Have a personal or library account? Click to login
Functionalization of selenium nanoparticles with olive polyphenols – impact on toxicity and antioxidative activity Cover

Functionalization of selenium nanoparticles with olive polyphenols – impact on toxicity and antioxidative activity

Open Access
|Dec 2023

References

  1. M. Kieliszek, Selenium – fascinating microelement, properties and sources in food, Molecules 24(7) (2019) Article ID 1298 (14 pages); https://doi.org/10.3390/molecules24071298
  2. S. J. Fairweather-Tait, Y. Bao, M. R. Broadley, R. Collings, D. Ford, J. E. Hesketh and R. Hurst, Selenium in human health and disease, Antioxid. Redox Signaling 14(7) (2011) 1337–1383; https://doi.org/10.1089/ars.2010.3275
  3. Y. Mehdi, J. L. Hornick, L. Istasse and I. Dufrasne, Selenium in the environment, metabolism and involvement in body functions, Molecules 18(3) (2013) 3292–3231; https://doi.org/10.3390/molecules18033292
  4. H. Y. Ha, N. Alfulaij, M. J. Berry and L. A. Seale, From selenium absorption to selenoprotein degradation, Biol. Trace Elem. Res. 192 (2019) 26–37; https://doi.org/10.1007/s12011-019-01771-x
  5. N. Hadrup and G. Ravn-Haren, Absorption, distribution, metabolism and excretion (ADME) of oral selenium from organic and inorganic sources: A review, J. Trace Elem. Med. Biol. 67 (2021) Article ID 126801 (12 pages); https://doi.org/10.1016/j.jtemb.2021.126801
  6. K. L. Nutall, Evaluating selenium poisoning, Ann. Clin. Lab. Sci. 36(4) (2006) 409–420.
  7. N. Zakeri, M. R. Kelishadi, O. Asbaghi, F. Naeini, M. Afsharfar, E. Mirzadeh and S. Kasra Naserizadeh, Selenium supplementation and oxidative stress: A review, PharmaNutrition 17 (2021) Article ID 100263 (12 pages); https://doi.org/10.1016/j.phanu.2021.100263
  8. M. Vinceti, T. Filippini, C. Del Giovane, G. Dennert, M. Zwahlen, M. Brinkman, M. P. A. Zeegers, M. Horneber, R. D’Amico and C. M. Crespi, Selenium for preventing cancer, Cochrane Database Syst. Rev. 1(1) (2018) 1–216; https://doi.org/10.1002/14651858.CD005195.pub4
  9. C. D. Davis, Selenium supplementation and cancer prevention, Curr. Nutr. Rep. 1 (2012) 16–23; https://doi.org/10.1007/s13668-011-0003-x
  10. C. Ferro, H. F. Florindo and H. A. Santos, Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics, Adv. Healthc. Mater. 10(16) (2021) Article ID 2100598 (50 pages); https://doi.org/10.1002/adhm.202100598
  11. L. Guo, K. Huang and H. Liu, Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity, J. Nanoparticle Res. 18 (2016) 1–10; https://doi.org/10.1007/s11051-016-3357-6
  12. J. S. Zhang, X. Y. Gao, L. De Zhang and Y. P. Bao, Biological effects of a nano red elemental selenium, BioFactors 15(1) (2001) 27–38; https://doi.org/10.1002/biof.5520150103
  13. A. De Bruno, R. Romeo, F. L. Fedele, A. Sicari, A. Piscopo and M. Poiana, Antioxidant activity shown by olive pomace extracts, J. Environ. Sci. Heal. Part B 53 (8) (2018) 526–533; https://doi.org/10.1080/03601234.2018.1462928
  14. D. V. Čepo, P. Albahari, Z. Končić, K. Radić, S. Jurmanović and M. Jug, Solvent extraction and chromatographic determination of polyphenols in olive pomace, Food Health Dis. 6 (1) (2017) 7–14; https://hrcak.srce.hr/clanak/269677
