References
- F. Bray, M. Laversanne, H. Sung, J. Ferlay, R. L. Siegel, I. Soerjomataram and A. Jemal, Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. (2024) 1–35; https://doi.org/10.3322/caac.21834
- A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward and D. Forman, Global cancer statistics, CA Cancer J. Clin. 61(2) (2011) 69–90; https://doi.org/10.3322/caac.20107
- W. Lou, Y. Chen, H. Ma, G. Liang and B. Liu, Antioxidant and alpha-amylase inhibitory activities of tannic acid, J. Food Sci. Technol. 55(9) (2018) 3640–3646; https://doi.org/10.1007/s13197-018-3292-x
- S. Karakurt and O. Adali, Tannic acid inhibits proliferation, migration, invasion of prostate cancer and modulates drug metabolizing and antioxidant enzymes, Anticancer Agents Med. Chem. 16(6) (2016) 781–789; https://doi.org/10.2174/1871520616666151111115809
- S. Karakurt, S. Kandir and C. Gokcek-Sarac, Upregulation of p53 by tannic acid treatment suppresses the proliferation of human colorectal carcinoma, Acta Pharm. 71(4) (2021) 587–602; https://doi.org/10.2478/acph-2021-0036
- N. Sp, D. Y. Kang, D. H. Kim, J.-S. Yoo, E. S. Jo, A. Rugamba, K.-J- Jang and Y. M. Yang, Tannic acid inhibits non-small cell lung cancer (NSCLC) stemness by inducing G(0)/G(1) cell cycle arrest and intrinsic apoptosis, Anticancer Res. 40(6) (2020) 3209–3220; https://doi.org/10.21873/anticanres.14302
- B. W. Booth, B. D. Inskeep, H. Shah, J. P. Park, E. J. Hay and K. J. Burg, Tannic acid preferentially targets estrogen receptor-positive breast cancer, Int. J. Breast Cancer 2013 (2013) Article ID 369609 (9 pages); https://doi.org/10.1155/2013/369609
- P. Darvin, Y. H. Joung, D. Y. Kang, N. Sp, H. J. Byun, T. S. Hwang, H. Sasidharakurup, C. H. Lee, K. H. Cho, K. D. Park, H. K. Lee and Y. M. Yang, Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells, J. Cell Mol. Med. 21(4) (2017) 720–734; https://doi.org/10.1111/jcmm.13015
- S. Nam, D. M. Smith and Q. P. Dou, Tannic acid potently inhibits tumor cell proteasome activity, increases p27 and Bax expression, and induces G1 arrest and apoptosis, Cancer Epidemiol. Biomarkers Prev. 10(10) (2001) 1083–1088.
- D. Pattarayan, A. Sivanantham, V. Krishnaswami, L. Loganathan, R. Palanichamy, S. Natesan, K. Muthusamy and S. Rajasekaran, Tannic acid attenuates TGF-β1-induced epithelial-to-mesenchymal transition by effectively intervening TGF-β signaling in lung epithelial cells, J. Cell Physiol. 233(3) (2018) 2513–2525; https://doi.org/10.1002/jcp.26127
- L. G. Jordan and B. W. Booth, HER2+ breast cancer cells undergo apoptosis upon exposure to tannic acid released from remodeled cross-linked collagen type I, J. Biomed. Mater. Res. A. 106(1) (2018) 26–32; https://doi.org/10.1002/jbm.a.36205
- N. Geng, X. Zheng, M. Wu, L. Yang, X. Li and J. Chen, Tannic acid synergistically enhances the anticancer efficacy of cisplatin on liver cancer cells through mitochondria-mediated apoptosis, Oncol. Rep. 42(5) (2019) 2108–2116; https://doi.org/10.3892/or.2019.7281
- J. Gupta, W. K. Abdulsahib, A. Turki Jalil, D. S. Kareem, Z. Aminov, F. Alsaikhan, A. A. Ramírez--Coronel, P. Ramaiah and B. Farhood, Prostate cancer and microRNAs: New insights into apoptosis, Pathol. Res. Pract. 245 (2023) Article ID 154436; https://doi.org/10.1016/j.prp.2023.154436
- Y. Sun, W. Guo, Y. Guo, Z. Lin, D. Wang, Q. Guo and Y. Zhou, Apoptosis induction in human prostate cancer cells related to the fatty acid metabolism by wogonin-mediated regulation of the AKT-SREBP1-FASN signaling network, Food Chem. Toxicol. 169 (2022) Article ID 113450; https://doi.org/10.1016/j.fct.2022.113450
- Z. Amirghofran, A. Monabati and N. Gholijani, Apoptosis in prostate cancer: bax correlation with stage, Int. J. Urol. 12(4) (2005) 340–345; https://doi.org/10.1111/j.1442-2042.2005.01051.x
- A. Frenzel, F. Grespi, W. Chmelewskij and A. Villunger, Bcl2 family proteins in carcinogenesis and the treatment of cancer, Apoptosis 14(4) (2009) 584–596; https://doi.org/10.1007/s10495-008-0300-z
