Have a personal or library account? Click to login
Enhanced biomedical potential of polyurethane/hydroxyapatite composites through chemical modification: A comprehensive study on structure, morphology, and cytocompatibility for tissue regeneration
M. Sultan, Z. Jamal, F. Jubin, A. Farooq, I. Bibi, M. Uroos, H. Chaudhry, S. A. Alissa and M. Iqbal, Green synthesis of biodegradable polyurethane and castor oil-based composite for benign transformation of methylene blue, <em>Arab. J. Chem.</em> <bold>14</bold>(12) (2021) 103417–103427; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.arab-jc.2021.103417" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.arab-jc.2021.103417</a>">https://doi.org/10.1016/j.arab-jc.2021.103417</ext-link>
A. A. Yusrizal, T. K. Abdullah, E. S. Ali, S. Ahmad and S. A. Zubir, Enhanced thermal and tensile behaviour of MWCNT reinforced palm oil polyol based shape memory polyurethane, <em>Arab. J. Chem</em>. <bold>15</bold>(7) (2022) 103860–103875; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.arabjc.2022.103860" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.arabjc.2022.103860</a>">https://doi.org/10.1016/j.arabjc.2022.103860</ext-link>
W. Yang, S. K. Both and Y. Zuo, Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering, <em>J. Biomed. Mater.</em> Res. <em>Part A</em>. <bold>103</bold>(7) (2015) 2251–2259; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/jbm.a.35365" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/jbm.a.35365</a>">https://doi.org/10.1002/jbm.a.35365</ext-link>
N. Amiryaghoubi, N. N. Pesyan, M. Fathi and Y. Omidi, The design of polycaprolactone-polyurethane/chitosan composite for bone tissue engineering, <em>Coll. Surf. A: Phy. Eng. Asp.</em> <bold>634</bold> (2022) Article ID 127895 (15 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.colsurfa.2021.127895" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.colsurfa.2021.127895</a>">https://doi.org/10.1016/j.colsurfa.2021.127895</ext-link>
S. K. Ghorai, T. Roy, S. Maji, P. G. Ray, K. Sarkar, A. Dutta, A. De, S. Bandyopadhyay, S. Dhara and S. Chattopadhyay, A judicious approach of exploiting polyurethane-urea based electrospun nano-fibrous scaffold for stimulated bone tissue regeneration through functionally nobbled nanohydroxyapatite, <em>Chem. Eng. J.</em> <bold>10</bold>(2) (2022) 490–498; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cej.2021.132179" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cej.2021.132179</a>">https://doi.org/10.1016/j.cej.2021.132179</ext-link>
R. Xie, J. Hu, F. Ng, L. Tan, T. Qin, M. Zhang and X. Guo, High performance shape memory foams with isocyanate-modified hydroxyapatite nanoparticles for minimally invasive bone regeneration, <em>Ceram. Int.</em> <bold>43</bold>(6) (2017) 4794–4802; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ceramint.2016.11.216" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ceramint.2016.11.216</a>">https://doi.org/10.1016/j.ceramint.2016.11.216</ext-link>
M. Bos, G. W. VAN DAM, T. Jongsma, P. Bruin and A. J. Pennings, The effect of filler surface modification on the mechanical properties of hydroxyapatite-reinforced polyurethane composites, <em>Comp. Inter</em>. <bold>3</bold>(2) (1995) 169–176; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1163/156855495X00057" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1163/156855495X00057</a>">https://doi.org/10.1163/156855495X00057</ext-link>
K. Adamska, M. Szubert and A. Voelkel, Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting, <em>Chem. Pap</em>. <bold>67</bold>(4) (2013) 429–436; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/s11696-012-0297-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/s11696-012-0297-1</a>">https://doi.org/10.2478/s11696-012-0297-1</ext-link>
S. Parveen, M. Sultan and M. Sajid, Synthesis and characterization of biodegradable and cytocompatible polyurethane-bovine-derived hydroxyapatite biomaterials, <em>Polym. Bull</em>. <bold>79</bold>(4) (2022) 2487–2500; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00289-021-03622-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00289-021-03622-z</a>">https://doi.org/10.1007/s00289-021-03622-z</ext-link>
M. Ali, M. I. Mohamed, A. T. Taher, S. H. Mahmoud, A. Mostafa, F. F. Sherbiny, N. G. Kandile and H. M. Mohamed, New potential anti-SARS-CoV-2 and anti-cancer therapies of chitosan derivatives and its nanoparticles: Preparation and characterization, <em>Arab. J. Chem.</em> <bold>16</bold>(5) (2023) 104676–104680; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.arabjc.2023.104676" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.arabjc.2023.104676</a>">https://doi.org/10.1016/j.arabjc.2023.104676</ext-link>
K. M. R. Nuss and B. V. Rechenberg, Biocompatibility issues with modern implants in bone – A review clinical orthopedics, <em>Open Orthoped. J.</em> <bold>25</bold>(2) (2008) 66–78; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.10.2174/1874325000802010066">https://doi.10.2174/1874325000802010066</ext-link>