  15. D. V. Čepo, K. Radić, S. Jurmanović, M. Jug, M. G. Rajković, S. Pedisić, T. Moslavac and P. Albahari, Valorization of olive pomace-based nutraceuticals as antioxidants in chemical, food, and biological models, Molecules 23(8) (2018) Article ID 2070 (22 pages); https://doi.org/10.3390/molecules23082070
  16. P. Albahari, M. Jug, K. Radić, S. Jurmanović, M. Brnčić, S. R. Brnčić and D. Vitali Čepo, Characterization of olive pomace extract obtained by cyclodextrin-enhanced pulsed ultrasound assisted extraction, LWT-Food Sci. Technol. 92 (2018) 22–31; https://doi.org/10.1016/j.lwt.2018.02.011
  17. K. Radić, I. Vinković Vrček, I. Pavičić and D. V. Čepo, Cellular antioxidant activity of olive pomace extracts: Impact of gastrointestinal digestion and cyclodextrin encapsulation, Molecules 25(21) (2020) Article ID 5027 (15 pages); https://doi.org/10.3390/molecules25215027
  18. A. Silenzi, C. Giovannini, B. Scazzocchio, R. Varì, M. D’Archivio, C. Santangelo and R. Masella, Extra Virgin Olive Oil Polyphenols: Biological Properties and Antioxidant Activity, in Pathology – Oxidative Stress Dietary Antioxidants (Ed. V. R. Preedy), Elsevier Inc., Amsterdam 2020, pp. 225–233; https://doi.org/10.1016/C2017-0-04109-5
  19. L. Melguizo-Rodríguez, R. Illescas-Montes, V. J. Costela-Ruiz, J. Ramos-Torrecillas, E. de Luna-Bertos, O. García-Martínez and C. Ruiz, Antimicrobial properties of olive oil phenolic compounds and their regenerative capacity towards fibroblast cells, J. Tissue Viabil. 30(3) (2021) 372–378; https://doi.org/10.1016/j.jtv.2021.03.003
  20. E. Galić, K. Radić, N. Golub, D. Vitali Čepo, N. Kalčec, E. Vrček and T. Vinković, Utilization of olive pomace in green synthesis of selenium nanoparticles: Physico-chemical characterization, bioaccessibility and biocompatibility, Int. J. Mol. Sci. 23(16) (2022) Article ID 9128 (16 pages); https://doi.org/10.3390/ijms23169128
  21. S. Menon, S. Devi K. S., R. Santhiya, S. Rajeshkumar and V. Kumar S., Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism, Colloids Surf. B. 170 (2018) 280–292; https://doi.org/10.1016/j.colsurfb.2018.06.006
  22. Y. Huang, L. He, W. Liu, C. Fan, W. Zheng, Y. S. Wong and T. Chen, Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles, Biomaterials 34(29) (2013) 7106–7116; https://doi.org/10.1016/j.biomaterials.2013.04.067
  23. P. Sonkusre and S. S. Cameotra, Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation, J. Nanobiotechnol. 15(1) (2017) 1–12; https://doi.org/10.1186/s12951-017-0276-3
  24. B. Yu, Y. Zhang, W. Zheng, C. Fan and T. Chen, Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles, Inorg. Chem. 51(16) (2012) 8956–8963; https://doi.org/10.1021/ic301050v
  25. A. Khurana, S. Tekula, M. A. Saifi, P. Venkatesh and C. Godugu, Therapeutic applications of selenium nanoparticles, Biomed. Pharmacother. 111 (2019) 802–812; https://doi.org/10.1016/j.biopha.2018.12.146
  26. M. A. El-Ghazaly, N. Fadel, E. Rashed, A. El-Batal and S. A. Kenawy, Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats, Can. J. Physiol. Pharmacol. 95(2) (2016) 101–110; https://doi.org/10.1139/cjpp-2016-0183
  27. Y. Li, X. Li, Y. S. Wong, T. Chen, H. Zhang, C. Liu and W. Zheng, The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis, Biomaterials 32(34) (2011) 9068–9076; https://doi.org/10.1016/j.biomaterials.2011.08.001
