References
- A. R. Deshmukh, B. M. Bhawal, D. Krishnaswamy, V. V. Govande, B. A. Shinkre and A. Jayanthi, Azetidin-2-ones, synthon for biologically important compounds, Curr. Med. Chem. 11(14) (2004) 1889–1920; https://doi.org/10.2174/0929867043364874
- M. Bortolami, I. Chiarotto, L. Mattiello, R. Petrucci, D. Rocco, F. Vetica and M. Feroci, Organic electrochemistry: Synthesis and functionalization of b-lactams in the twenty-first century, Heterocycl. Commun. 27(1) (2021) 32–44; https://doi.org/10.1515/hc-2020-0121
- K. Poole, Resistance to b-lactam antibiotics, Cell. Mol. Life Sci. 61 (2004) 2200–2223; https://doi.org/10.1007/s00018-004-4060-9
- S. Y. Essack, The development of b-lactam antibiotics in response to the evolution of b-lactamases, Pharm. Res. 18 (2001) 1391–1399; https://doi.org/10.1023/A:1012272403776
- D. M. Livermore and J. D. Williams, b-lactams: Mode of Action and Mechanisms of Bacterial Resistance, in Antibiotics in Laboratory Medicine (Ed. V. Lorian), 4th ed., Williams and Wilkins, Baltimore 1996, pp. 502–577.
- C. Palomo, J. M. Aizpurua, I. Ganboa and M. Oiarbide, b-lactams as versatile intermediates in α- and b-amino acid synthesis, Synlett. 12 (2001) 1813–1826; https://doi.org/10.1055/s-2001-18733
- B. Alcaide, P. Almendros and C. Aragoncillo, b-lactams: versatile building blocks for the stereo-selective synthesis of non-b-lactam products, Chem. Rev. 107(11) (2007) 4437–4492; https://doi.org/10.1021/cr0307300
- A. K. Halve, D. Bhadauria and R. Dubey, N/C-4 substituted azetidin-2-ones: synthesis and preliminary evaluation as new class of antimicrobial agents, Bioorg. Med. Chem. Lett. 17(2) (2007) 341–345; https://doi.org/10.1016/j.bmcl.2006.10.064
- B. Hamad, The antibiotics market, Nat. Rev. Drug Discov. 9 (2010) 675–676; https://doi.org/10.1038/nrd3267
- S. Zavar, M. Zarei and M. Saraei, Synthesis of b-lactams via Staudinger reaction using N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline as a carboxylic acid activator, Synth. Commun. 46(24) (2016) 2031–2036; https://doi.org/10.1080/00397911.2016.1244691
- A. Kamath and I. Ojima, Advances in the chemistry of b-lactam and its medicinal applications, Tetrahedron 68(52) (2012) 10640–10664; https://doi.org/10.1016/j.tet.2012.07.090
- P. D. Mehta, N. P. S. Sengar and A. K. Pathak, 2-Azetidinone – a new profile of various pharmacological activities, Eur. J. Med. Chem. 45(12) (2010) 5541–5560; https://doi.org/10.1016/j.ejmech.2010.09.035
- A. Jarrahpour, P. Shirvani, V. Sinou, C. Latour and J. M. Brunel, Synthesis and biological evaluation of some new b-lactam-triazole hybrids, Med. Chem. Res. 25 (2016) 149–162; https://doi.org/10.1007/s00044-015-1474-x
- A. Jarrahpour, P. Shirvani, V. Sinou, C. Latour and J. M. Brunel, Diastereoselective synthesis of potent antimalarial cis-b-lactam agents through a [2+2] cycloaddition of chiral imines with a chiral ketene, Eur. J. Med. Chem. 87 (2014) 364–371; http://dx.doi.org/10.1016/j.ejmech.2014.09.077
