Have a personal or library account? Click to login
Tannic acid elicits differential gene regulation in prostate cancer apoptosis Cover

Tannic acid elicits differential gene regulation in prostate cancer apoptosis

Open Access
|Sep 2024

References

  1. F. Bray, M. Laversanne, H. Sung, J. Ferlay, R. L. Siegel, I. Soerjomataram and A. Jemal, Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, <em>CA Cancer J. Clin</em>. (2024) 1–35; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3322/caac.21834" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3322/caac.21834</a>">https://doi.org/10.3322/caac.21834</ext-link>
  2. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward and D. Forman, Global cancer statistics, <em>CA Cancer J. Clin</em>. <bold>61</bold>(2) (2011) 69–90; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3322/caac.20107" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3322/caac.20107</a>">https://doi.org/10.3322/caac.20107</ext-link>
  3. W. Lou, Y. Chen, H. Ma, G. Liang and B. Liu, Antioxidant and alpha-amylase inhibitory activities of tannic acid, <em>J. Food Sci. Technol</em>. <bold>55</bold>(9) (2018) 3640–3646; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13197-018-3292-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13197-018-3292-x</a>">https://doi.org/10.1007/s13197-018-3292-x</ext-link>
  4. S. Karakurt and O. Adali, Tannic acid inhibits proliferation, migration, invasion of prostate cancer and modulates drug metabolizing and antioxidant enzymes, <em>Anticancer Agents Med. Chem.</em> <bold>16</bold>(6) (2016) 781–789; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2174/1871520616666151111115809" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2174/1871520616666151111115809</a>">https://doi.org/10.2174/1871520616666151111115809</ext-link>
  5. S. Karakurt, S. Kandir and C. Gokcek-Sarac, Upregulation of p53 by tannic acid treatment suppresses the proliferation of human colorectal carcinoma, <em>Acta Pharm</em>. <bold>71</bold>(4) (2021) 587–602; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/acph-2021-0036" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/acph-2021-0036</a>">https://doi.org/10.2478/acph-2021-0036</ext-link>
  6. N. Sp, D. Y. Kang, D. H. Kim, J.-S. Yoo, E. S. Jo, A. Rugamba, K.-J- Jang and Y. M. Yang, Tannic acid inhibits non-small cell lung cancer (NSCLC) stemness by inducing G(0)/G(1) cell cycle arrest and intrinsic apoptosis, <em>Anticancer Res</em>. <bold>40</bold>(6) (2020) 3209–3220; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.21873/anticanres.14302" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21873/anticanres.14302</a>">https://doi.org/10.21873/anticanres.14302</ext-link>
  7. B. W. Booth, B. D. Inskeep, H. Shah, J. P. Park, E. J. Hay and K. J. Burg, Tannic acid preferentially targets estrogen receptor-positive breast cancer, <em>Int. J. Breast Cancer</em> <bold>2013</bold> (2013) Article ID 369609 (9 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1155/2013/369609" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2013/369609</a>">https://doi.org/10.1155/2013/369609</ext-link>
  8. P. Darvin, Y. H. Joung, D. Y. Kang, N. Sp, H. J. Byun, T. S. Hwang, H. Sasidharakurup, C. H. Lee, K. H. Cho, K. D. Park, H. K. Lee and Y. M. Yang, Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells, <em>J. Cell Mol. Med</em>. <bold>21</bold>(4) (2017) 720–734; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/jcmm.13015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/jcmm.13015</a>">https://doi.org/10.1111/jcmm.13015</ext-link>
  9. S. Nam, D. M. Smith and Q. P. Dou, Tannic acid potently inhibits tumor cell proteasome activity, increases p27 and Bax expression, and induces G1 arrest and apoptosis, <em>Cancer Epidemiol. Biomarkers Prev</em>. <bold>10</bold>(10) (2001) 1083–1088.
