R. Injac and B. Strukelj, Recent advances in protection against doxorubicin-induced toxicity, <em>Technol. Cancer Res. Treat</em>. <bold>7</bold> (2008) 497–516; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1177/153303460800700611" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/153303460800700611</a>">https://doi.org/10.1177/153303460800700611</ext-link>
C. Carvalho, R. X. Santos, S. Cardoso, S. Correia, P. J. Oliveira, M. S. Santos and P. I. Moreira, Doxorubicin: The good, the bad and the ugly effect, <em>Curr. Med. Chem.</em> <bold>16</bold>(25) (2009) 3267–3285; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2174/092986709788803312" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2174/092986709788803312</a>">https://doi.org/10.2174/092986709788803312</ext-link>
R. Injac, Potential medical use of fullerenols after two decades of oncology research, <em>Technol. Cancer Res. Treat.</em> <bold>22</bold> (2023) 1–21; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1177/15330338231201515" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/15330338231201515</a>">https://doi.org/10.1177/15330338231201515</ext-link>
R. Injac, M. Perse, N. Obermajer, V. Djordjevic-Milic, M. Prijatelj, A. Djordjevic, A. Cerar, and B. Strukelj, Potential hepatoprotective effects of fullerenol C<sub>60</sub>(OH)<sub>24</sub> in doxorubicin-induced hepatotoxicity in rats with mammary carcinomas, <em>Biomaterials</em> <bold>29</bold>(24–25) (2008) 3451–3460; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biomaterials.2008.04.048" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biomaterials.2008.04.048</a>">https://doi.org/10.1016/j.biomaterials.2008.04.048</ext-link>
R. Injac, M. Perse, M. Cerne, N. Potocnik, N. Radic, B. Govedarica, A. Djordjevic, A. Cerar and B. Strukelj, Protective effects of fullerenol C<sub>60</sub>(OH)<sub>24</sub> against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer, <em>Biomaterials</em> <bold>30</bold>(6) (2009) 1184–1196; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biomaterials.2008.10.060" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biomaterials.2008.10.060</a>">https://doi.org/10.1016/j.biomaterials.2008.10.060</ext-link>
R. Injac, M. Perse, M. Boskovic, V. Djordjevic-Milic, A. Djordjevic, A. Hvala, A. Cerar and B. Strukelj, Cardioprotective effects of fullerenol C<sub>60</sub>(OH)<sub>24</sub> on a single dose doxorubicin induced cardiotoxicity in rats with malignant neoplasm, <em>Technol. Cancer Res. Treat.</em> <bold>7</bold>(1) (2008) 15–26; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1177/153303460800700102" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/153303460800700102</a>">https://doi.org/10.1177/153303460800700102</ext-link>
Z. Zhang, Y. Zhang, S. Song, L. Yin, D. Sun and J. Gu, Recent advances in the bioanalytical methods of polyethylene glycols and PEGylated pharmaceuticals, <em>J. Sep. Sci.</em> <bold>43</bold>(9–10) (2020) 1978–1997; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/jssc.201901340" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/jssc.201901340</a>">https://doi.org/10.1002/jssc.201901340</ext-link>
Y. Xiao, Y. Wanxiang, H. Xiufen, C. Zuanguang, W. Shumei and Z. Haiyun, Sensitive analysis of doxorubicin and curcumin by micellar electromagnetic chromatography with a double wavelength excitation source, <em>Anal. Bioanal. Chem.</em> <bold>413</bold> (2021) 469–478; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00216-020-03017-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00216-020-03017-5</a>">https://doi.org/10.1007/s00216-020-03017-5</ext-link>
S. M. Ansar and T. Mudalige, Direct and simultaneous determination of intra-liposomal and external sulfate in liposomal doxorubicin formulations by capillary electrophoresis/inductively coupled plasma-tandem mass spectrometry (CE/ICP-MS/MS), <em>Int. J. Pharm.</em> <bold>561</bold> (2019) 283–288; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijpharm.2019.03.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijpharm.2019.03.003</a>">https://doi.org/10.1016/j.ijpharm.2019.03.003</ext-link>
M. Alizadeh, M. Hasanzadeh, J. Soleymani, J. V. Gharamaleki and A. Jouyban, Application of bioactive cyclic oligosaccharide on the detection of doxorubicin hydrochloride in unprocessed human plasma sample: A new platform towards efficient chemotherapy, <em>Microchem. J.</em> <bold>145</bold> (2019) 450–455; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.microc.2018.11.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.microc.2018.11.012</a>">https://doi.org/10.1016/j.microc.2018.11.012</ext-link>