- D. A. Burnett, b-lactam cholesterol absorption inhibitors. b-lactam cholesterol absorption inhibitors, Curr. Med. Chem. 11(14) (2004) 1873–1887; https://doi.org/10.2174/0929867043364865
- J. C. Sutton, S. A. Bolton, K. S. Hartl, M.-H. Huang, G. Jacobs, W. Meng, M. Ogletree, Z. Pi, W. A. Schumacher, S. M. Seiler, W. A. Slusarchyk, U. Treuner, R. Zahler, G. Zhao and G. S. Bisacchi, Synthesis and SAR of 4-carboxy-2-azetidinone mechanism-based tryptase inhibitors, Bioorg. Med. Chem. Lett. 12(21) (2002) 3229–3233; https://doi.org/10.1016/S0960-894X(02)00688-1
- A. D. Borthwick, G. Weingarten, T. M. Haley, M. Tomaszewski, W. Wang, Z. Hu, J. Bedard, H. Jin, L. Yuen and T. S. Mansour, Design and synthesis of monocyclic b-lactams as mechanism-based inhibitors of human cytomegalovirus protease, Bioorg. Med. Chem. Lett. 8(4) (2008) 365–370; https://doi.org/10.1016/s0960-894x(98)00032-8
- C. D. Guillon, G. A. Koppel, M. J. Brownstein, M. O. Chaney, C. F. Ferris, S.-f. Lu, K. M. Fabio, M. J. Miller, N. D. Heindel, D. C. Hunden, R. D. G. Cooper, S. W. Kaldor, J. J. Skelton, B. A. Dressman, M. P. Clay, M. I. Steinberg, R. F. Bruns and N. G. Simon, Azetidinones as vasopressin V1a antagonists, Bioorg. Med. Chem. 15(5) (2007) 2054–2080; https://doi.org/10.1016/j.bmc.2006.12.031
- N. M. O’Boyle, M. Carr, L. M. Greene, O. Bergin, S. M. Nathwani, T. McCabe, D. G. Lloyd, D. M. Zisterer and M. J. Meegan, Synthesis and evaluation of azetidinone analogues of combretastatin A-4 as tubulin targeting agents, J. Med. Chem. 53(24) (2010) 8569–8584; https://doi.org/10.1021/jm101115u
- B. K. Banik, I. Banik and F. F. Becker, Asymmetric synthesis of anticancer b-lactams via Staudinger reaction: utilization of chiral ketene from carbohydrate, Eur. J. Med. Chem. 45(2) (2010) 846–848; https://doi.org/10.1016/j.ejmech.2009.11.024
- R. Sharma, P. Samadhiya, S. D. Srivastava and S. K. Srivastava, Synthesis and biological activity of new series of N-[3-(1H-1,2,3- benzotriazol-1-yl)propyl]-2-(substituted phenyl)-3-chloro-4-oxo-1-azetidinecarboxamide, Acta Chim. Slov. 58(1) (2011) 110–119.
- T. Sperka, J. Pitlik, P. Bagossi and J. Tözsér, Beta-lactam compounds as apparently uncompetitive inhibitors of HIV-1 protease, Bioorg. Med. Chem. Lett. 15(12) (2005) 3086–3090; https://doi.org/10.1016/j.bmcl.2005.04.020
- C. Saturnino, B. Fusco, P. Saturnino, G. D. E. Martino, F. Rocco and J.-C. Lancelot, Evaluation of analgesic and anti-inflammatory activity of novel beta-lactam monocyclic compounds, Biol. Pharm. Bull. 23(5) (2000) 654–656; https://doi.org/10.1248/bpb.23.654
- R. K. Goel, M. P. Mahajan and S. K. Kulkarni, Evaluation of anti-hyperglycemic activity of some novel monocyclic b-lactams, J. Pharm. Pharm. Sci. 7(1) (2004) 80–83.