  10. D. Pattarayan, A. Sivanantham, V. Krishnaswami, L. Loganathan, R. Palanichamy, S. Natesan, K. Muthusamy and S. Rajasekaran, Tannic acid attenuates TGF-β1-induced epithelial-to-mesenchymal transition by effectively intervening TGF-β signaling in lung epithelial cells, <em>J. Cell Physiol.</em> <bold>233</bold>(3) (2018) 2513–2525; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/jcp.26127" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/jcp.26127</a>">https://doi.org/10.1002/jcp.26127</ext-link>
  11. L. G. Jordan and B. W. Booth, HER2<sup>+</sup> breast cancer cells undergo apoptosis upon exposure to tannic acid released from remodeled cross-linked collagen type I, <em>J. Biomed. Mater. Res. A</em>. <bold>106</bold>(1) (2018) 26–32; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/jbm.a.36205" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/jbm.a.36205</a>">https://doi.org/10.1002/jbm.a.36205</ext-link>
  12. N. Geng, X. Zheng, M. Wu, L. Yang, X. Li and J. Chen, Tannic acid synergistically enhances the anticancer efficacy of cisplatin on liver cancer cells through mitochondria-mediated apoptosis, <em>Oncol. Rep.</em> <bold>42</bold>(5) (2019) 2108–2116; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3892/or.2019.7281" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3892/or.2019.7281</a>">https://doi.org/10.3892/or.2019.7281</ext-link>
  13. J. Gupta, W. K. Abdulsahib, A. Turki Jalil, D. S. Kareem, Z. Aminov, F. Alsaikhan, A. A. Ramírez--Coronel, P. Ramaiah and B. Farhood, Prostate cancer and microRNAs: New insights into apoptosis, <em>Pathol. Res. Pract</em>. <bold>245</bold> (2023) Article ID 154436; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.prp.2023.154436" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.prp.2023.154436</a>">https://doi.org/10.1016/j.prp.2023.154436</ext-link>
  14. Y. Sun, W. Guo, Y. Guo, Z. Lin, D. Wang, Q. Guo and Y. Zhou, Apoptosis induction in human prostate cancer cells related to the fatty acid metabolism by wogonin-mediated regulation of the AKT-SREBP1-FASN signaling network, <em>Food Chem. Toxicol</em>. <bold>169</bold> (2022) Article ID 113450; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.fct.2022.113450" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fct.2022.113450</a>">https://doi.org/10.1016/j.fct.2022.113450</ext-link>
  15. Z. Amirghofran, A. Monabati and N. Gholijani, Apoptosis in prostate cancer: bax correlation with stage, <em>Int. J. Urol</em>. <bold>12</bold>(4) (2005) 340–345; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1442-2042.2005.01051.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1442-2042.2005.01051.x</a>">https://doi.org/10.1111/j.1442-2042.2005.01051.x</ext-link>
  16. A. Frenzel, F. Grespi, W. Chmelewskij and A. Villunger, Bcl2 family proteins in carcinogenesis and the treatment of cancer, <em>Apoptosis</em> <bold>14</bold>(4) (2009) 584–596; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10495-008-0300-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10495-008-0300-z</a>">https://doi.org/10.1007/s10495-008-0300-z</ext-link>
  17. S. Khan, J. Simpson, J. C. Lynch, D. Turay, S. Mirshahidi, A. Gonda, T. W. Sanchez, C. A. Casiano and N. R. Wall, Racial differences in the expression of inhibitors of apoptosis (IAP) proteins in extracellular vesicles (EV) from prostate cancer patients, <em>PLoS One</em> <bold>12</bold>(10) (2017) Article ID e0183122 (13 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1371/journal.pone.0183122" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0183122</a>">https://doi.org/10.1371/journal.pone.0183122</ext-link>
  18. D. C. Rio, M. Jr. Ares, G. J. Hannon and T. W. Nilsen, Purification of RNA using TRIzol (TRI reagent), <em>Cold Spring Harb. Protoc</em>. <bold>2010</bold>(6) (2010); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1101/pdb.prot5439" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1101/pdb.prot5439</a>">https://doi.org/10.1101/pdb.prot5439</ext-link>
  19. K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, <em>Methods</em> <bold>25</bold>(4) (2001) 402–408; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1006/meth.2001.1262" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1006/meth.2001.1262</a>">https://doi.org/10.1006/meth.2001.1262</ext-link>
  20. G. Cantarella, G. Di Benedetto, M. Scollo, I. Paterniti, S. Cuzzocrea, P. Bosco, G. Nocentini, C. Riccardi and R. Bernardini, Neutralization of tumor necrosis factor-related apoptosis-inducing ligand reduces spinal cord injury damage in mice, <em>Neuropsychopharmacology</em> <bold>35</bold>(6) (2010) 1302–1314; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/npp.2009.234" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/npp.2009.234</a>">https://doi.org/10.1038/npp.2009.234</ext-link>
  21. S. Tai, Y. Sun, J. M. Squires, H. Zhang, W. K. Oh, C.-Z. Liang and J. Huang, PC3 is a cell line characteristic of prostatic small cell carcinoma, <em>Prostate</em> <bold>71</bold>(15) (2011) 1668–1679; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/pros.21383" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/pros.21383</a>">https://doi.org/10.1002/pros.21383</ext-link>