J. A. Ho, N. Fan, A. F. Jou, L. Wu and T. Sun, Monitoring the subcellular localization of doxorubicin in CHO-K1 using MEKC-LIF: Liposomal carrier for enhanced drug delivery, <em>Talanta</em> <bold>99</bold> (2012) 683–688; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.talanta.2012.06.077" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.talanta.2012.06.077</a>">https://doi.org/10.1016/j.talanta.2012.06.077</ext-link>
N. Guichard, M. Ogereau, L. Falaschi, S. Rudaz, J. Schappler, P. Bonnabry and S. Fleury-Souverain, Determination of 16 antineoplastic drugs by capillary electrophoresis with UV detection: Applications in quality control, <em>Electrophoresis</em> <bold>39</bold>(20) (2018) 2512–2520; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/elps.201800007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/elps.201800007</a>">https://doi.org/10.1002/elps.201800007</ext-link>
J. Mbuna and T. Kaneta, Capillary electrophoresis with laser-induced fluorescence detection for application in intracellular investigation of anthracyclines and multidrug resistance proteins, <em>Anal. Sci.</em> <bold>31</bold> (2015) 1121–1128; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2116/analsci.31.1121" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2116/analsci.31.1121</a>">https://doi.org/10.2116/analsci.31.1121</ext-link>
Y. Shakalisava and F. Regan, CE separation approaches for combinations of anthracyclines and taxanes, <em>Electrophoresis</em> <bold>30</bold>(17) (2009) 3110–3113; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/elps.200900097" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/elps.200900097</a>">https://doi.org/10.1002/elps.200900097</ext-link>
N. Kishikawa and N. Kuroda, Analytical techniques for the determination of biologically active quinones in biological and environmental samples, <em>J. Pharm. Biomed. Anal.</em> <bold>87</bold> (2014) 261–270; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jpba.2013.05.035" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jpba.2013.05.035</a>">https://doi.org/10.1016/j.jpba.2013.05.035</ext-link>
G. Zagotto, B. Gatto, S. Moro, C. Sissi and M. Palumbo, Anthracyclines: recent developments in their separation and quantitation, <em>J. Chromatogr. B</em> <bold>764</bold>(1-2) (2001) 161–171; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/s0378-4347(01)00346-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/s0378-4347(01)00346-2</a>">https://doi.org/10.1016/s0378-4347(01)00346-2</ext-link>
K. E. Maudensa, C. P. Stove and W. E. Lambert, Quantitative liquid chromatographic analysis of anthracyclines in biological fluids, <em>J. Chromatogr. B</em> <bold>879</bold>(25) (2011) 2471–2486; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jchromb.2011.07.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jchromb.2011.07.010</a>">https://doi.org/10.1016/j.jchromb.2011.07.010</ext-link>
E. Koziolova, O. Janouskova, P. Chytil, M. Studenovsky, L. Kostka and T. Etrych, Nanotherapeutics with anthracyclines: methods of determination and quantification of anthracyclines in biological samples, <em>Physiol. Res.</em> <bold>64</bold> (2015) S1-S10; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.33549/physiolres.933140" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.33549/physiolres.933140</a>">https://doi.org/10.33549/physiolres.933140</ext-link>
P. M. Loadman and C. R. Calabrese, Separation methods for anthraquinone related anti-cancer drugs, <em>J. Chromatogr. B</em> <bold>764</bold>(1-2) (2001) 193–206; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/s0378-4347(01)00281-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/s0378-4347(01)00281-x</a>">https://doi.org/10.1016/s0378-4347(01)00281-x</ext-link>
L. Xiao-Pan, S. Wen-Qian, L. Tong-Xin, L. Bing-Bing and C. Chang-Po, Fullerenol as a water-soluble MALDI-MS matrix for rapid analysis of small molecules and efficient quantification of saccharin sodium in foods, <em>J. Chromatogr. B</em> <bold>1178</bold> (2021) Article ID 122819; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jchromb.2021.122819" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jchromb.2021.122819</a>">https://doi.org/10.1016/j.jchromb.2021.122819</ext-link>