- A. Jarrahpour, E. Ebrahimi, R. Khalifeh, H. Sharghi, M. Sahraei, V. Sinou, C. Latour and J. M. Brunel, Synthesis of novel b-lactams bearing an anthraquinone moiety, and evaluation of their antimalarial activities, Tetrahedron 68(24) (2012) 4740–4744; https://doi.org/10.1016/j.tet.2012.04.011
- S. Hosseyni and A. Jarrahpour, Recent advances in b-lactam synthesis, Org. Biomol. Chem. 16 (2018) 6840–6852; https://doi.org/10.1039/C8OB01833B
- C. R. Pitts and T. Lectka, Chemical synthesis of b-lactams: Asymmetric catalysis and other recent advances, Chem. Rev. 114(16) (2014) 7930–7953; https://doi.org/10.1021/cr4005549
- S. Deketelaere, T. Van Nguyen, C. V. Stevens and M. D’hooghe, Synthetic approaches toward monocyclic 3-amino-b-lactams, ChemistryOpen 6(3) (2017) 301–319; https://doi.org/10.1002/open.201700051
- N. Payili, S. Yennam, S. R. Rekula, C. G. Naidu, Y. Bobde and B. Ghoshc, Design, synthesis, and evaluation of the anticancer properties of novel quinone bearing carbamyl b-lactam hybrids, J. Heterocyclic Chem. 55(6) (2018) 1358–1365; https://doi.org/10.1002/jhet.3169
- L. Jiao, Y. Liang and J. Xu, Origin of the relative stereoselectivity of the b-lactam formation in the Staudinger reaction, J. Am. Chem. Soc. 128(18) (2006) 6060–6069; https://doi.org/10.1021/ja056711k
- F. P. Cossío, A. de Cózar, S. M. Sierra, L. Casarrubios, J. G. Muntaner, B. K. Banik and D. Bandyopadhyay, Role of imine isomerization in the stereocontrol of the Staudinger reaction between ketenes and imines, RSC Adv. 12 (2021) 104–117; https://doi.org/10.1039/d1ra06114c
- T. C. Malig, D. Yu and J. E. Hein, A revised mechanism for the Kinugasa reaction, J. Am. Chem. Soc. 140(29) (2018) 9167–9173; https://doi.org/10.1021/jacs.8b04635
- F. Toda, H. Miyamoto, M. Inoue, S. Yasaka and I. Matijasic, Enantioselective photocyclization of amides to beta-lactam derivatives in inclusion crystals with an optically active host, J. Org. Chem. 65(9) (2000) 2728–2732; https://doi.org/10.1021/jo991832m
- Z. Wang, J. Ni, Y. Kuninobu and M. Kanai, Copper-catalyzed intramolecular C(sp3)H and C(sp2) H amidation by oxidative cyclization, Angew. Chem. Int. Ed. 53(13) (2014) 3496–3499; https://doi.org/10.1002/anie.201311105
- S. France, A. Weatherwax, A. E. Taggi and T. Lectka, Advances in the catalytic, asymmetric synthesis of b-lactams, Acc. Chem. Res. 37(8) (2004) 592–600; https://doi.org/10.1021/ar030055g
- T. Dražić, M. Roje, M. Jurin and G. Pescitelli, Synthesis, separation and absolute configuration determination by ECD Spectroscopy and TDDFT calculations of 3-amino-b-lactams and derived guanidines, Eur. J. Org. Chem. 2016(24) (2016) 4189–4199; https://doi.org/10.1002/ejoc.201600641
- Clinical and Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed., CLSI standard M07, CLSI, Wayne (PA, USA) 2018; https://clsi.org/media/1928/m07ed11_sample.pdf; last access date April 6, 2020
- J. M. Andrews, Determination of minimum inhibitory concentrations, J. Antimicrob. Chemother. 48(Suppl. S1) (2001) 5–16; https://doi.org/10.1093/JAC/48.SUPPL_1.5
- Clinical and Laboratory Standards Institute, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 3rd ed., CLSI standard M38, CLSI, Wayne (PA, USA) 2017; https://clsi.org/media/1894/m38ed3_sample.pdf; last access date April 27, 2020
- M. Hranjec, M. Kralj, I. Piantanida, M. Sedić, L. Šuman, K. Pavelić and G. Karminski-Zamola, Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo[1,2-a]quinolines. synthesis, photochemical synthesis, DNA binding and antitumor evaluation, Part 3, J. Med. Chem. 50(23) (2007) 5696–5711; https://doi.org/10.1021/jm070876h
- M. Hranjec, I. Piantanida, M. Kralj, L. Šuman, K. Pavelić and G. Karminski-Zamola, Novel amid-ino-substituted thienyl- and furylvinyl-benzimidazole derivatives and their photochemical conversion into corresponding diaza-cyclopenta[c]fluorenes. Synthesis, interactions with DNA and RNA and antitumor evaluation, J. Med. Chem. 51(16) (2008) 4899–4910; https://doi.org/10.1021/jm8000423
- M. R. Boyd and K. D. Paull, Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen, Drug Dev. Res. 34(2) (1995) 91–109; https://doi.org/10.1002/ddr.430340203
- M. S. Lowless, M. Waldman, R. Franczkiewicz and R. D. Clark, Using Chemoinformatics in Drug Discovery, in New Approaches to Drug Discovery, Handbook of Experimental Pharmacology (Eds. U. Nielsch, U. Fuhrmann and S. Jaroch), Vol. 232, Springer Int. Publ. Switzerland, Cham 2016, pp. 232, 139–170.
