References
- F. L. J. Visseren, F. Mach, Y. M. Smulders, D. Carballo, K. C. Koskinas, M. Bäck, A. Benetos, A. Biffi, M. .J. Boavida, D. Capodanno, B. Cosyns, C. Crawford, C. H. Davos, I. Desormais, E. Di Angelan-tonio, O. Franco, S. Halvorsen, R. F. Hobbs, M. Hollander, E. Jankowska, M. Michal, S. Sacco, N. Sattar, L. Tokgozoglu, S. Tonstad, K. P Tsioufis, I. van Dis, I. van Gelder, C. Wanner and B. Williams, ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies with the special contribution of the European Association of Preventive Cardiology (EAPC), Eur. Heart J. 42(34) (2021) 3227–3337; https://doi.org/10.1093/eurheartj/ehab484
- F. Mach, C. Baigent, A. L. Catapano, K. C. Koskinas, M. Casula, L. Badimon, M. J. Chapman, G. G. De Backer, V. Delgado, I. M. Graham, A. Halliday, U. Landmesser, G. Riccardi, D. J. Richter, M. S. Sabatine, M. Taskinen, L. Tokgozoglu and O. Wiklund, ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS), European Heart Journal 41(1) (2020) 111–188; https://doi.org/10.1093/eurheartj/ehz455
- A. J. Kattoor, N. V. K. Pothineni, D. Palagiri and J. Mehta, Oxidative stress in atherosclerosis, Curr. Atheroscler. Rep. 19 (2017) Article ID 42; https://doi.org/10.1007/s11883-017-0678-6
- T. Senoner and W. Dichtl, Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target?, Nutrients 11 (2019) Article ID 2090 (25 pages); https://doi.org/10.3390/nu11092090
- J. Tuñón, M. Bäck, L. Badimón, M. Bochaton-Piallat, B. Cariou, M. J. Daemen, J. Egido, P. Evans, S. E. Francis, D. Ketelhuth, E. Lutgens, C. M. Matter, C. Monaco, S. Steffens, C. Weber and I. E. Hoefer, on behalf of the ESC Working Group on Atherosclerosis and Vascular Biology. Interplay between hypercholesterolaemia and inflammation in atherosclerosis: Translating experimental targets into clinical practice, Eur. J. Prev. Cardiol. 25(9) (2018) 948–955; https://doi.org/10.1177/2047487318773384
- K. B. Uribe, A. Benito-Vicente, C. Martin, F. Blanco-Vaca and N. Rotllan, (r)HDL in theranostics: how do we apply HDL’s biology for precision medicine in atherosclerosis management? Biomater. Sci. 9 (2021) 3185–3208; https://doi.org/10.1039/D0BM01838D
- C. B. Afonso and C. M. Spickett, Lipoproteins as targets and markers of lipoxidation, Redox Biol. 23 (2019) Article ID 101066 (16 pages); https://doi.org/10.1016/j.redox.2018.101066
- S. Kajani, S. Curley and F. C. McGillicuddy, Unravelling HDL-looking beyond the cholesterol surface to the quality within, Int. J. Mol. Sci. 19(7) (2018) Article ID 1971 (23 pages); https://doi.org/10.3390/ijms19071971
- E. M. Stakhneva, E. V. Striukova and Y. I. Ragino, Proteomic studies of blood and vascular wall in atherosclerosis, Int. J. Mol. Sci. 22(24) (2021) Article ID 13267 (17 pages); https://doi.org/10.3390/ijms222413267
- J. C. Torres-Romero, J. C. Lara-Riegos, E. Parra, V. Sánchez, V. E. Arana-Argáez, S. Uc-Colli, M. Peña-Rico, M. A. Ramírez-Camacho, M. Regalado and M. E. Alvarez-Sánchez, Lipoproteomics: Methodologies and Analysis of Lipoprotein-Associated Proteins along with the Drug Intervention, in Drug Design – Novel Advances in the Omics Field and Applications (Ed. A. A. Parikesit), IntechOpen, Jakarta 2020.
