References
- M. G. Tovey and C. Lallemand, Immunogenicity and other problems associated with the use of biopharmaceuticals, Ther. Adv. Drug Saf. 2(3) (2011) 113–128; https://doi.org/10.1177/2042098611406318
- L. Kagan, M. R. Turner, S. V. Balu-Iyer and D. E. Mager, Subcutaneous absorption of monoclonal antibodies: Role of dose, site of injection, and injection volume on rituximab pharmacokinetics in rats, Pharm. Res. 29(2) (2012) 490–499; https://doi.org/10.1007/s11095-011-0578-3
- M. Viola, J. Sequeira, R. Seiça, F. Veiga, J. Serra, A. C. Santos and A. J. Ribeiro, Subcutaneous delivery of monoclonal antibodies: How do we get there?, J. Controll. Release 286 (2018) 301–314; https://doi.org/10.1016/j.jconrel.2018.08.001
- P. Garidel, B. Pevestorf and S. Bahrenburg, Stability of buffer-free freeze-dried formulations: A feasibility study of a monoclonal antibody at high protein concentrations, Eur. J. Pharm. Biopharm. 97 (2015) 125–139; https://doi.org/10.1016/j.ejpb.2015.09.017
- S. J. Shire, Z. Shahrokh and J. Liu, Challenges in the development of high protein concentration formulations, J. Pharm. Sci. 93(6) (2004) 1390–402; https://doi.org/10.1002/jps.20079
- M. Bjelošević, A. Zvonar Pobirk, O. Planinšek and P. Ahlin Grabnar, Excipients in freeze-dried biopharmaceuticals: Contributions toward formulation stability and lyophilisation cycle optimisation, Int. J. Pharm. 576 (2020) Article ID 119029 (12 pages); https://doi.org/10.1016/j.ijpharm.2020.119029
- X. (Charlie) Tang and M. J. Pikal, Design of freeze-drying processes for pharmaceuticals: Practical advice, Pharm. Res. 21(2) (2004) 191–200; https://doi.org/10.1023/B:PHAM.0000016234.73023.75
- M. Bjelošević and P. Ahlin Grabnar, Effects of monoclonal antibody concentration and type of bulking agent on critical quality attributes of lyophilisates, J. Drug Deliv. Sci. Technol. 63 (2021) Article ID 102510 (10 pages); https://doi.org/10.1016/j.jddst.2021.102510
- D. Dixon, S. Tchessalov, A. Barry and N. Warne, The impact of protein concentration on mannitol and sodium chloride crystallinity and polymorphism upon lyophilization, J. Pharm. Sci. 98(9) (2009) 3419–3429; https://doi.org/10.1002/jps.21537
- X. Li and S. L. Nail, Kinetics of glycine crystallization during freezing of sucrose/glycine excipient systems, J. Pharm. Sci. 94(3) (2005) 625–631; https://doi.org/10.1002/jps.20286
- M. Anko, M. Bjelošević, O. Planinšek, U. Trstenjak, M. Logar, P. Ahlin Grabnar and B. Brus, The formation and effect of mannitol hemihydrate on the stability of monoclonal antibody in the lyophilized state, Int. J. Pharm. 564 (2019) 106–116; https://doi.org/10.1016/j.ijpharm.2019.04.044
- J. H. Gu, R. Qian, R. Chou, P. V. Bondarenko and M. Goldenberg, Rotational rheology of bovine serum albumin solutions: Confounding effects of impurities, mechanistic considerations and potential implications on protein formulation development, Pharm. Res. 35(157) (2018) 1–12; https://doi.org/10.1007/s11095-018-2423-4
- A. D. Gonçalves, C. Alexander, C. J. Roberts, S. G. Spain, S. Uddin and S. Allen, The effect of protein concentration on the viscosity of a recombinant albumin solution formulation, RSC Adv. 6(18) (2016) 15143–15154; https://doi.org/10.1039/C5RA21068B
- J. Li, Y. Cheng, X. Chen and S. Zheng, Impact of electroviscous effect on viscosity in developing highly concentrated protein formulations: Lessons from non-protein charged colloids, Int. J. Pharm. 108 (2019) 1423–143; https://doi.org/10.1016/j.ijpx.2018.100002
- V. Sharma, A. Jaishankar, Y. C. Wang and G. H. McKinley, Rheology of globular proteins: Apparent yield stress, high shear rate viscosity and interfacial viscoelasticity of bovine serum albumin solutions, Soft Matter 7 (2011) Article ID 5150 (11 pages); https://doi.org/10.1039/C0SM01312A
- Z. Zhang and Y. Liu, Recent progresses of understanding the viscosity of concentrated protein solutions, Nanotechnol. Sep. Eng. 16 (2017) 48–55; https://doi.org/10.1016/j.coche.2017.04.001
- S. M. Patel, S. L. Nail, M. J. Pikal, R. Geidobler, G. Winter, A. Hawe, J. Davagnino and S. Rambhatla Gupta, Lyophilised drug product cake appearance: What is acceptable?, J. Pharm. Sci. 106(7) (2017) 1706–1721; https://doi.org/10.1016/j.xphs.2017.03.014
- M. Bjelošević, K. Bolko Seljak, U. Trstenjak, M. Logar, B. Brus and P. Ahlin Grabnar, Aggressive conditions during primary drying as a contemporary approach to optimise freeze-drying cycles of biopharmaceuticals, Eur. J. Pharm. Sci. 122 (2018) 292–302; https://doi.org/10.1016/j.ejps.2018.07.016
- T. Werk, J. Huwyler, M. Hafner, J. Luemkemann and H.-C. Mahler, An impedance-based method to determine reconstitution time for freeze-dried pharmaceuticals, J. Pharm. Sci. 104(9) (2015) 2948–2955; https://doi.org/10.1002/jps.24443
- W. Cao, S. Krishnan, M. Speed Ricci, L. Y. Shih, D. Liu, J. H. Gu and F. Jameel, Rational design of lyophilized high concentration protein formulations-mitigating the challenge of slow reconstitution with multidisciplinary strategies, Eur. J. Pharm. Biopharm. 85(2) (2013) 287–293; https://doi.org/10.1016/j.ejpb.2013.05.001
- S. S. Kulkarni, R. Suryanarayanan, J. V. Rinella and R. H. Bogner, Mechanisms by which crystalline mannitol improves the reconstitution time of high concentration lyophilized protein formulations, Eur. J. Pharm. Biopharm. 131 (2018) 70–81; https://doi.org/10.1016/j.ejpb.2018.07.022
- C. J. Roberts, Protein aggregation and its impact on product quality, Curr. Opin. Biotechnol. 30 (2014) 211–217; https://doi.org/10.1016/j.copbio.2014.08.001
- G. Yohannes, S. K. Wiedmer, M. Elomaa, M. Jussila, V. Aseyev and M.-L. Riekkola, Thermal aggregation of bovine serum albumin studied by asymmetrical flow field-flow fractionation, Anal. Chim. Acta. 675(2) (2010) 191–198; https://doi.org/10.1016/j.aca.2010.07.016
- Y. Li, G. Yang and Z. Mei, Spectroscopic and dynamic light scattering studies of the interaction between pterodontic acid and bovine serum albumin, Acta Pharm. Sin. B. 2(1) (2012) 53–59; https://doi.org/10.1016/j.apsb.2011.12.001