References
- M. Kieliszek, Selenium – fascinating microelement, properties and sources in food, Molecules 24(7) (2019) Article ID 1298 (14 pages); https://doi.org/10.3390/molecules24071298
- S. J. Fairweather-Tait, Y. Bao, M. R. Broadley, R. Collings, D. Ford, J. E. Hesketh and R. Hurst, Selenium in human health and disease, Antioxid. Redox Signaling 14(7) (2011) 1337–1383; https://doi.org/10.1089/ars.2010.3275
- Y. Mehdi, J. L. Hornick, L. Istasse and I. Dufrasne, Selenium in the environment, metabolism and involvement in body functions, Molecules 18(3) (2013) 3292–3231; https://doi.org/10.3390/molecules18033292
- H. Y. Ha, N. Alfulaij, M. J. Berry and L. A. Seale, From selenium absorption to selenoprotein degradation, Biol. Trace Elem. Res. 192 (2019) 26–37; https://doi.org/10.1007/s12011-019-01771-x
- N. Hadrup and G. Ravn-Haren, Absorption, distribution, metabolism and excretion (ADME) of oral selenium from organic and inorganic sources: A review, J. Trace Elem. Med. Biol. 67 (2021) Article ID 126801 (12 pages); https://doi.org/10.1016/j.jtemb.2021.126801
- K. L. Nutall, Evaluating selenium poisoning, Ann. Clin. Lab. Sci. 36(4) (2006) 409–420.
- N. Zakeri, M. R. Kelishadi, O. Asbaghi, F. Naeini, M. Afsharfar, E. Mirzadeh and S. Kasra Naserizadeh, Selenium supplementation and oxidative stress: A review, PharmaNutrition 17 (2021) Article ID 100263 (12 pages); https://doi.org/10.1016/j.phanu.2021.100263
- M. Vinceti, T. Filippini, C. Del Giovane, G. Dennert, M. Zwahlen, M. Brinkman, M. P. A. Zeegers, M. Horneber, R. D’Amico and C. M. Crespi, Selenium for preventing cancer, Cochrane Database Syst. Rev. 1(1) (2018) 1–216; https://doi.org/10.1002/14651858.CD005195.pub4
- C. D. Davis, Selenium supplementation and cancer prevention, Curr. Nutr. Rep. 1 (2012) 16–23; https://doi.org/10.1007/s13668-011-0003-x
- C. Ferro, H. F. Florindo and H. A. Santos, Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics, Adv. Healthc. Mater. 10(16) (2021) Article ID 2100598 (50 pages); https://doi.org/10.1002/adhm.202100598
- L. Guo, K. Huang and H. Liu, Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity, J. Nanoparticle Res. 18 (2016) 1–10; https://doi.org/10.1007/s11051-016-3357-6
- J. S. Zhang, X. Y. Gao, L. De Zhang and Y. P. Bao, Biological effects of a nano red elemental selenium, BioFactors 15(1) (2001) 27–38; https://doi.org/10.1002/biof.5520150103
- A. De Bruno, R. Romeo, F. L. Fedele, A. Sicari, A. Piscopo and M. Poiana, Antioxidant activity shown by olive pomace extracts, J. Environ. Sci. Heal. Part B 53 (8) (2018) 526–533; https://doi.org/10.1080/03601234.2018.1462928
- D. V. Čepo, P. Albahari, Z. Končić, K. Radić, S. Jurmanović and M. Jug, Solvent extraction and chromatographic determination of polyphenols in olive pomace, Food Health Dis. 6 (1) (2017) 7–14; https://hrcak.srce.hr/clanak/269677
- D. V. Čepo, K. Radić, S. Jurmanović, M. Jug, M. G. Rajković, S. Pedisić, T. Moslavac and P. Albahari, Valorization of olive pomace-based nutraceuticals as antioxidants in chemical, food, and biological models, Molecules 23(8) (2018) Article ID 2070 (22 pages); https://doi.org/10.3390/molecules23082070
- P. Albahari, M. Jug, K. Radić, S. Jurmanović, M. Brnčić, S. R. Brnčić and D. Vitali Čepo, Characterization of olive pomace extract obtained by cyclodextrin-enhanced pulsed ultrasound assisted extraction, LWT-Food Sci. Technol. 92 (2018) 22–31; https://doi.org/10.1016/j.lwt.2018.02.011
- K. Radić, I. Vinković Vrček, I. Pavičić and D. V. Čepo, Cellular antioxidant activity of olive pomace extracts: Impact of gastrointestinal digestion and cyclodextrin encapsulation, Molecules 25(21) (2020) Article ID 5027 (15 pages); https://doi.org/10.3390/molecules25215027
- A. Silenzi, C. Giovannini, B. Scazzocchio, R. Varì, M. D’Archivio, C. Santangelo and R. Masella, Extra Virgin Olive Oil Polyphenols: Biological Properties and Antioxidant Activity, in Pathology – Oxidative Stress Dietary Antioxidants (Ed. V. R. Preedy), Elsevier Inc., Amsterdam 2020, pp. 225–233; https://doi.org/10.1016/C2017-0-04109-5
