Have a personal or library account? Click to login
Trifarotene alleviates skin photoaging injury by inhibition of JNK/c-Jun/MMPs Cover

Trifarotene alleviates skin photoaging injury by inhibition of JNK/c-Jun/MMPs

Open Access
|Sep 2024

References

  1. L. Rittie and G. J. Fisher, Natural and sun-induced aging of human skin, <em>Cold Spring Harb. Perspect. Med.</em> <bold>5</bold>(1) (2015) Article ID a015370 (15 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1101/cshperspect.a015370" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1101/cshperspect.a015370</a>">https://doi.org/10.1101/cshperspect.a015370</ext-link>
  2. W. Gao, Y.-S. Wang, E. Hwang, P. Lin, J. Bae, S. A. Seo, Z. Yan and T.-H. Yi, <em>Rubus idaeus</em> L. (red raspberry) blocks UVB-induced MMP production and promotes type I procollagen synthesis via inhibition of MAPK/AP-1, NF-kappabeta and stimulation of TGF-beta/Smad, Nrf2 in normal human dermal fibroblasts, <em>J. Photochem. Photobiol.</em> B. <bold>185</bold> (2018) 241–253; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jphotobiol.2018.06.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jphotobiol.2018.06.007</a>">https://doi.org/10.1016/j.jphotobiol.2018.06.007</ext-link>
  3. M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. Ma, L. A. Schneider, Z. Razi-Wolf, J. Schüller and K. Scharffetter-Kochaneck, Solar UV irradiation and dermal photoaging, <em>J. Photochem. Photobiol.</em> B. <bold>63</bold>(1–3) (2001) 41–51; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/s1011-1344(01)00201-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/s1011-1344(01)00201-9</a>">https://doi.org/10.1016/s1011-1344(01)00201-9</ext-link>
  4. Y. Gu, J. Han, C. Jiang and Y. Zhang, Biomarkers, oxidative stress and autophagy in skin aging, <em>Ageing Res. Rev.</em> <bold>59</bold> (2020) Article ID 101036 (12 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.arr.2020.101036" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.arr.2020.101036</a>">https://doi.org/10.1016/j.arr.2020.101036</ext-link>
  5. E. Fitsiou, T. Pulido, J. Campisi, F. Alimirah and M. Demaria, Cellular senescence and the senescence- associated secretory phenotype as drivers of skin photoaging, <em>J. Invest. Dermatol.</em> <bold>141</bold>(4S) (2021) 1119–1126; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jid.2020.09.031" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jid.2020.09.031</a>">https://doi.org/10.1016/j.jid.2020.09.031</ext-link>
  6. G. Petruk, R. Del Giudice, M. M. Rigano and D. M. Monti, Antioxidants from plants protect against skin photoaging, <em>Oxid. Med. Cell Longev.</em> <bold>2018</bold> (2018) Article ID 1454936 (11 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1155/2018/1454936" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2018/1454936</a>">https://doi.org/10.1155/2018/1454936</ext-link>
  7. J. H. Oh, F. Karadeniz, J. I. Lee, S. Y. Park, Y. Seo and C. S. Kong, Anticatabolic and anti-inflammatory effects of myricetin 3-<em>O</em>-beta-D-galactopyranoside in UVA-irradiated dermal cells via repression of MAPK/AP-1 and activation of TGFbeta/Smad, <em>Molecules</em> <bold>25</bold>(6) (2020) e1331 (18 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/molecules25061331" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/molecules25061331</a>">https://doi.org/10.3390/molecules25061331</ext-link>
  8. N. Xue, Y. Liu, J. Jin, M. Ji and X. Chen, Chlorogenic acid prevents UVA-induced skin photoaging through regulating collagen metabolism and apoptosis in human dermal fibroblasts, <em>Int. J. Mol. Sci.</em> <bold>23</bold>(13) (2022) e6941 (14 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms23136941" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms23136941</a>">https://doi.org/10.3390/ijms23136941</ext-link>
  9. P. Pittayapruek, J. Meephansan, O. Prapapan, M. Komine and M. Ohtsuki, Role of matrix metalloproteinases in photoaging and photocarcinogenesis, <em>Int. J. Mol. Sci.</em> <bold>17</bold>(6) (2016) e868 (20 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms17060868" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms17060868</a>">https://doi.org/10.3390/ijms17060868</ext-link>
