</ext-link>
  21. M. Stiborová, V. Martínek, H. Rýdlová, T. Koblas and P. Hodek, Expression of cytochrome P450 1A1 and its contribution to oxidation of a potential human carcinogen 1-phenylazo-2-naphthol (Sudan I) in human livers, <em>Cancer Lett.</em> <bold>220</bold> (2005) 145–154; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.canlet.2004.07.036" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.canlet.2004.07.036</a>">https://doi.org/10.1016/j.canlet.2004.07.036</ext-link>
  22. V. Kotrbová, B. Mrázová, M. Moserová, V. Martínek, P. Hodek, J. Hudeček, E. Frei and M. Stiborová, Cytochrome b5 shifts oxidation of the anticancer drug ellipticine by cytochromes P450 1A1 and 1A2 from its detoxication to activation, thereby modulating its pharmacological efficacy, <em>Biochem. Pharmacol.</em> <bold>82</bold> (2011) 669–680; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.bcp.2011.06.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bcp.2011.06.003</a>">https://doi.org/10.1016/j.bcp.2011.06.003</ext-link>
  23. M. Šulc, R. Indra, M. Moserová, H. H. Schmeiser, E. Frei, V. M. Arlt and M. Stiborová, The impact of individual cytochrome P450 enzymes on oxidative metabolism of benzo[a]pyrene in human livers, <em>Environ. Mol. Mutagen.</em> <bold>57</bold> (2016) 229–235; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/em.22001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/em.22001</a>">https://doi.org/10.1002/em.22001</ext-link>
  24. P. Hodek, J. Koblihová, R. Kizek, E. Frei, V. M. Arlt and M. Stiborová, The relationship between DNA adduct formation by benzo[a]pyrene and expression of its activation enzyme cytochrome P450 1A1 in rat, <em>Environ. Toxicol. Pharmacol.</em> <bold>36</bold> (2013) 989–996; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.etap.2013.09.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.etap.2013.09.004</a>">https://doi.org/10.1016/j.etap.2013.09.004</ext-link>
  25. M. Stiborová, H. Dračínská, V. Martínek, D. Svášková, P. Hodek, J. Milichovský, Ž. Hejduková, J. Brotánek, H. H. Schmeiser and E. Frei, Induced expression of cytochrome P450 1A and NAD(P) H:quinone oxidoreductase determined at mRNA, protein, and enzyme activity levels in rats exposed to the carcinogenic azo dye 1-phenylazo-2-naphthol (Sudan I), <em>Chem. Res. Toxicol.</em> <bold>26</bold> (2013) 290–299; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/tx3004533" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/tx3004533</a>">https://doi.org/10.1021/tx3004533</ext-link>
  26. M. Martignoni, R. de Kanter, P. Grossi, A. Mahnke, G. Saturno and M. Monshouwer, An in vivo and in vitro comparison of CYP induction in rat liver and intestine using slices and quantitative RT-PCR, <em>Chem. Biol. Interact.</em> <bold>151</bold> (2004) 1–11; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cbi.2004.10.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cbi.2004.10.002</a>">https://doi.org/10.1016/j.cbi.2004.10.002</ext-link>
  27. D. E. Ryan, D. R. Koop, P. E. Thomas, M. J. Coon and W. Levin, Evidence that isoniazid and ethanol induce the same microsomal cytochrome P-450 in rat liver, an isozyme homologous to rabbit liver cytochrome P-450 isozyme 3a, <em>Arch. Biochem. Biophys.</em> <bold>246</bold> (1986) 633–644; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/0003-9861(86)90319-X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0003-9861(86)90319-X</a>">https://doi.org/10.1016/0003-9861(86)90319-X</ext-link>
  28. E. L. LeCluyse, Pregnane X receptor: molecular basis for species differences in CYP3A induction by xenobiotics, <em>Chem. Biol. Interact.</em> <bold>134</bold> (2001) 283–289; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0009-2797(01)00163-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0009-2797(01)00163-6</a>">https://doi.org/10.1016/S0009-2797(01)00163-6</ext-link>
  29. P. Hodek, L. Bořek-Dohalská, B. Sopko, M. Šulc, S. Smrček, J. Hudeček, J. Janků and M. Stiborová, Structural requirements for inhibitors of cytochromes P450 2B: Assessment of the enzyme interaction with diamondoids, <em>J. Enzyme Inhib. Med. Chem.</em> <bold>20</bold> (2005) 25–33; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/14756360400024324" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/14756360400024324</a>">https://doi.org/10.1080/14756360400024324</ext-link>
  30. C. S. Yang, Y. Y. Tu, D. R. Koop and M. J. Coon, Metabolism of nitrosamines by purified rabbit liver cytochrome P-450 isozymes, <em>Cancer Res.</em> <bold>45</bold> (1985) 1140–1145.