- H. Yang, C. Lou, L. Sun, J. Li, Y. Cai, Z. Wang, W. Li, G. Liu and Y. Tang, admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties, Bioinformatics 35(6) (2019) 1067–1069; https://doi.org/10.1093/bioinformatics/bty707
- D. A. Filimonov and V. V. Poroikov, Probabilistic Approach in Activity Prediction, in Chemoinformatics Approaches to Virtual Screening (Eds. A. Varnek and A. Tropsha), RSC Publishing, Cambridge (UK) 2008, pp. 182–216.
- A. Daina, O. Michielin and V. Zoete, SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules, Nucleic Acids Res. 47(W1) (2019) W357– W364; https://doi.org/10.1093/nar/gkz382
- D. Bandyopadhyay, J. Cruz and B. K. Banik, Novel synthesis of 3-pyrrole substituted b-lactams via microwave-induced bismuth nitrate-catalyzed reaction, Tetrahedron 68(52) (2012) 10686–10695; https://doi.org/10.1016/j.tet.2012.06.009
- K. Radolović, I. Habuš and B. Kralj, New thiazolidinone and triazinethione conjugates derived from amino-b-lactams, Heterocycles 78(7) (2009) 1729–1759; https://doi.org/10.3987/COM-09-11668
- C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 23(1–3) (1997) 3–25; https//doi.org/10.1016/S0169-409X(96)00423-1
- C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 64(Suppl.) (2012) 4–17; https://doi.org/10.1016/j.addr.2012.09.019
- C. A. Lipinski, Drug-like properties and the causes of poor solubility and poor permeability, J. Pharmacol. Toxicol. Method 44(1) (2000) 235–249; https//doi.org/10.1016/s1056-8719(00)00107-6
- D. F. Veber, S. R. Johnson, H. Y. Cheng, B. R. Smith, K. W. Ward and K. D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem. 45(12) (2002) 2615–2623; https://doi.org/10.1021/jm020017n
- S. Lobo, Is there enough focus on lipophilicity in drug discovery?, Expert Opin. Drug Discov. 15(3) (2019) 261–263; https://doi.org/10.1080/17460441.2020.1691995
- R. Haddad-Tóvolli, N. R. V. Dragano, A. F. S. Ramalho and L. A. Velloso, Development and function of the blood-brain barrier in the context of metabolic control, Front. Neurosci. 11 (2017) Article ID 224 (12 pages); https://www.frontiersin.org/articles/10.3389/fnins.2017.00224
- E. Stavropoulou, G. G. Pircalabioru and E. Bezirtzoglou, The role of cytochromes P450 in infection, Front. Immunol. 9 (2018) Article ID 89 (7 pages); https://doi.org/10.3389/fimmu.2018.00089
- A. M. McDonnell and C. H. Dang, Basic review of the cytochrome p450 system, J. Adv. Pract. Oncol. 4 (2013) 263–268; https://doi.org/10.6004/jadpro.2013.4.4.7
- F. P. Guengerich, Cytochrome P450 and chemical toxicology, Chem. Res. Toxicol. 21(1) (2008) 70–83; https://doi.org/10.1021/tx700079z
- B. Testa, A. Pedretti and G. Vistoli, Reactions and enzymes in the metabolism of drugs and other xenobiotics, Drug Discov. Today 17(11–12) (2012) 549–560; https://doi.org/10.1016/j.drudis.2012.01.017
- A. F. El-Kattan and M. V. S. Varma, Navigating transporter sciences in pharmacokinetics characterization using the extended clearance classification system, Drug. Metab. Dispos. 46(5) (2018) 729–739; https://doi.org/10.1124/dmd.117.080044
- M. V. Varma, S. J. Steyn, C. Allerton and A. F. El-Kattan, Predicting clearance mechanism in drug discovery: Extended clearance classification system (ECCS), Pharm. Res. 32 (2015) 3785–3802; https://doi.org/10.1007/s11095-015-1749-4