- S. Khan, J. Simpson, J. C. Lynch, D. Turay, S. Mirshahidi, A. Gonda, T. W. Sanchez, C. A. Casiano and N. R. Wall, Racial differences in the expression of inhibitors of apoptosis (IAP) proteins in extracellular vesicles (EV) from prostate cancer patients, PLoS One 12(10) (2017) Article ID e0183122 (13 pages); https://doi.org/10.1371/journal.pone.0183122
- D. C. Rio, M. Jr. Ares, G. J. Hannon and T. W. Nilsen, Purification of RNA using TRIzol (TRI reagent), Cold Spring Harb. Protoc. 2010(6) (2010); https://doi.org/10.1101/pdb.prot5439
- K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods 25(4) (2001) 402–408; https://doi.org/10.1006/meth.2001.1262
- G. Cantarella, G. Di Benedetto, M. Scollo, I. Paterniti, S. Cuzzocrea, P. Bosco, G. Nocentini, C. Riccardi and R. Bernardini, Neutralization of tumor necrosis factor-related apoptosis-inducing ligand reduces spinal cord injury damage in mice, Neuropsychopharmacology 35(6) (2010) 1302–1314; https://doi.org/10.1038/npp.2009.234
- S. Tai, Y. Sun, J. M. Squires, H. Zhang, W. K. Oh, C.-Z. Liang and J. Huang, PC3 is a cell line characteristic of prostatic small cell carcinoma, Prostate 71(15) (2011) 1668–1679; https://doi.org/10.1002/pros.21383
- X. Wen, Z. Q. Lin, B. Liu and Y. Q. Wei, Caspase-mediated programmed cell death pathways as potential therapeutic targets in cancer, Cell Prolif. 45(3) (2012) 217–224; https://doi.org/10.1111/j.1365-2184.2012.00814.x
- A. Mohr, L. Deedigan, S. Jencz, Y. Mehrabadi, L. Houlden, S.-M. Albarenque and R. M. Zwacka, Caspase-10: a molecular switch from cell-autonomous apoptosis to communal cell death in response to chemotherapeutic drug treatment, Cell Death Differ. 25(2) (2018) 340–352; https://doi.org/10.1038/cdd.2017.164
- S. Horn, M. A. Hughes, R. Schilling, C. Sticht, T. Tenev, M. Ploesser, P. Meier, M. R. Sprick, M. MacFarlane and M. Leverkus, Caspase-10 negatively regulates caspase-8-mediated cell death, switching the response to CD95L in Favor of NF-kappaB activation and cell survival, Cell Rep. 19(4) (2017) 785–797; https://doi.org/10.1016/j.celrep.2017.04.010
- H. Yu, L. Lin, Z. Zhang, H. Zhang and H. Hu, Targeting NF-kappaB pathway for the therapy of diseases: mechanism and clinical study, Signal Transduct. Target Ther. 5(1) (2020) Article ID 209 (23 pages); https://doi.org/10.1038/s41392-020-00312-6
- P. K. B. Nagesh, P. Chowdhury, E. Hatami, S. Kumari, V. Kumar Kashyap, M. K. Tripathi, S. Wagh, B. Meibohm, S. C. Chauhan, M. Jaggi and M. M. Yallapu, Cross-linked polyphenol-based drug nano-self-assemblies engineered to blockade prostate cancer senescence, ACS Appl. Mater. Interfaces 11(42) (2019) 38537–38554; https://doi.org/10.1021/acsami.9b14738
- S. M. Srinivasula, M. Ahmad, T. Fernandes-Alnemri and E. S. Alnemri, Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization, Mol. Cell 1(7) (1998) 949–957; https://doi.org/10.1016/S1097-2765(00)80095-7
- E. Bossy-Wetzel, D. D. Newmeyer and D. R. Green, Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization, EMBO J. 17(1) (1998) 37–49; https://doi.org/10.1093/emboj/17.1.37
- Z. T. Schug, F. Gonzalvez, R. H. Houtkooper, F. M. Vaz and E. Gottlieb, BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane, Cell Death Differ. 18(3) (2011) 538–548; https://doi.org/10.1038/cdd.2010.135
- R. V. Rao, E. Hermel, S. Castro-Obregon, G. del Rio, L. M. Ellerby, H. M. Ellerby and D. E. Bredesen, Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation, J. Biol. Chem. 276(36) (2001) 33869–33874; https://doi.org/10.1074/jbc.M102225200
- N. Morishima, K. Nakanishi, H. Takenouchi, T. Shibata and Y. Yasuhiko, An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12, J. Biol. Chem. 277(37) (2002) 34287–34294; https://doi.org/10.1074/jbc.M204973200
- M. Los, M. Mozoluk, D. Ferrari, A. Stepczynska, C. Stroh, A. Renz, Z. Herceg, Z. Q. Wang and K. Schulze-Osthoff, Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling, Mol. Biol. Cell 13(3) (2002) 978–988; https://doi.org/10.1091/mbc.01-05-0272
- Z. Herceg and Z. Q. Wang, Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis, Mol. Cell Biol. 19(7) (1999) 5124–5133; https://doi.org/10.1128/MCB.19.7.5124