  31. M. Stiborová, L. Borek-Dohalská, D. Aimová, V. Kotrbová, K. Kukacková, K. Janouchová, M. Rupertová, H. Ryslavá, J. Hudecek and E. Frei, Oxidation pattern of the anticancer drug ellipticine by hepatic microsomes – similarity between human and rat systems, <em>Gen. Physiol. Biophys.</em> <bold>25</bold> (2006) 245–261.
  32. M. Martignoni, G. M. M. Groothuis and R. de Kanter, Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction, <em>Expert Opin. Drug Metab. Toxicol.</em> <bold>2</bold> (2006) 875–894; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1517/17425255.2.6.875" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1517/17425255.2.6.875</a>">https://doi.org/10.1517/17425255.2.6.875</ext-link>
  33. K. J. Wiechelman, R. D. Braun and J. D. Fitzpatrick, Investigation of the bicinchoninic acid protein assay: Identification of the groups responsible for color formation, <em>Anal. Biochem.</em> <bold>175</bold> (1988) 231–237; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/0003-2697(88)90383-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0003-2697(88)90383-1</a>">https://doi.org/10.1016/0003-2697(88)90383-1</ext-link>
  34. M. D. Burke, S. Thompson, R. J. Weaver, C. R. Wolf and R. T. Mayers, Cytochrome P450 specificities of alkoxyresorufin <em>O</em>-dealkylation in human and rat liver, <em>Biochem. Pharmacol.</em> <bold>48</bold> (1994) 923–936; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/0006-2952(94)90363-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0006-2952(94)90363-8</a>">https://doi.org/10.1016/0006-2952(94)90363-8</ext-link>
  35. V. Martínek and M. Stiborová, Metabolism of carcinogenic azo dye Sudan I by rat, rabbit, minipig and human hepatic microsomes, <em>Collect. Czechoslov. Chem. Commun.</em> <bold>67</bold> (2002) 1883–1898; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1135/cccc20021883" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1135/cccc20021883</a>">https://doi.org/10.1135/cccc20021883</ext-link>
  36. M. A. Correia, Human and rat liver cytochromes P450: functional markers, diagnostic inhibitor probes, and parameters frequently used in P450 studies, <em>Cytochrome P 450</em> (2005) 619–657.
  37. M. Stiborová, R. Indra, E. Frei, K. Kopečková, H. H. Schmeiser, T. Eckschlager, V. Adam, Z. Heger, V. M. Arlt and V. Martínek, Cytochrome b 5 plays a dual role in the reaction cycle of cytochrome P450 3A4 during oxidation of the anticancer drug ellipticine, <em>Monatsh. Chem.-Chem. Mon.</em> <bold>148</bold> (2017) 1983–1991; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00706-017-1986-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00706-017-1986-9</a>">https://doi.org/10.1007/s00706-017-1986-9</ext-link>
  38. M. Stiborová, H. Dračínská, J. Mizerovská, E. Frei, H. H. Schmeiser, J. Hudeček, P. Hodek, D. H. Philips and V. M. Arlt, The environmental pollutant and carcinogen 3-nitrobenzanthrone induces cytochrome P450 1A1 and NAD(P)H:quinone oxidoreductase in rat lung and kidney, thereby enhancing its own genotoxicity, <em>Toxicology</em> <bold>247</bold> (2008) 11–22; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.tox.2008.01.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tox.2008.01.018</a>">https://doi.org/10.1016/j.tox.2008.01.018</ext-link>
  39. A.-C. Dubbelman, C. M. Nijenhuis, R. S. Jansen, H. Rosing, H. Mizuo, S. Kawaguchi, D. Critchley, R. Shumaker, J. H. Schellens and J. H. Beijnen, Metabolite profiling of the multiple tyrosine kinase inhibitor lenvatinib: a cross-species comparison, <em>Invest. New Drugs</em> <bold>34</bold> (2016) 300–318; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10637-016-0342-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10637-016-0342-y</a>">https://doi.org/10.1007/s10637-016-0342-y</ext-link>
  40. E. L. LeCluyse, Pregnane X receptor: molecular basis for species differences in CYP3A induction by xenobiotics, <em>Chem. Biol. Interact.</em> <bold>134</bold> (2001) 283–289; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0009-2797(01)00163-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0009-2797(01)00163-6</a>">https://doi.org/10.1016/S0009-2797(01)00163-6</ext-link>