  28. A. Kumar and K. S. Prasad, Role of nano-selenium in health and environment, J. Biotechnol. 325 (2021) 152–163; https://doi.org/10.1016/j.jbiotec.2020.11.004
  29. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26 (9–10) (1999) 1231–1237; https://doi.org/10.1016/s0891-5849(98)00315-3
  30. E. A. Ainsworth and K. M. Gillespie, Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent, Nat. Protoc. 2 (2007) 875–877; https://doi.org/10.1038/nprot.2007.102
  31. A. Aranda, L. Sequedo, L. Tolosa, G. Quintas, E. Burello, J. V. Castell and L. Gombau, Dichloro-di-hydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells, Toxicol. In Vitro 27(2) (2013) 954–963; https://doi.org/10.1016/j.tiv.2013.01.016
  32. D. Stevenson, D. Wokosin, J. Girkin and M. H. Grant, Measurement of the intracellular distribution of reduced glutathione in cultured rat hepatocytes using monochlorobimane and confocal laser scanning microscopy, Toxicol. Vitr. 16(5) (2002) 609–619; https://doi.org/10.1016/s0887-2333(02)00042-5
  33. A. Galano and J. R. Alvarez-Idaboy, Glutathione: mechanism and kinetics of its non-enzymatic defense action against free radicals, RSC Adv. 1 (2011) 1763–1771; https://doi.org/10.1039/C1RA00474C
  34. S. Raj Rai, C. Bhattacharyya, A. Sarkar, S. Chakraborty, E. Sircar, S. Dutta and R. Sengupta, Glutathione: Role in oxidative/nitrosative stress, antioxidant defense, and treatments, ChemistrySelect 6(18) (2021) 4566–4590; https://doi.org/10.1002/slct.202100773
  35. E. Galić, K. Ilić, S. Hartl, C. Tetyczka, K. Kasemets, I. Kurvet, M. Milić, R. Barbir, B. Pem, I. Erceg, M. Dutour Sikirić, I. Pavičić, E. Roblegg, A. Kahru and I. Vinković Vrček, Impact of surface functionalization on the toxicity and antimicrobial effects of selenium nanoparticles considering different routes of entry, Food Chem. Toxicol. 144 (2020) 111621; https://doi.org/10.1016/j.fct.2020.111621
  36. H.-M. Shen, C.-F. Yang and C.-N. Ong, Sodium selenite-induced oxidative stress and apoptosis in human hepatoma HepG2 cells, J. Cancer 81(5) (1999) 820–828; https://doi.org/10.1002/(sici)1097-0215(19990531)81:5<820::aid-ijc25>3.0.co;2-f
  37. S. Zheng, X. Li, Y. Zhang, Q. Xie, Y. S. Wong, W. Zheng and T. Chen, PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction, Int. J. Nanomedicine 7 (2012) 3939–3949; https://doi.org/10.2147/IJN.S30940
  38. L. Guo, J. Xiao, H. Liu and H. Liu, Selenium nanoparticles alleviate hyperlipidemia and vascular injury in ApoE-deficient mice by regulating cholesterol metabolism and reducing oxidative stress, Metallomics 12(2) (2020) 204–217; https://doi.org/10.1039/c9mt00215d
  39. D. Di, M. I. Tri Jevic, A. N. Drew, J. Shaw, A. Ander and T. Florence, Effects of some non-ionic surfactants on transepithelial permeability in Caco-2 cells, J. Pharm. Pharmacol. 52(2) (2010) 157–162; https://doi.org/10.1211/0022357001773805
  40. T. Hua, X. Zhang, B. Tang, C. Chang, G. Liu, L. Feng, Y. Yu, D. Zhang and J. Hou, Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection, BMC Vet. Res. 14 (2018) 1–8; https://doi.org/10.1186/s12917-018-1457-5
  41. A. Sukhanova, S. Bozrova, P. Sokolov, M. Berestovoy, A. Karaulov and I. Nabiev, Dependence of nanoparticle toxicity on their physical and chemical properties, Nanoscale Res. Lett. 13 (2018) 1–21; https://doi.org/10.1186/s11671-018-2457-x