- L. Melguizo-Rodríguez, R. Illescas-Montes, V. J. Costela-Ruiz, J. Ramos-Torrecillas, E. de Luna-Bertos, O. García-Martínez and C. Ruiz, Antimicrobial properties of olive oil phenolic compounds and their regenerative capacity towards fibroblast cells, J. Tissue Viabil. 30(3) (2021) 372–378; https://doi.org/10.1016/j.jtv.2021.03.003
- E. Galić, K. Radić, N. Golub, D. Vitali Čepo, N. Kalčec, E. Vrček and T. Vinković, Utilization of olive pomace in green synthesis of selenium nanoparticles: Physico-chemical characterization, bioaccessibility and biocompatibility, Int. J. Mol. Sci. 23(16) (2022) Article ID 9128 (16 pages); https://doi.org/10.3390/ijms23169128
- S. Menon, S. Devi K. S., R. Santhiya, S. Rajeshkumar and V. Kumar S., Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism, Colloids Surf. B. 170 (2018) 280–292; https://doi.org/10.1016/j.colsurfb.2018.06.006
- Y. Huang, L. He, W. Liu, C. Fan, W. Zheng, Y. S. Wong and T. Chen, Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles, Biomaterials 34(29) (2013) 7106–7116; https://doi.org/10.1016/j.biomaterials.2013.04.067
- P. Sonkusre and S. S. Cameotra, Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation, J. Nanobiotechnol. 15(1) (2017) 1–12; https://doi.org/10.1186/s12951-017-0276-3
- B. Yu, Y. Zhang, W. Zheng, C. Fan and T. Chen, Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles, Inorg. Chem. 51(16) (2012) 8956–8963; https://doi.org/10.1021/ic301050v
- A. Khurana, S. Tekula, M. A. Saifi, P. Venkatesh and C. Godugu, Therapeutic applications of selenium nanoparticles, Biomed. Pharmacother. 111 (2019) 802–812; https://doi.org/10.1016/j.biopha.2018.12.146
- M. A. El-Ghazaly, N. Fadel, E. Rashed, A. El-Batal and S. A. Kenawy, Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats, Can. J. Physiol. Pharmacol. 95(2) (2016) 101–110; https://doi.org/10.1139/cjpp-2016-0183
- Y. Li, X. Li, Y. S. Wong, T. Chen, H. Zhang, C. Liu and W. Zheng, The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis, Biomaterials 32(34) (2011) 9068–9076; https://doi.org/10.1016/j.biomaterials.2011.08.001
- A. Kumar and K. S. Prasad, Role of nano-selenium in health and environment, J. Biotechnol. 325 (2021) 152–163; https://doi.org/10.1016/j.jbiotec.2020.11.004
- R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26 (9–10) (1999) 1231–1237; https://doi.org/10.1016/s0891-5849(98)00315-3
- E. A. Ainsworth and K. M. Gillespie, Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent, Nat. Protoc. 2 (2007) 875–877; https://doi.org/10.1038/nprot.2007.102
- A. Aranda, L. Sequedo, L. Tolosa, G. Quintas, E. Burello, J. V. Castell and L. Gombau, Dichloro-di-hydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells, Toxicol. In Vitro 27(2) (2013) 954–963; https://doi.org/10.1016/j.tiv.2013.01.016
- D. Stevenson, D. Wokosin, J. Girkin and M. H. Grant, Measurement of the intracellular distribution of reduced glutathione in cultured rat hepatocytes using monochlorobimane and confocal laser scanning microscopy, Toxicol. Vitr. 16(5) (2002) 609–619; https://doi.org/10.1016/s0887-2333(02)00042-5
- A. Galano and J. R. Alvarez-Idaboy, Glutathione: mechanism and kinetics of its non-enzymatic defense action against free radicals, RSC Adv. 1 (2011) 1763–1771; https://doi.org/10.1039/C1RA00474C
- S. Raj Rai, C. Bhattacharyya, A. Sarkar, S. Chakraborty, E. Sircar, S. Dutta and R. Sengupta, Glutathione: Role in oxidative/nitrosative stress, antioxidant defense, and treatments, ChemistrySelect 6(18) (2021) 4566–4590; https://doi.org/10.1002/slct.202100773
- E. Galić, K. Ilić, S. Hartl, C. Tetyczka, K. Kasemets, I. Kurvet, M. Milić, R. Barbir, B. Pem, I. Erceg, M. Dutour Sikirić, I. Pavičić, E. Roblegg, A. Kahru and I. Vinković Vrček, Impact of surface functionalization on the toxicity and antimicrobial effects of selenium nanoparticles considering different routes of entry, Food Chem. Toxicol. 144 (2020) 111621; https://doi.org/10.1016/j.fct.2020.111621
- H.-M. Shen, C.-F. Yang and C.-N. Ong, Sodium selenite-induced oxidative stress and apoptosis in human hepatoma HepG2 cells, J. Cancer 81(5) (1999) 820–828; https://doi.org/10.1002/(sici)1097-0215(19990531)81:5<820::aid-ijc25>3.0.co;2-f