  41. A. D. Rodrigues, Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes, <em>Biochem. Pharmacol.</em> <bold>57</bold> (1999) 465–480; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/s0006-2952(98)00268-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/s0006-2952(98)00268-8</a>">https://doi.org/10.1016/s0006-2952(98)00268-8</ext-link>
  42. K. Inoue, H. Mizuo, S. Kawaguchi, K. Fukuda, K. Kusano and T. Yoshimura, Oxidative metabolic pathway of lenvatinib mediated by aldehyde oxidase, <em>Drug Metab. Dispos.</em> <bold>42</bold> (2014) 1326–1333; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1124/dmd.114.058073" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1124/dmd.114.058073</a>">https://doi.org/10.1124/dmd.114.058073</ext-link>
  43. Y. Shao, X. Yin, D. Kang, B. Shen, Z. Zhu, X. Li, H. Li, L. Xie, G. Wang and Y. Liang, An integrated strategy for the quantitative analysis of endogenous proteins: A case of gender-dependent expression of P450 enzymes in rat liver microsome, <em>Talanta</em> <bold>170</bold> (2017) 514–522; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.talanta.2017.04.050" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.talanta.2017.04.050</a>">https://doi.org/10.1016/j.talanta.2017.04.050</ext-link>
  44. D. J. Waxman, J. J. Morrissey and G. A. LeBlanc, Female-predominant rat hepatic P-450 forms j (IIE1) and 3 (IIA1) are under hormonal regulatory controls distinct from those of the sex-specific P-450 forms, <em>Endocrinology</em> <bold>124</bold> (1989) 2954–2966; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1210/endo-124-6-2954" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1210/endo-124-6-2954</a>">https://doi.org/10.1210/endo-124-6-2954</ext-link>
  45. Y. Asaoka, H. Sakai, J. Sasaki, M. Goryo, T. Yanai, T. Masegi and K. Okada, Changes in the gene expression and enzyme activity of hepatic cytochrome P450 in juvenile Sprague-Dawley rats, <em>J. Vet. Med. Sci.</em> <bold>72</bold> (2010) 471–479; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1292/jvms.09-0397" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1292/jvms.09-0397</a>">https://doi.org/10.1292/jvms.09-0397</ext-link>
  46. M. Endo, Y. Takahashi, Y. Sasaki, T. Saito and T. Kamataki, Novel gender-related regulation of CYP2C12 gene expression in rats, <em>Mol. Endocrinol.</em> <bold>19</bold> (2005) 1181–1190; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1210/me.2004-0063" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1210/me.2004-0063</a>">https://doi.org/10.1210/me.2004-0063</ext-link>
  47. S. S. Sundseth, J. A. Alberta and D. J. Waxman, Sex-specific, growth hormone-regulated transcription of the cytochrome P450 2C11 and 2C12 genes, <em>J. Biol. Chem.</em> <bold>267</bold> (1992) 3907–3914; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0021-9258(19)50612-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0021-9258(19)50612-3</a>">https://doi.org/10.1016/S0021-9258(19)50612-3</ext-link>
  48. H. Hammer, F. Schmidt, P. Marx-Stoelting, O. Pötz and A. Braeuning, Cross-species analysis of hepatic cytochrome P450 and transport protein expression, <em>Arch. Toxicol.</em> <bold>95</bold> (2021) 117–133; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00204-020-02939-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00204-020-02939-4</a>">https://doi.org/10.1007/s00204-020-02939-4</ext-link>
  49. Y. Yamazoe, N. Murayama, M. Shimada, K. Yamauchi, K. Nagata, S. Imaoka, Y. Funae and R. Kato, A sex-specific form of cytochrome P-450 catalyzing propoxycoumarin <em>O</em>-depropylation and its identity with testosterone 6β-hydroxylase in untreated rat livers: reconstitution of the activity with microsomal lipids, <em>J. Biochem.</em> (Tokyo) <bold>104</bold> (1988) 785–790; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/oxfordjournals.jbchem.a122550" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/oxfordjournals.jbchem.a122550</a>">https://doi.org/10.1093/oxfordjournals.jbchem.a122550</ext-link>
  50. C. R. Jones and R. A. Lubet, Induction of a pleiotropic response by phenobarbital and related compounds: Response in various inbred strains of rats, response in various species and the induction of aldehyde dehydrogenase in Copenhagen rats, <em>Biochem. Pharmacol.</em> <bold>44</bold> (1992) 1651–1660.