  10. H.-S. Han, J.-S. Shin, D.-B. Myung, H. S. Ahn, S. H. Lee, H. J. Kim and K.-T. Lee, <em>Hydrangea serrata</em> (Thunb.) ser. extract attenuate UVB-induced photoaging through MAPK/AP-1 inactivation in human skin fibroblasts and hairless mice, <em>Nutrients</em> <bold>11</bold>(3) (2019) e533 (15 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/nu11030533" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/nu11030533</a>">https://doi.org/10.3390/nu11030533</ext-link>
  11. P. V. Kandan, A. Balupillai, G. Kanimozhi, H. A. Khan, A. S. Alhomida and N. R. Prasad, Opuntiol prevents photoaging of mouse skin via blocking inflammatory responses and collagen degradation, <em>Oxid. Med. Cell Longev.</em> <bold>2020</bold> (2020) Article ID 5275178 (20 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1155/2020/5275178" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2020/5275178</a>">https://doi.org/10.1155/2020/5275178</ext-link>
  12. T. M. Ansary, M. R. Hossain, K. Kamiya, M. Komine and M. Ohtsuki, Inflammatory molecules associated with ultraviolet radiation-mediated skin agin <em>Int. J. Mol Sci.</em> <bold>22</bold>(8) (2021) e3874 (14 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms22083974" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms22083974</a>">https://doi.org/10.3390/ijms22083974</ext-link>
  13. M. Burian and A. S. Yazdi, NLRP1 Is the key inflammasome in primary human keratinocytes, <em>J. Invest. Dermatol.</em> <bold>138</bold>(12) (2018) 2507–2510; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jid.2018.08.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jid.2018.08.004</a>">https://doi.org/10.1016/j.jid.2018.08.004</ext-link>
  14. L. Szymanski, R. Skopek, M. Palusinska, T. Schenk, S. Stengel, S. Lewicki, L. Kraj, P. Kamiński and A. Zelent, Retinoic acid and its derivatives in skin, <em>Cells</em> <bold>9</bold>(12) (2020) e2660 (14 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/cells9122660" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/cells9122660</a>">https://doi.org/10.3390/cells9122660</ext-link>
  15. R. R. Riahi, A. E. Bush and P. R. Cohen, Topical retinoids: Therapeutic mechanisms in the treatment of photodamaged skin, <em>Am. J. Clin. Dermatol.</em> <bold>17</bold>(3) (2016) 265–276; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s40257-016-0185-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s40257-016-0185-5</a>">https://doi.org/10.1007/s40257-016-0185-5</ext-link>
  16. A. J. Stratigos and A. D. Katsambas, The role of topical retinoids in the treatment of photoaging, <em>Drugs</em> <bold>65</bold>(8) (2005) 1061–1072; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2165/00003495-200565080-00003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2165/00003495-200565080-00003</a>">https://doi.org/10.2165/00003495-200565080-00003</ext-link>
  17. A. Ascenso, H. Ribeiro, H. C. Marques, H. Oliveira, C. Santos and S. Simoes, Is tretinoin still a key agent for photoaging management?, <em>Mini Rev. Med. Chem.</em> <bold>14</bold>(8) (2014) 629–641; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2174/1389557514666140820102735" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2174/1389557514666140820102735</a>">https://doi.org/10.2174/1389557514666140820102735</ext-link>
  18. D. Milosheska and R. Roskar, Use of retinoids in topical antiaging treatments: A focused review of clinical evidence for conventional and nanoformulations, <em>Adv. Ther.</em> <bold>39</bold>(12) (2022) 5351–5375; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s12325-022-02319-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12325-022-02319-7</a>">https://doi.org/10.1007/s12325-022-02319-7</ext-link>
  19. N. Wagner, K. Benkali, A. A. Sáenz, M. Poncet and M. Graeber, Clinical pharmacology and safety of trifarotene, a first-in-class RARγ-selective topical retinoid, <em>J. Clin. Pharmacol.</em> <bold>60</bold>(5) (2020) 660–668; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/jcph.1566" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/jcph.1566</a>">https://doi.org/10.1002/jcph.1566</ext-link>.
