Have a personal or library account? Click to login
Analysis of doxorubicin and fullerenol in rat serum by micellar electrokinetic capillary chromatography Cover

Analysis of doxorubicin and fullerenol in rat serum by micellar electrokinetic capillary chromatography

Open Access
|Sep 2024

References

  1. R. Injac and B. Strukelj, Recent advances in protection against doxorubicin-induced toxicity, Technol. Cancer Res. Treat. 7 (2008) 497–516; https://doi.org/10.1177/153303460800700611
  2. C. Carvalho, R. X. Santos, S. Cardoso, S. Correia, P. J. Oliveira, M. S. Santos and P. I. Moreira, Doxorubicin: The good, the bad and the ugly effect, Curr. Med. Chem. 16(25) (2009) 3267–3285; https://doi.org/10.2174/092986709788803312
  3. R. Injac, Potential medical use of fullerenols after two decades of oncology research, Technol. Cancer Res. Treat. 22 (2023) 1–21; https://doi.org/10.1177/15330338231201515
  4. R. Injac, M. Perse, N. Obermajer, V. Djordjevic-Milic, M. Prijatelj, A. Djordjevic, A. Cerar, and B. Strukelj, Potential hepatoprotective effects of fullerenol C60(OH)24 in doxorubicin-induced hepatotoxicity in rats with mammary carcinomas, Biomaterials 29(24–25) (2008) 3451–3460; https://doi.org/10.1016/j.biomaterials.2008.04.048
  5. R. Injac, M. Perse, M. Cerne, N. Potocnik, N. Radic, B. Govedarica, A. Djordjevic, A. Cerar and B. Strukelj, Protective effects of fullerenol C60(OH)24 against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer, Biomaterials 30(6) (2009) 1184–1196; https://doi.org/10.1016/j.biomaterials.2008.10.060
  6. R. Injac, M. Perse, M. Boskovic, V. Djordjevic-Milic, A. Djordjevic, A. Hvala, A. Cerar and B. Strukelj, Cardioprotective effects of fullerenol C60(OH)24 on a single dose doxorubicin induced cardiotoxicity in rats with malignant neoplasm, Technol. Cancer Res. Treat. 7(1) (2008) 15–26; https://doi.org/10.1177/153303460800700102
  7. Z. Zhang, Y. Zhang, S. Song, L. Yin, D. Sun and J. Gu, Recent advances in the bioanalytical methods of polyethylene glycols and PEGylated pharmaceuticals, J. Sep. Sci. 43(9–10) (2020) 1978–1997; https://doi.org/10.1002/jssc.201901340
  8. Y. Xiao, Y. Wanxiang, H. Xiufen, C. Zuanguang, W. Shumei and Z. Haiyun, Sensitive analysis of doxorubicin and curcumin by micellar electromagnetic chromatography with a double wavelength excitation source, Anal. Bioanal. Chem. 413 (2021) 469–478; https://doi.org/10.1007/s00216-020-03017-5
  9. S. M. Ansar and T. Mudalige, Direct and simultaneous determination of intra-liposomal and external sulfate in liposomal doxorubicin formulations by capillary electrophoresis/inductively coupled plasma-tandem mass spectrometry (CE/ICP-MS/MS), Int. J. Pharm. 561 (2019) 283–288; https://doi.org/10.1016/j.ijpharm.2019.03.003
  10. M. Alizadeh, M. Hasanzadeh, J. Soleymani, J. V. Gharamaleki and A. Jouyban, Application of bioactive cyclic oligosaccharide on the detection of doxorubicin hydrochloride in unprocessed human plasma sample: A new platform towards efficient chemotherapy, Microchem. J. 145 (2019) 450–455; https://doi.org/10.1016/j.microc.2018.11.012
  11. J. A. Ho, N. Fan, A. F. Jou, L. Wu and T. Sun, Monitoring the subcellular localization of doxorubicin in CHO-K1 using MEKC-LIF: Liposomal carrier for enhanced drug delivery, Talanta 99 (2012) 683–688; https://doi.org/10.1016/j.talanta.2012.06.077
  12. N. Guichard, M. Ogereau, L. Falaschi, S. Rudaz, J. Schappler, P. Bonnabry and S. Fleury-Souverain, Determination of 16 antineoplastic drugs by capillary electrophoresis with UV detection: Applications in quality control, Electrophoresis 39(20) (2018) 2512–2520; https://doi.org/10.1002/elps.201800007
  13. J. Mbuna and T. Kaneta, Capillary electrophoresis with laser-induced fluorescence detection for application in intracellular investigation of anthracyclines and multidrug resistance proteins, Anal. Sci. 31 (2015) 1121–1128; https://doi.org/10.2116/analsci.31.1121
  14. Y. Shakalisava and F. Regan, CE separation approaches for combinations of anthracyclines and taxanes, Electrophoresis 30(17) (2009) 3110–3113; https://doi.org/10.1002/elps.200900097
  15. N. Kishikawa and N. Kuroda, Analytical techniques for the determination of biologically active quinones in biological and environmental samples, J. Pharm. Biomed. Anal. 87 (2014) 261–270; https://doi.org/10.1016/j.jpba.2013.05.035
  16. C. L. Flurer, Analysis of antibiotics by capillary electrophoresis, Electrophoresis 24(22-23) (2003) 4116–4127; https://doi.org/10.1002/elps.200305639