- S. Zheng, X. Li, Y. Zhang, Q. Xie, Y. S. Wong, W. Zheng and T. Chen, PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction, Int. J. Nanomedicine 7 (2012) 3939–3949; https://doi.org/10.2147/IJN.S30940
- L. Guo, J. Xiao, H. Liu and H. Liu, Selenium nanoparticles alleviate hyperlipidemia and vascular injury in ApoE-deficient mice by regulating cholesterol metabolism and reducing oxidative stress, Metallomics 12(2) (2020) 204–217; https://doi.org/10.1039/c9mt00215d
- D. Di, M. I. Tri Jevic, A. N. Drew, J. Shaw, A. Ander and T. Florence, Effects of some non-ionic surfactants on transepithelial permeability in Caco-2 cells, J. Pharm. Pharmacol. 52(2) (2010) 157–162; https://doi.org/10.1211/0022357001773805
- T. Hua, X. Zhang, B. Tang, C. Chang, G. Liu, L. Feng, Y. Yu, D. Zhang and J. Hou, Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection, BMC Vet. Res. 14 (2018) 1–8; https://doi.org/10.1186/s12917-018-1457-5
- A. Sukhanova, S. Bozrova, P. Sokolov, M. Berestovoy, A. Karaulov and I. Nabiev, Dependence of nanoparticle toxicity on their physical and chemical properties, Nanoscale Res. Lett. 13 (2018) 1–21; https://doi.org/10.1186/s11671-018-2457-x
- J. Zhou, D. Zhang, X. Lv, X. Liu, W. Xu, L. Chen, J. Cai, Z. U. Din and S. Cheng, Green synthesis of robust selenium nanoparticles via polysaccharide-polyphenol interaction: design principles and structure-bioactivity relationship, ACS Sustain. Chem. Eng. 10(6) (2022) 2052–2062; https://doi.org/10.1021/acssuschemeng.1c06048
- L. Gunti, R. S. Dass and N. K. Kalagatur, Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: Antioxidant, antimicrobial, and biocompatibility, Front. Microbiol. 10 (2019) 1–17; https://doi.org/10.3389/fmicb.2019.00931
- V. Alagesan and S. Venugopal, Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities, Bionanoscience 9 (2019) 105–116; https://doi.org/10.1007/s12668-018-0566-8
- W. Y. Qiu, Y. Y. Wang, M. Wang and J. K. Yan, Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles, Colloids Surfaces B Biointerfaces 170 (2018) 692–700; https://doi.org/10.1016/j.colsurfb.2018.07.003
- Y. Liu, W. Huang, W. Han, C. Li, Z. Zhang, B. Hu, S. Chen, P. Cui, S. Luo, Z. Tang, W. Wu and Q. Luo, Structure characterization of Oudemansiella radicata polysaccharide and preparation of selenium nanoparticles to enhance the antioxidant activities, LWT-Food Sci. Technol. 146 (2021) Article ID 111469 (9 pages); https://doi.org/10.1016/j.lwt.2021.111469
- Y. Cheng, X. Xiao, X. Li, D. Song, Z. Lu, F. Wang and Y. Wang, Characterization, antioxidant property and cytoprotection of exopolysaccharide-capped elemental selenium particles synthesized by Bacillus paralicheniformis SR14, Carbohydr. Polym. 178 (2017) 18–26; https://doi.org/10.1016/j.carbpol.2017.08.124
- C. Xu, L. Qiao, Y. Guo, L. Ma and Y. Cheng, Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393, Carbohydr. Polym. 195 (2018) 576–585; https://doi.org/10.1016/j.carbpol.2018.04
- C. Thiry, A. Ruttens, L. Pussemier and Y. J. Schneider, An in vitro investigation of species-dependent intestinal transport of selenium and the impact of this process on selenium bioavailability, Br. J. Nutr. 109(12) (2013) 2126–2134; https://doi.org/10.1017/S0007114512004412
- H. R. Shin, M. Kwak, T. G. Lee and J. Y. Lee, Quantifying the level of nanoparticle uptake in mammalian cells using flow cytometry, Nanoscale 12(29) (2020) 15743–15751; https://doi.org/10.1039/D0NR01627F
- X. Zhai, C. Zhang, G. Zhao, S. Stoll, F. Ren and X. Leng, Antioxidant capacities of the selenium nanoparticles stabilized by chitosan, J. Nanobiotechnol. 15 (2017) Article ID 4 (12 pages); https://doi.org/10.1186/s12951-016-0243-4
- D. Song, Y. Cheng, X. Li, F. Wang, Z. Lu, X. Xiao and Y. Wang, Biogenic nanoselenium particles effectively attenuate oxidative stress-induced intestinal epithelial barrier injury by activating the Nrf2 antioxidant pathway, ACS Appl. Mater. Interfaces 9(17) (2017) 14724–14740; https://doi.org/10.1021/acsami.7b03377