  51. Rat Genome Database, Retrieved August 14, 2023, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://rgd.mcw.edu/">https://rgd.mcw.edu/</ext-link>
  52. N. Shimojo, T. Ishizaki, S. Imaoka, Y. Funae, S. Fuji and K. Okuda, Changes in amounts of cyto-chrome P450 isozymes and levels of catalytic activities in hepatic and renal microsomes of rats with streptozocin-induced diabetes, <em>Biochem. Pharmacol.</em> <bold>46</bold> (1993) 621–627; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/0006-2952(93)90547-A" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0006-2952(93)90547-A</a>">https://doi.org/10.1016/0006-2952(93)90547-A</ext-link>
  53. K. Inoue, N. Asai, H. Mizuo, K. Fukuda, K. Kusano and T. Yoshimura, Unique metabolic pathway of [14C] lenvatinib after oral administration to male cynomolgus monkey, <em>Drug Metab. Dispos.</em> <bold>40</bold> (2012) 662–670; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1124/dmd.111.043281" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1124/dmd.111.043281</a>">https://doi.org/10.1124/dmd.111.043281</ext-link>
  54. K. Iwanaga, T. Honjo, M. Miyazaki and M. Kakemi, Time-dependent changes in hepatic and intestinal induction of cytochrome P450 3A after administration of dexamethasone to rats, <em>Xenobiotica</em> <bold>43</bold> (2013) 765–773; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3109/00498254.2012.761741" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3109/00498254.2012.761741</a>">https://doi.org/10.3109/00498254.2012.761741</ext-link>
  55. J. Asteinza, R. Camacho-Carranza, R. E. Reyes-Reyes, V. Dorado-González and J. J. Espinosa-Aguirre, Induction of cytochrome P450 enzymes by albendazole treatment in the rat, <em>Environ. Toxicol. Pharmacol.</em> <bold>9</bold> (2000) 31–37; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S1382-6689(00)00059-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S1382-6689(00)00059-4</a>">https://doi.org/10.1016/S1382-6689(00)00059-4</ext-link>
  56. S. Safe, Molecular biology of the Ah receptor and its role in carcinogenesis, <em>Toxicol. Lett.</em> <bold>120</bold> (2001) 1–7; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0378-4274(01)00301-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0378-4274(01)00301-0</a>">https://doi.org/10.1016/S0378-4274(01)00301-0</ext-link>
  57. M. Degawa, S. Miura, K. Yoshinari and Y. Hashimoto, Altered expression of hepatic CYP1A enzymes in rat hepatocarcinogenesis, <em>Jpn. J. Cancer Res.</em> <bold>86</bold> (1995) 535–539; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1349-7006.1995.tb02431.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1349-7006.1995.tb02431.x</a>">https://doi.org/10.1111/j.1349-7006.1995.tb02431.x</ext-link>
  58. J. P. Chovan, S. C. Ring, E. Yu and J. P. Baldino, Cytochrome P450 probe substrate metabolism kinetics in Sprague Dawley rats, <em>Xenobiotica</em> <bold>37</bold> (2007) 459–473; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/00498250701245250" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/00498250701245250</a>">https://doi.org/10.1080/00498250701245250</ext-link>
  59. G. Mikus and K. I. Foerster, Role of CYP3A4 in kinase inhibitor metabolism and assessment of CYP3A4 activity, <em>Transl. Cancer Res.</em> <bold>6</bold> (2017) s1592-s1599; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://doi.org/<a href="https://doi.org/10.21037/tcr.2017.09.10" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.21037/tcr.2017.09.10</a>">http://doi.org/<a href="https://doi.org/10.21037/tcr.2017.09.10" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.21037/tcr.2017.09.10</a></ext-link>
  60. Q. Lin, Y. Li, X. Lu, R. Wang, N. Pang, R. Xu, J. Cai and G. Hu, Characterization of genetic variation in CYP3A4 on the metabolism of cabozantinib in vitro, <em>Chem. Res. Toxicol.</em> <bold>32</bold> (2019) 1583–1590; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acs.chemrestox.9b00100" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acs.chemrestox.9b00100</a>">https://doi.org/10.1021/acs.chemrestox.9b00100</ext-link>
  61. G. M. Amaya, R. Durandis, D. S. Bourgeois, J. A. Perkins, A. A. Abouda, K. J. Wines, M. Mohamud, S. A. Starks, R. N. Daniels and K. D. Jackson, Cytochromes P450 1A2 and 3A4 catalyze the metabolic activation of sunitinib, <em>Chem. Res. Toxicol.</em> <bold>31</bold> (2018) 570–584; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acs.chemrestox.8b00005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acs.chemrestox.8b00005</a>">https://doi.org/10.1021/acs.chemrestox.8b00005</ext-link>