  22. X. Wen, Z. Q. Lin, B. Liu and Y. Q. Wei, Caspase-mediated programmed cell death pathways as potential therapeutic targets in cancer, <em>Cell Prolif</em>. <bold>45</bold>(3) (2012) 217–224; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1365-2184.2012.00814.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1365-2184.2012.00814.x</a>">https://doi.org/10.1111/j.1365-2184.2012.00814.x</ext-link>
  23. A. Mohr, L. Deedigan, S. Jencz, Y. Mehrabadi, L. Houlden, S.-M. Albarenque and R. M. Zwacka, Caspase-10: a molecular switch from cell-autonomous apoptosis to communal cell death in response to chemotherapeutic drug treatment, <em>Cell Death Differ</em>. <bold>25</bold>(2) (2018) 340–352; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/cdd.2017.164" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/cdd.2017.164</a>">https://doi.org/10.1038/cdd.2017.164</ext-link>
  24. S. Horn, M. A. Hughes, R. Schilling, C. Sticht, T. Tenev, M. Ploesser, P. Meier, M. R. Sprick, M. MacFarlane and M. Leverkus, Caspase-10 negatively regulates caspase-8-mediated cell death, switching the response to CD95L in Favor of NF-kappaB activation and cell survival, <em>Cell Rep</em>. <bold>19</bold>(4) (2017) 785–797; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.celrep.2017.04.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.celrep.2017.04.010</a>">https://doi.org/10.1016/j.celrep.2017.04.010</ext-link>
  25. H. Yu, L. Lin, Z. Zhang, H. Zhang and H. Hu, Targeting NF-kappaB pathway for the therapy of diseases: mechanism and clinical study, <em>Signal Transduct. Target Ther</em>. <bold>5</bold>(1) (2020) Article ID 209 (23 pages); <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41392-020-00312-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41392-020-00312-6</a>">https://doi.org/10.1038/s41392-020-00312-6</ext-link>
  26. P. K. B. Nagesh, P. Chowdhury, E. Hatami, S. Kumari, V. Kumar Kashyap, M. K. Tripathi, S. Wagh, B. Meibohm, S. C. Chauhan, M. Jaggi and M. M. Yallapu, Cross-linked polyphenol-based drug nano-self-assemblies engineered to blockade prostate cancer senescence, <em>ACS Appl. Mater. Interfaces</em> <bold>11</bold>(42) (2019) 38537–38554; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acsami.9b14738" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acsami.9b14738</a>">https://doi.org/10.1021/acsami.9b14738</ext-link>
  27. S. M. Srinivasula, M. Ahmad, T. Fernandes-Alnemri and E. S. Alnemri, Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization, <em>Mol. Cell</em> <bold>1</bold>(7) (1998) 949–957; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S1097-2765(00)80095-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S1097-2765(00)80095-7</a>">https://doi.org/10.1016/S1097-2765(00)80095-7</ext-link>
  28. E. Bossy-Wetzel, D. D. Newmeyer and D. R. Green, Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization, <em>EMBO J</em>. <bold>17</bold>(1) (1998) 37–49; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/emboj/17.1.37" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/emboj/17.1.37</a>">https://doi.org/10.1093/emboj/17.1.37</ext-link>
  29. Z. T. Schug, F. Gonzalvez, R. H. Houtkooper, F. M. Vaz and E. Gottlieb, BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane, <em>Cell Death Differ</em>. <bold>18</bold>(3) (2011) 538–548; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/cdd.2010.135" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/cdd.2010.135</a>">https://doi.org/10.1038/cdd.2010.135</ext-link>
  30. R. V. Rao, E. Hermel, S. Castro-Obregon, G. del Rio, L. M. Ellerby, H. M. Ellerby and D. E. Bredesen, Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation, <em>J. Biol. Chem</em>. <bold>276</bold>(36) (2001) 33869–33874; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1074/jbc.M102225200" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1074/jbc.M102225200</a>">https://doi.org/10.1074/jbc.M102225200</ext-link>
  31. N. Morishima, K. Nakanishi, H. Takenouchi, T. Shibata and Y. Yasuhiko, An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12, <em>J. Biol. Chem</em>. <bold>277</bold>(37) (2002) 34287–34294; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1074/jbc.M204973200" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1074/jbc.M204973200</a>">https://doi.org/10.1074/jbc.M204973200</ext-link>
  32. M. Los, M. Mozoluk, D. Ferrari, A. Stepczynska, C. Stroh, A. Renz, Z. Herceg, Z. Q. Wang and K. Schulze-Osthoff, Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling, <em>Mol. Biol. Cell</em> <bold>13</bold>(3) (2002) 978–988; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1091/mbc.01-05-0272" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1091/mbc.01-05-0272</a>">https://doi.org/10.1091/mbc.01-05-0272</ext-link>
  33. Z. Herceg and Z. Q. Wang, Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis, <em>Mol. Cell Biol.</em> <bold>19</bold>(7) (1999) 5124–5133; <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1128/MCB.19.7.5124" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/MCB.19.7.5124</a>">https://doi.org/10.1128/MCB.19.7.5124</ext-link>
DOI: https://doi.org/10.2478/acph-2024-0020 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 539 - 550
Accepted on: Jun 3, 2024
Published on: Sep 14, 2024
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2024 Sinan Kandir, Sevtap Karakurt, Çiğdem Gökçek-Saraç, Serdar Karakurt, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.