- J. T. Wilkins and H. S. Seckler, HDL modification: recent developments and their relevance to atherosclerotic cardiovascular disease, Curr. Opin. Lipidol. 30(1) (2019) 24–29; https://doi.org/10.1097/MOL.0000000000000571
- W. S. Davidson, A. S. Shah, H. Sexmith and S. M. Gordon, The HDL Proteome Watch: Compilation of studies leads to new insights on HDL function, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1867(2) (2022) Article ID 159072; https://doi.org/10.1016/j.bbalip.2021.159072
- R. J. Havel, H. A. Eder and J. Bragdon, The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum, J. Clin. Invest. 34(9) (1955) 1345–1353; https://doi.org/10.1172/JCI103182
- E. de Juan-Franco, A. Pérez, V. Ribas, J. Sánchez-Hernández, F. Blanco-Vaca, J. Ordóñez-Llanos and J. Sánchez-Quesada, Standardization of a method to evaluate the antioxidant capacity of high-density lipoproteins, Int. J. Biomed. Sci. 5(4) (2009) 402–410.
- Y. Q. Yu, M. Gilar, P. J. Lee, E. Bouvier and J. Gebler, Enzyme-friendly mass spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins, Anal. Chem. 75(21) (2003) 6023–6028; https://doi.org/10.1021/ac0346196
- K. Davalieva, S. Kiprijanovska, A. Dimovski, G. Rosoklija and A. J. Dwork, Comparative evaluation of two methods for LC-MS/MS proteomic analysis of formalin fixed and paraffin embedded tissues, J. Proteomics 235 (2021) Article ID 104117; https://doi.org/10.1016/j.jprot.2021.104117
- J. C. Silva, R. Denny, C. Dorschel, M. Gorenstein, I. Kass, G. Z Li, T. McKenna, M. J. Nold, K. Richardson and P. Young, Quantitative proteomic analysis by accurate mass retention time pairs, Anal. Chem. 77(7) (2005) 2187–2200; https://doi.org/10.1021/ac048455k
- U. Distler, J. Kuharev, P. Navarro and S. Tenzer, Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics, Nat. Protoc. 11 (2016) 795–812; https://doi.org/10.1038/nprot.2016.042
- G. E. Ronsein and T. Vaisar, Deepening our understanding of HDL proteome, Expert Rev. Proteomics 16 (2019) 749–760; https://doi.org/10.1080/14789450.2019.1650645
- W. S. Davidson, A. S. Shah, H. Sexmith and S. M. Gordon, The HDL proteome watch: Compilation of studies leads to new insights on HDL function, Biochim. Biophys. Acta Mol. Cell. Bio.l Lipids 1867(2) (2022) Article ID 159072; https://doi.org/10.1016/j.bbalip.2021.159072
- A. S. Shah, L. Tan, J. Long and W. S. Davidson, Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond, J. Lipid Res. 54(10) (2013) 2575–2585; https://doi.org/10.1194/jlr.R035725
- S. M. Gordon and A. T. Remaley, High density lipoproteins are modulators of protease activity: implications in inflammation, complement activation, and atherothrombosis, Atherosclerosis 259 (2017) 104–113; https://doi.org/10.1016/j.atherosclerosis.2016.11.015
- Y. Yu, Y. Cui, Y. Zhao, S. Liu, G. Song, P. Jiao, B. Li, T. Luo, S. Guo, X. Zhang, H. Wang, X. Jiang and S. Qin, The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation, Sci. Rep. 6 (2016) Article ID 20845 (12 pages); https://doi.org/10.1038/srep20845