  20. Y. Matsumura and H. N. Ananthaswamy, Toxic effects of ultraviolet radiation on the skin, <em>Toxicol. Appl. Pharmacol.</em> <bold>195</bold>(3) (2004) 298–308; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.taap.2003.08.019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.taap.2003.08.019</a>">https://doi.org/10.1016/j.taap.2003.08.019</ext-link>
  21. M. Sawane and K. Kajiya, Ultraviolet light-induced changes of lymphatic and blood vasculature in skin and their molecular mechanisms, <em>Exp. Dermatol.</em> <bold>21</bold>(Suppl 1) (2012) 22–25; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1600-0625.2012.01498.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1600-0625.2012.01498.x</a>">https://doi.org/10.1111/j.1600-0625.2012.01498.x</ext-link>
  22. C. E. Lan, Y. T. Hung, A. H. Fang and W. Ching-Shuang, Effects of irradiance on UVA-induced skin aging, <em>J. Dermatol. Sci.</em> <bold>94</bold>(1) (2019) 220–228; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jdermsci.2019.03.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jdermsci.2019.03.005</a>">https://doi.org/10.1016/j.jdermsci.2019.03.005</ext-link>
  23. J. Y. Lin and D. E. Fisher, Melanocyte biology and skin pigmentation, <em>Nature</em> <bold>445</bold>(7130) (2007) 843–850; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/nature05660" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nature05660</a>">https://doi.org/10.1038/nature05660</ext-link>
  24. S. H. Hu, S. Jiang, F. Miao and T. C. Lei, sPmel17 Secreted by ultraviolet B-exposed melanocytes alters the intercellular adhesion of keratinocytes, <em>Oxid. Med. Cell Longev.</em> <bold>2022</bold> (2022) Article ID 1856830 (12 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1155/2022/1856830" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2022/1856830</a>">https://doi.org/10.1155/2022/1856830</ext-link>
  25. X. Chen, C. Yang and G. Jiang, Research progress on skin photoaging and oxidative stress, <em>Postepy Dermatol. Alergol.</em> <bold>38</bold>(6) (2021) 931–936; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5114/ada.2021.112275" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5114/ada.2021.112275</a>">https://doi.org/10.5114/ada.2021.112275</ext-link>
  26. M. Wang, P. Charareh, X. Lei and J. L. Zhong, Autophagy: Multiple mechanisms to protect skin from ultraviolet radiation-driven photoaging, <em>Oxid. Med. Cell Longev.</em> <bold>2019</bold> ( 2019) A rticle I D 8135985 (14 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1155/2019/8135985" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2019/8135985</a>">https://doi.org/10.1155/2019/8135985</ext-link>
  27. S. Kawashima, T. Funakoshi, Y. Sato, N. Saito, H. Ohsawa, K. Kurita, K. Nagata, M. Yoshida and A. Ishigami, Protective effect of pre- and post-vitamin C treatments on UVB-irradiation-induced skin damage, <em>Sci. Rep.</em> <bold>8</bold>(1) (2018) Article ID 16199 (12 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41598-018-34530-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-018-34530-4</a>">https://doi.org/10.1038/s41598-018-34530-4</ext-link>
  28. K. Vats, O. Kruglov, A. Mizes, S. N. Samovich, A. A. Amoscato, V. A. Tyurin, Y. Y. Tyurina, V. E. Kagan and Y. L. Bunimovich, Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure, <em>Redox Biol.</em> <bold>47</bold> (2021) Article ID 102143 (12 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.redox.2021.102143" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.redox.2021.102143</a>">https://doi.org/10.1016/j.redox.2021.102143</ext-link>
  29. T. Xiao, Y. Chen, C. Song, S. Xu, S. Lin, M. Li, X. Chen and H. Gu, Possible treatment for UVB-induced skin injury: Anti-inflammatory and cytoprotective role of metformin in UVB-irradiated keratinocytes, <em>J. Dermatol Sci.</em> <bold>102</bold>(1) (2021) 25–35; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jdermsci.2021.02.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jdermsci.2021.02.002</a>">https://doi.org/10.1016/j.jdermsci.2021.02.002</ext-link>
  30. M. Hatakeyama, A. Fukunaga, K. Washio, K. Taguchi, Y. Oda, K. Ogura and C. Nishigori, Antiinflammatory role of Langerhans cells and apoptotic keratinocytes in ultraviolet-B-induced cutaneous inflammation, <em>J. Immunol.</em> <bold>199</bold>(8) (2017) 2937–2947; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.4049/jimmunol.1601681" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4049/jimmunol.1601681</a>">https://doi.org/10.4049/jimmunol.1601681</ext-link>
  31. S. Hu, J. Huang, S. Pei, Y. Ouyang, Y. Ding, L. Jiang, J. Lu, L. Kang, L. Huang, H. Xiang, R. Xiao, Q. Zeng and J. Chen, Ganoderma lucidum polysaccharide inhibits UVB-induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways, <em>J. Cell Physiol.</em> <bold>234</bold>(5) (2019) 7330–7740; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/jcp.27492" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/jcp.27492</a>">https://doi.org/10.1002/jcp.27492</ext-link>