M. S. Zafar, M. A. Fareed, S. Riaz, M. Latif, S. R. Habib and Z. Khurshid, Customized therapeutic surface coatings for dental implants, <em>Coatings</em> <bold>10</bold>(6) (2022) 568–605; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/coatings10060568" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/coatings10060568</a>">https://doi.org/10.3390/coatings10060568</ext-link>
M. Bustamante-Torres, D. Romero-Fierro, B. Arcentales-Vera, S. Pardo and E. Bucio, Interaction between filler and polymeric matrix in nanocomposites: Magnetic approach and applications, <em>Polymers</em> <bold>13</bold>(17) (2021) 2998–3019; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/polym13172998" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/polym13172998</a>">https://doi.org/10.3390/polym13172998</ext-link>
M. Z. Rong, M. Q. Zhang and W. H. Ruan, Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: A review, <em>Mat. Sci. Technol</em>. <bold>22</bold>(7) (2006) 787–796; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1179/174328406X101247" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1179/174328406X101247</a>">https://doi.org/10.1179/174328406X101247</ext-link>
M. Öner, S. Kirboga, E. S. Abamor, R. Karadaş and Z. Kral, The influence of silicon-doped hydroxyapatite nanoparticles on the properties of novel bionanocomposites based on poly (3-hydroxybu-tyrate-co-3-hydroxyvalerate), <em>Exp. Polym. Lett.</em> <bold>17</bold>(4) (2023) 417–433; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3144/express-polymlett.2023.30" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3144/express-polymlett.2023.30</a>">https://doi.org/10.3144/express-polymlett.2023.30</ext-link>
X. Zhang, Q. Li, L. Li, P. Zhang, Z. Wang and F. Chen, Fabrication of hydroxyapatite/stearic acid composite coating and corrosion behavior of coated magnesium alloy, <em>Mat. Lett</em>. <bold>88</bold> (2012) Article ID 137426727 (3 pages) <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.matlet.2012.08.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.matlet.2012.08.011</a>">https://doi.org/10.1016/j.matlet.2012.08.011</ext-link>
T. Ma, J. Liao, Y. Zhang, J. Feng, Y. Yang, H. Li, W. Guo and J. Chen, Study on modification of hydroxyapatite/magnesium phosphate bone cement by <em>N</em>-acetyl-L-cysteine, <em>Ceram. Inter.</em> <bold>49</bold>(11) (2023) 16545–16553; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ceramint.2023.02.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ceramint.2023.02.012</a>">https://doi.org/10.1016/j.ceramint.2023.02.012</ext-link>
J. Wei, A. Liu, L. Chen, P. Zhang, X. Chen and X. Jing, The surface modification of hydroxyapatite nanoparticles by the ring opening polymerization of γ-benzyl-L-glutamate <em>N</em>-carboxyanhydride, <em>Macromol. Biosci</em>. <bold>9</bold>(7) (2009) 631–638; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/mabi.200800324" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/mabi.200800324</a>">https://doi.org/10.1002/mabi.200800324</ext-link>
M. Sultan, H. N. Bhatti, M. Zuber and M. Barikani, Synthesis and characterization of waterborne polyurethane acrylate copolymers, <em>Kor. J. Chem. Eng.</em> <bold>30</bold>(2) (2013) 488–493; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.mtcomm.2021.102228" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.mtcomm.2021.102228</a>">https://doi.org/10.1016/j.mtcomm.2021.102228</ext-link>
L. P. Gabriel, M. E. M. Dos Santos, A. L. Jardini, G. N. Bastos, C. G. Dias, T. J. Webster and R. Maciel Filho, Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites, <em>Nanomed. Nanotech. Biol. Med</em>. <bold>13</bold>(1) (2017) 201–208. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.nano.2016.09.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.nano.2016.09.008</a>">https://doi.org/10.1016/j.nano.2016.09.008</ext-link>
A. Chandrasekar, S. Sagadevan and A. Dakshnamoorthy, Synthesis and characterization of nanohydroxyapatite (n-HAP) using the wet chemical technique, <em>Int. J. Phys. Sci</em>. <bold>8</bold>(32) (2013) 1639–1645; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.academicjournals.org/IJPS">http://www.academicjournals.org/IJPS</ext-link>
J. Reyes-Gasga, E. L. Martínez-Piñeiro, G. Rodríguez-Álvarez, G. E. Tiznado-Orozco, R. García-García and E. F. Brès, XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite, <em>Mat. Sci. Eng</em>. <bold>33</bold>(8) (2013) 4568–4574; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.msec.2013.07.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.msec.2013.07.014</a>">https://doi.org/10.1016/j.msec.2013.07.014</ext-link>
F. C. Wang, M. Feve, T. M. Lam and J. P. Pascault, FTIR analysis of hydrogen bonding in amorphous linear aromatic polyurethanes. II. Influence of styrene solvent, <em>J. Polym. Sci.: Phy. Part B</em> <bold>32</bold>(8) (1994) 1315–1320; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/polb.1994.090320802" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/polb.1994.090320802</a>">https://doi.org/10.1002/polb.1994.090320802</ext-link>