- A. S. Greene and S. L. Hajduk, Trypanosome lytic Factor-1 initiates oxidation-stimulated osmotic lysis of trypanosoma brucei brucei, J. Biol. Chem. 291(6) (2016) 3063–3075; https://doi.org/10.1074/jbc.M115.680371
- X. Xu, Y. Wang, C. M. Spring, J. Jin, H. Yang, M. Neves, P. Chen, Y. Yang, R. C. Gallant, J. Song, P. Ke, D. Zhang, N. Carrim, S. Yu, G. Zhu, Y. She, P. Chonelly, M. L. Rand, K. Adeli, J. Freedman, P. Marchese, W. S. Davidson, S. Jackson, C. Zhu and Z. Ruggeri, Apolipoprotein A-IV binds alphaIIbbeta3 integrin and inhibits thrombosis, Nat. Commun. 9(3) (2018) Article ID 3608 (18 pages); https://doi.org/10.1038/s41467-018-05806-0
- E. Reis, D. Mastellos, G. Hajishengallis and J. Lambris, New insights into the immune functions of complement, Nat. Rev. Immunol. 19 (2019) 503–516; https://doi.org/10.1038/s41577-019-0168-x
- D. Alkam, E. Feldman, A. Singh and M. Kiaei, Profilin1 biology and its mutation, actin(g) in disease, Cell Mol. Life Sci. 74 (2017) 967–981; https://doi.org/10.1007/s00018-016-2372-1
- A. Allen, D. Gau, P. Roy, The role of profilin-1 in cardiovascular diseases, J. Cell Sci. 134(9) (2021) Article ID jcs249060 (11 pages); https://doi.org/10.1242/jcs.249060
- E. Caglayan, G. Romeo, K. Kappert, M. Odenthal, M. Südkamp, S. Body, S. Shernan, D. Hackbusch and S. Rosenkranz, Profilin-1 is expressed in human atherosclerotic plaques and induces atherogenic effects on vascular smooth muscle cells, PLoS One 5(10) (2010) e13608 (9 pages); https://doi.org/10.1371/journal.pone.0013608
- G. Romeo, M. Pae, D. Eberlé, J. Lee and S. Shoelson, Profilin-1 haploinsufficiency protects against obesity-associated glucose intolerance and preserves adipose tissue immune homeostasis, Diabetes 62(11) (2013) 3718–3726; https://doi.org/10.2337/db13-0050
- B. Kasper and F. Petersen, Molecular pathways of platelet factor 4/CXCL4 signaling, Eur. J. Cell Biol. 90(6–7) (2011) 521–526; https://doi.org/10.1016/j.ejcb.2010.12.002
- L. Lasagni, R. Grepin, B. Mazzinghi, E. Lazzeri, C. Meini, F. Frosali, E. Ronconi, N. Alain-Courtois, L. Ballerini, G. Netti, F. Maggi, F. Annunziato, M. Serio, S. Romagnani, A. Bikfalvi and P. Romagnani, PF-4/CXCL4 and CXCL4L1 exhibit distinct subcellular localization and a differentially regulated mechanism of secretion, Blood 109(10) (2007) 4127–4134; https://doi.org/10.1182/blood-2006-10-052035
- J. Vandercappellen, J. Van Damme and S. Struyf, The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer, Cytokine Growth Factor Rev. 22(1) (2011) 1–18; https://doi.org/10.1016/j.cytogfr.2010.10.011
- M. Gouwy, P. Ruytinx, E. Radice, F. Claudi, K. Van Raemdonck and S. Struyf, CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis, PLoS One 11(11) (2016) e0166006 (24 pages); https://doi.org/10.1371/journal.pone.0166006
- K. Bledzka, S. Smyth and E. Plow, Integrin αIIbβ3: from discovery to efficacious therapeutic target, Circ. Res. 112(8) (2013) 1189–1200; https://doi.org/10.1161/CIRCRESAHA.112.300570
- E. Dupree, M. Jayathirtha, H. Yorkey, M. Mihasan, B. Petre and C. Darie, A critical review of bottom-up proteomics: The good, the bad, and the future of this field, Proteomes 8(3) (2020) Article ID 14; https://doi.org/10.3390/proteomes8030014