  32. S. A. D’Mello, G. J. Finlay, B. C. Baguley and M. E. Askarian-Amiri, Signaling pathways in melanogenesis, <em>Int. J. Mol. Sci.</em> <bold>17</bold>(7) (2016) e1144 (18 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms17071144" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms17071144</a>">https://doi.org/10.3390/ijms17071144</ext-link>
  33. Q. M. Hu, W. J. Yi, M. Y. Su, S. Jiang, S. Z. Xu and T. C. Lei, Induction of retinal-dependent calcium influx in human melanocytes by UVA or UVB radiation contributes to the stimulation of melanosome transfer, <em>Cell Prolif.</em> <bold>50</bold>(6) (2017) e12372 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/cpr.12372" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/cpr.12372</a>">https://doi.org/10.1111/cpr.12372</ext-link>
  34. Y. J. Liu, J. L. Lyu, Y. H. Kuo, C. Y. Chiu, K. C. Wen and H. M. Chiang, The anti-melanogenesis effect of 3,4-dihydroxybenzalacetone through downregulation of melanosome maturation and transportation in B16F10 and human epidermal melanocytes, <em>Int. J. Mol. Sci.</em> <bold>22</bold>(6) (2021) e2823 (15 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms22062823" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms22062823</a>">https://doi.org/10.3390/ijms22062823</ext-link>
  35. M. D. Seo, T. J. Kang, C. H. Lee, A. Y. Lee and M. Noh, HaCaT keratinocytes and primary epidermal keratinocytes have different transcriptional profiles of cornified envelope-associated genes to t helper cell cytokines, <em>BioMol. Ther</em>. (Seoul) <bold>20</bold>(2) (2012) 171–176; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.4062/biomolther.2012.20.2.171" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4062/biomolther.2012.20.2.171</a>">https://doi.org/10.4062/biomolther.2012.20.2.171</ext-link>
  36. C. Kim, H. C. Ryu and J. H. Kim, Low-dose UVB irradiation stimulates matrix metalloproteinase- 1 expression via a BLT2-linked pathway in HaCaT cells, <em>Exp. Mol. Med.</em> <bold>42</bold>(12) (2010) 833–841; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3858/emm.2010.42.12.086" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3858/emm.2010.42.12.086</a>">https://doi.org/10.3858/emm.2010.42.12.086</ext-link>
  37. M. Jevtic, A. Lowa, A. Novackova, A. Kovacik, S. Kaessmeyer, G. Erdmann, K. Vavrova and S. Hedtrich, Impact of intercellular crosstalk between epidermal keratinocytes and dermal fibroblasts on skin homeostasis, <em>Biochim. Biophys. Acta Mol. Cell Res.</em> <bold>1867</bold>(8) (2020) Article ID 118722 (10 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.bbamcr.2020.118722" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bbamcr.2020.118722</a>">https://doi.org/10.1016/j.bbamcr.2020.118722</ext-link>
  38. J. H. Oh, Y. H. Joo, F. Karadeniz, J. Ko and C. S. Kong, Syringaresinol inhibits UVA-induced MMP- 1 expression by suppression of MAPK/AP-1 signaling in HaCaT keratinocytes and human dermal fibroblasts, <em>Int. J. Mol. Sci.</em> <bold>21</bold>(11) (2020) e3981 (12 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms21113981" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms21113981</a>">https://doi.org/10.3390/ijms21113981</ext-link>
  39. N. Zhang, Y. Zhao, Y. Shi, R. Chen, X. Fu and Y. Zhao, Polypeptides extracted from Eupolyphaga sinensis walker via enzymic digestion alleviate UV radiation-induced skin photoaging, <em>Biomed. Pharmacother.</em> <bold>112</bold> (2019) Article ID 108636 (7 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biopha.2019.108636" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biopha.2019.108636</a>">https://doi.org/10.1016/j.biopha.2019.108636</ext-link>
  40. Y.-C. Hseu, Y. V. Gowrisankar, L.-W. Wang, Y.-Z. Zhang, X.-Z. Chen, P.-J. Huang, H.-R. Yen. H.-L. Yang, The in vitro and in vivo depigmenting activity of pterostilbene through induction of autophagy in melanocytes and inhibition of UVA-irradiated alpha-MSH in keratinocytes via Nrf2- mediated antioxidant pathways, <em>Redox Biol.</em> <bold>44</bold> (2021) Article ID 102007 (17 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.redox.2021.102007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.redox.2021.102007</a>">https://doi.org/10.1016/j.redox.2021.102007</ext-link>
  41. Z. D. Draelos, Low irritation potential of tazarotene 0.045% lotion: Head-to-head comparison to adapalene 0.3% gel and trifarotene 0.005% cream in two studies, <em>J. Dermatol. Treatment</em> <bold>34</bold>(1) (2023) Article ID 2166346 (7 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/09546634.2023.2166346" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/09546634.2023.2166346</a>">https://doi.org/10.1080/09546634.2023.2166346</ext-link>
DOI: https://doi.org/10.2478/acph-2024-0025 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 461 - 478
Accepted on: Jun 7, 2024
Published on: Sep 14, 2024
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2024 Xuan Fei, Lele Zixin Yang, Jingjing Zhang, Xiang Li, Mengtian Pan, Guangchen Xu, Cuixia Zhang, Fei Liu, Weirong Fang, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.