  62. K. D. Hardy, M. D. Wahlin, I. Papageorgiou, J. D. Unadkat, A. E. Rettie and S. D. Nelson, Studies on the role of metabolic activation in tyrosine kinase inhibitor-dependent hepatotoxicity: Induction of CYP3A4 enhances the cytotoxicity of lapatinib in HepaRG cells, <em>Drug Metab. Dispos.</em> <bold>42</bold> (2014) 162–171; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1124/dmd.113.054817" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1124/dmd.113.054817</a>">https://doi.org/10.1124/dmd.113.054817</ext-link>
  63. D. Mckillop, A. D. McCormick, A. Millar, G. S. Miles, P. J. Phillips and M. Hutchison, Cytochrome P450-dependent metabolism of gefitinib, <em>Xenobiotica</em> <bold>35</bold> (2005) 39–50; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/00498250400026464" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/00498250400026464</a>">https://doi.org/10.1080/00498250400026464</ext-link>
  64. C. Lu and A. P. Li, Species comparison in P450 induction: effects of dexamethasone, omeprazole, and rifampin on P450 isoforms 1A and 3A in primary cultured hepatocytes from man, Sprague-Dawley rat, minipig, and beagle dog, <em>Chem. Biol. Interact.</em> <bold>134</bold> (2001) 271–281; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0009-2797(01)00162-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0009-2797(01)00162-4</a>">https://doi.org/10.1016/S0009-2797(01)00162-4</ext-link>
  65. O. Kuzbari, C. M. Peterson, M. R. Franklin, L. B. Hathaway, E. B. Johnstone, A. O. Hammoud and J. G. Lamb, Comparative analysis of human CYP3A4 and rat CYP3A1 induction and relevant gene expression by bisphenol A and diethylstilbestrol: Implications for toxicity testing paradigms, <em>Reprod. Toxicol.</em> <bold>37</bold> (2013) 24–30; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.reprotox.2013.01.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.reprotox.2013.01.005</a>">https://doi.org/10.1016/j.reprotox.2013.01.005</ext-link>
  66. EMA, Lenvima, Eur. Med. Agency. Text; Retrieved August 21, 2023, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ema.europa.eu/en/medicines/human/EPAR/lenvima">https://www.ema.europa.eu/en/medicines/human/EPAR/lenvima</ext-link>
  67. M. Kolarik, R. Indra, V. Adam, Z. Heger, K. Kopeckova, V. M. Arlt and M. Stiborova, Tyrosine kinase inhibitors vandetanib, lenvatinib and cabozantinib modulate oxidation of an anticancer agent ellipticine catalyzed by cytochromes P450 in vitro, <em>Neuroendocrinol. Lett.</em> <bold>39</bold> (2018) 515–524.
  68. R. Shumaker, M. Ren, J. Aluri, C. E. Dutcus, C. Rance and C. He, An open-label phase 1 study to determine the effect of lenvatinib on the pharmacokinetics of midazolam, a CYP3A4 substrate, in patients with advanced solid tumors, <em>Eur. J. Drug Metab. Pharmacokinet.</em> <bold>45</bold> (2020) 373–383; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13318-020-00607-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13318-020-00607-7</a>">https://doi.org/10.1007/s13318-020-00607-7</ext-link>
  69. A. Mode, R. AhIgren, O. Lahuna and J.-Å. Gustafsson, Gender differences in rat hepaticCYP2C gene expression regulation by growth hormone, <em>Growth Horm. IGF Res.</em> <bold>8</bold> (1998) 61–67; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S1096-6374(98)80025-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S1096-6374(98)80025-7</a>">https://doi.org/10.1016/S1096-6374(98)80025-7</ext-link>
  70. D. J. Waxman and T. K. Chang, <em>Hormonal Regulation of Liver Cytochrome P450 Enzymes</em>, in <em>Cytochrome P450</em> (Ed. Ortiz de Montellano) Springer, Boston 2005, pp. 347–376; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/0-387-27447-2_9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/0-387-27447-2_9</a>">https://doi.org/10.1007/0-387-27447-2_9</ext-link>
DOI: https://doi.org/10.2478/acph-2024-0027 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 441 - 459
Accepted on: Jun 20, 2024
Published on: Sep 14, 2024
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2024 Radek Indra, Sandra Jelínková, Katarína Kollárová, Petra Zahumenská, Josef Dvořák, Šárka Dušková, Helena Dračínská, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.