H. Härmä, S. Laakso, S. Pihlasalo and P. Hänninen, A fluorometric fullerenol sensor for rapid detection of ionic and non-ionic surfactants, <em>Tenside Surfact. Det</em>. <bold>47</bold> (2010) 40–42; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3139/113.110052" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3139/113.110052</a>">https://doi.org/10.3139/113.110052</ext-link>
F. N. Tomilin, P. V. Artyushenko, I. A. Shchugoreva, A. V. Rogova, N. G. Vnukova, G. N. Churilov, N. P. Shestakov, O. N. Tchaikovskaya, S. G. Ovchinnikov and P. V. Avramov, Structure and vibrational spectroscopy of C<sub>82</sub> fullerenol valent isomers: An experimental and theoretical joint study, <em>Molecules</em> <bold>28</bold>(4) (2023) Article ID 1569 (11 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/molecules28041569" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/molecules28041569</a>">https://doi.org/10.3390/molecules28041569</ext-link>
<em>United States Pharmacopeia, 43th Ed., National Formulary, 38th Ed</em>., USP Convention, Rockville (MD), USA, 2020; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.usp.org;">http://www.usp.org;</ext-link> last access date October 2022
<em>ICH Q2(R2) Guideline on Validation of Analytical Procedures, Step 5 – Revision 1</em>, EMA/CHMP/ICH, Amsterdam, December 2023; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ema.europa.eu/en/documents/scientific-guideline/ichq2r2-guideline-validation-analytical-procedures-step-5-revision-1_en.pdf;">https://www.ema.europa.eu/en/documents/scientific-guideline/ichq2r2-guideline-validation-analytical-procedures-step-5-revision-1_en.pdf;</ext-link> last access date March 2024
R. Injac, N. Kocevar and S. Kreft, Precision of micellar electrokinetic capillary chromatography in the determination of seven antibiotics in pharmaceuticals and feedstuffs, <em>Anal. Chim. Acta</em> <bold>594</bold>(1) (2007) 119−127; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.aca.2007.05.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.aca.2007.05.003</a>">https://doi.org/10.1016/j.aca.2007.05.003</ext-link>
R. Injac, M. Boskovic, N. Kocevar and T. Vovk, Comparative study of robustness between micellar electrokinetic capillary chromatography and high-performance liquid chromatography using one-variable-at-a-time and a new multi-variable-at-a-time approach, <em>Anal. Chim. Acta</em> <bold>620</bold>(1-2) (2008) 150−161; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.aca.2008.05.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.aca.2008.05.007</a>">https://doi.org/10.1016/j.aca.2008.05.007</ext-link>
M. Kelley and B. DeSilva, Key elements of bioanalytical method validation for macromolecules, <em>AAPS J.</em> <bold>9</bold> (2007) Article ID 17 (E156-E163); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1208/aapsj0902017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1208/aapsj0902017</a>">https://doi.org/10.1208/aapsj0902017</ext-link>
Z. Wang, X. Chang, Z. Lu, M. Gu, Y. Zhao and X. Gao, A precision structural model for fullerenol, <em>Chem. Sci.</em> <bold>5</bold>(8) (2014) 2909-3340; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/c4sc00584h" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/c4sc00584h</a>">https://doi.org/10.1039/c4sc00584h</ext-link>
<em>ICH Guideline M10 on Bioanalytical Method Validation and Study Sample Analysis,</em> Step5, EMA/CHMP/ ICH, Amsterdam, July 2022; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-m10-bioanalytical-method-validation-step-5_en.pdf;">https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-m10-bioanalytical-method-validation-step-5_en.pdf;</ext-link> last access date March 2024
<em>Bioanalytical Method Validation</em> – <em>Guidance for Industry</em>, FDA/CDER/CVM, Silver Spring (MD) and Rockville (MD), USA, May 2018; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.fda.gov/media/70858/download;">https://www.fda.gov/media/70858/download;</ext-link> last access date March 2024
<em>Q2(R2) Validation of Analytical Procedures - Guidance for Industry</em>, FDA/CDER/CBER, Silver Spring (MD), USA, March 2024; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.fda.gov/media/161201/download;">https://www.fda.gov/media/161201/download;</ext-link> last access date April 2024
J. Methaneethorn, K. Tengcharoen, N. Leelakanok and R. AlEjielat, Population pharmacokinetics of doxorubicin: A systematic review, <em>Asia-Pac. J. Clin. Oncol</em>. <bold>19</bold>(1) (2023) 9–26; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/ajco.13776" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/ajco.13776</a>">https://doi.org/10.1111/ajco.13776</ext-link>