  42. J. Zhou, D. Zhang, X. Lv, X. Liu, W. Xu, L. Chen, J. Cai, Z. U. Din and S. Cheng, Green synthesis of robust selenium nanoparticles via polysaccharide-polyphenol interaction: design principles and structure-bioactivity relationship, ACS Sustain. Chem. Eng. 10(6) (2022) 2052–2062; https://doi.org/10.1021/acssuschemeng.1c06048
  43. L. Gunti, R. S. Dass and N. K. Kalagatur, Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: Antioxidant, antimicrobial, and biocompatibility, Front. Microbiol. 10 (2019) 1–17; https://doi.org/10.3389/fmicb.2019.00931
  44. V. Alagesan and S. Venugopal, Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities, Bionanoscience 9 (2019) 105–116; https://doi.org/10.1007/s12668-018-0566-8
  45. W. Y. Qiu, Y. Y. Wang, M. Wang and J. K. Yan, Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles, Colloids Surfaces B Biointerfaces 170 (2018) 692–700; https://doi.org/10.1016/j.colsurfb.2018.07.003
  46. Y. Liu, W. Huang, W. Han, C. Li, Z. Zhang, B. Hu, S. Chen, P. Cui, S. Luo, Z. Tang, W. Wu and Q. Luo, Structure characterization of Oudemansiella radicata polysaccharide and preparation of selenium nanoparticles to enhance the antioxidant activities, LWT-Food Sci. Technol. 146 (2021) Article ID 111469 (9 pages); https://doi.org/10.1016/j.lwt.2021.111469
  47. Y. Cheng, X. Xiao, X. Li, D. Song, Z. Lu, F. Wang and Y. Wang, Characterization, antioxidant property and cytoprotection of exopolysaccharide-capped elemental selenium particles synthesized by Bacillus paralicheniformis SR14, Carbohydr. Polym. 178 (2017) 18–26; https://doi.org/10.1016/j.carbpol.2017.08.124
  48. C. Xu, L. Qiao, Y. Guo, L. Ma and Y. Cheng, Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393, Carbohydr. Polym. 195 (2018) 576–585; https://doi.org/10.1016/j.carbpol.2018.04
  49. C. Thiry, A. Ruttens, L. Pussemier and Y. J. Schneider, An in vitro investigation of species-dependent intestinal transport of selenium and the impact of this process on selenium bioavailability, Br. J. Nutr. 109(12) (2013) 2126–2134; https://doi.org/10.1017/S0007114512004412
  50. H. R. Shin, M. Kwak, T. G. Lee and J. Y. Lee, Quantifying the level of nanoparticle uptake in mammalian cells using flow cytometry, Nanoscale 12(29) (2020) 15743–15751; https://doi.org/10.1039/D0NR01627F
  51. X. Zhai, C. Zhang, G. Zhao, S. Stoll, F. Ren and X. Leng, Antioxidant capacities of the selenium nanoparticles stabilized by chitosan, J. Nanobiotechnol. 15 (2017) Article ID 4 (12 pages); https://doi.org/10.1186/s12951-016-0243-4
  52. D. Song, Y. Cheng, X. Li, F. Wang, Z. Lu, X. Xiao and Y. Wang, Biogenic nanoselenium particles effectively attenuate oxidative stress-induced intestinal epithelial barrier injury by activating the Nrf2 antioxidant pathway, ACS Appl. Mater. Interfaces 9(17) (2017) 14724–14740; https://doi.org/10.1021/acsami.7b03377
DOI: https://doi.org/10.2478/acph-2023-0036 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 617 - 631
Accepted on: Jun 12, 2023
Published on: Dec 26, 2023
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2023 Emerik Galić, Kristina Radić, Nikolina Golub, Jakov Mlinar, Dubravka Vitali Čepo, Tomislav Vinković, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.