  17. G. Zagotto, B. Gatto, S. Moro, C. Sissi and M. Palumbo, Anthracyclines: recent developments in their separation and quantitation, J. Chromatogr. B 764(1-2) (2001) 161–171; https://doi.org/10.1016/s0378-4347(01)00346-2
  18. K. E. Maudensa, C. P. Stove and W. E. Lambert, Quantitative liquid chromatographic analysis of anthracyclines in biological fluids, J. Chromatogr. B 879(25) (2011) 2471–2486; https://doi.org/10.1016/j.jchromb.2011.07.010
  19. E. Koziolova, O. Janouskova, P. Chytil, M. Studenovsky, L. Kostka and T. Etrych, Nanotherapeutics with anthracyclines: methods of determination and quantification of anthracyclines in biological samples, Physiol. Res. 64 (2015) S1-S10; https://doi.org/10.33549/physiolres.933140
  20. P. M. Loadman and C. R. Calabrese, Separation methods for anthraquinone related anti-cancer drugs, J. Chromatogr. B 764(1-2) (2001) 193–206; https://doi.org/10.1016/s0378-4347(01)00281-x
  21. L. Xiao-Pan, S. Wen-Qian, L. Tong-Xin, L. Bing-Bing and C. Chang-Po, Fullerenol as a water-soluble MALDI-MS matrix for rapid analysis of small molecules and efficient quantification of saccharin sodium in foods, J. Chromatogr. B 1178 (2021) Article ID 122819; https://doi.org/10.1016/j.jchromb.2021.122819
  22. H. Härmä, S. Laakso, S. Pihlasalo and P. Hänninen, A fluorometric fullerenol sensor for rapid detection of ionic and non-ionic surfactants, Tenside Surfact. Det. 47 (2010) 40–42; https://doi.org/10.3139/113.110052
  23. F. N. Tomilin, P. V. Artyushenko, I. A. Shchugoreva, A. V. Rogova, N. G. Vnukova, G. N. Churilov, N. P. Shestakov, O. N. Tchaikovskaya, S. G. Ovchinnikov and P. V. Avramov, Structure and vibrational spectroscopy of C82 fullerenol valent isomers: An experimental and theoretical joint study, Molecules 28(4) (2023) Article ID 1569 (11 pages); https://doi.org/10.3390/molecules28041569
  24. United States Pharmacopeia, 43th Ed., National Formulary, 38th Ed., USP Convention, Rockville (MD), USA, 2020; http://www.usp.org; last access date October 2022
  25. ICH Q2(R2) Guideline on Validation of Analytical Procedures, Step 5 – Revision 1, EMA/CHMP/ICH, Amsterdam, December 2023; https://www.ema.europa.eu/en/documents/scientific-guideline/ichq2r2-guideline-validation-analytical-procedures-step-5-revision-1_en.pdf; last access date March 2024
  26. R. Injac, N. Kocevar and S. Kreft, Precision of micellar electrokinetic capillary chromatography in the determination of seven antibiotics in pharmaceuticals and feedstuffs, Anal. Chim. Acta 594(1) (2007) 119−127; https://doi.org/10.1016/j.aca.2007.05.003
  27. R. Injac, M. Boskovic, N. Kocevar and T. Vovk, Comparative study of robustness between micellar electrokinetic capillary chromatography and high-performance liquid chromatography using one-variable-at-a-time and a new multi-variable-at-a-time approach, Anal. Chim. Acta 620(1-2) (2008) 150−161; https://doi.org/10.1016/j.aca.2008.05.007
  28. M. Kelley and B. DeSilva, Key elements of bioanalytical method validation for macromolecules, AAPS J. 9 (2007) Article ID 17 (E156-E163); https://doi.org/10.1208/aapsj0902017
  29. Z. Wang, X. Chang, Z. Lu, M. Gu, Y. Zhao and X. Gao, A precision structural model for fullerenol, Chem. Sci. 5(8) (2014) 2909-3340; https://doi.org/10.1039/c4sc00584h
  30. ICH Guideline M10 on Bioanalytical Method Validation and Study Sample Analysis, Step5, EMA/CHMP/ ICH, Amsterdam, July 2022; https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-m10-bioanalytical-method-validation-step-5_en.pdf; last access date March 2024
  31. Bioanalytical Method ValidationGuidance for Industry, FDA/CDER/CVM, Silver Spring (MD) and Rockville (MD), USA, May 2018; https://www.fda.gov/media/70858/download; last access date March 2024
  32. Q2(R2) Validation of Analytical Procedures - Guidance for Industry, FDA/CDER/CBER, Silver Spring (MD), USA, March 2024; https://www.fda.gov/media/161201/download; last access date April 2024
  33. J. Methaneethorn, K. Tengcharoen, N. Leelakanok and R. AlEjielat, Population pharmacokinetics of doxorubicin: A systematic review, Asia-Pac. J. Clin. Oncol. 19(1) (2023) 9–26; https://doi.org/10.1111/ajco.13776
DOI: https://doi.org/10.2478/acph-2024-0026 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 495 - 509
Accepted on: Jun 16, 2024
Published on: Sep 14, 2024
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2024 Rade Injac, Miranda Sertić, Nina Kočevar Glavač, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.