Have a personal or library account? Click to login
Synthesis and protective effect of pyrazole conjugated imidazo[1,2-a]pyrazine derivatives against acute lung injury in sepsis rats via attenuation of NF-κB, oxidative stress, and apoptosis Cover

Synthesis and protective effect of pyrazole conjugated imidazo[1,2-a]pyrazine derivatives against acute lung injury in sepsis rats via attenuation of NF-κB, oxidative stress, and apoptosis

By: Binbin Zang and  Lihui Wang  
Open Access
|Sep 2023

References

  1. Y. Lin, Y. Xu and Z. Zhang, Sepsis-induced myocardial dysfunction (SIMD): the pathophysiological mechanisms and therapeutic strategies targeting mitochondria, Inflammation 43(4) (2016) 1184–1200; https://doi.org/10.1007/s10753-020-01233-w
  2. J. C. Marshall and A. al Naqbi, Principles of source control in the management of sepsis, Crit. Care Clin. 25(4) (2019) 753–768; https://doi.org/10.1016/j.ccc.2009.08.001
  3. E. R. Johnson and M. A. Matthay, Acute lung injury: Epidemiology, pathogenesis, and treatment, J. Aerosol Med. Pulm. Drug Deliv. 23(4) 2010 243–252; https://doi.org/10.1089/jamp.2009.0775
  4. Y. Chen, H. Tong, Z. Pan, D. Jiang, X. Zhang, J. Qiu, L. Su and M. Zhang, Xuebijing injection attenuates pulmonary injury by reducing oxidative stress and pro-inflammatory damage in rats with heat stroke, Exp. Ther. Med. 13 (2017) 3408–3416; https://doi.org/10.3892/etm.2017.4444
  5. S. Saharan, R. Lodha and S. K. Kabra, Management of acute lung injury/ARDS, Indian J. Pediatr. 77(11) (2010) 1296–1302; https://doi.org/10.1007/s12098-010-0169-z
  6. J. C. Rudkowski, E. Barreiro, R. Harfouche, P. Goldberg, O. Kishta, P. D’Orleans-Juste, J. Labonte, O. Lesur and S. N. A. Hussain, Roles of iNOS and nNOS in sepsis-induced pulmonary apoptosis, Am. J. Physiol. Lung Cell. Mol. Physiol. 286 (2004) L793–L800; https://doi.org/10.1152/ajplung.00266.2003
  7. A. Ansari, A. Ali, M. Asif and Shamsuzzaman, Review: biologically active pyrazole derivatives, New J. Chem. 41 (2017) 16–41; https://doi.org/10.1039/c6nj03181a
  8. J. Marino, Celecoxib, in The Essence Analgesia and Analgesics – Section 4 NSAIDS – Chapter 56, (Eds. R. S. Sinatra, J. S. Jahr and J. M. Watkins-Pitchford), Cambridge University Press, Cambridge 2010, pp. 238–242; https://doi.org/10.1017/CBO9780511841378.056
  9. G. Steinbach, P. M. Lynch, R. K. S. Phillips, M. H. Wallace, E. Hawk, G. B. Gordon, N. Wakabayashi, B. Saunders, Y. Shen, T. Fujimura, L. K. Su, B. Levin, L. Godio, S. Patterson, M. A. Rodriguez-Bigas, S. L. Jester, K. L. King, M. Schumacher, J. Abbruzzese, R. N. DuBois, W. N. Hittelman, S. Zimmerman, J. W. Sherman and G. Kelloff, The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis, N. Engl. J. Med. 342 (2000) 1946–1952; https://doi.org/10.1056/NEJM200006293422603
  10. M. Mantzanidou, E. Pontiki and D. Hadjipavlou-Litina, Pyrazoles and pyrazolines as anti-inflammatory agents, Molecules 26(11) (2021) Article ID 3439 (18 pages); https://doi.org/10.3390/molecules26113439
  11. A. Rahman and F. Fazal, Blocking NF-kB: An inflammatory issue, Proc. Am. Thorac. Soc. 8(6) (2011) 497–503; https://doi.org/10.1513/pats.201101-009MW
  12. E. Abraham, Nuclear factor-κB and its role in sepsis-associated organ failure, J. Infect. Dis. 187 (2003) S364–S369; https://doi.org/10.1086/374750
  13. C. Bhan, P. Dipankar, P. Chakraborty and P. P. Sarangi, Role of cellular events in the pathophysiology of sepsis, Inflamm. Res. 65(11) (2016) 853–868; https://doi.org/10.1007/s00011-016-0970-x
  14. L. Bird, Inflammation: Hope for sepsis treatment, Nat. Rev. Drug Discov. 9 (2010) 516–517; https://doi.org/10.1038/nrd3212
  15. R. Goel, V. Luxami and K. Paul, Recent advances in development of imidazo[1,2-a]pyrazines: Synthesis, reactivity and their biological applications, Org. Biomol. Chem. 13(12) (2015) 3525–3555; https://doi.org/10.1039/c4ob01380h
  16. S. Hemasrilatha, K. Sruthi, A. Manjula, V. Harinadha Babu and B. Vittal Rao, Synthesis and anti-inflammatory activity of imidazo[1,2-a]pyridinyl/pyrazinyl benzamides and acetamides, Indian J. Chem. – Sect. B Org. Med. Chem. 51 (2012) 981–987.
  17. A. Özdemir, G. Turan-Zitouni, Z. A. Kaplancikli and Y. Tunali, Synthesis and biological activities of new hydrazide derivatives, J. Enzyme Inhib. Med. Chem. 24 (2009) 825–831; https://doi.org/10.1080/14756360802399712
  18. S. A. H. El-Feky, Z. K. Abd El-Samii, N. A. Osman, J. Lashine, M. A. Kamel and H. K. Thabet, Synthesis, molecular docking and anti-inflammatory screening of novel quinoline incorporated pyrazole derivatives using the Pfitzinger reaction II, Bioorg. Chem. 58 (2015) 104–116; https://doi.org/10.1016/j.bioorg.2014.12.003
  19. J. K. Srivastava, G. G. Pillai, H. R. Bhat, A. Verma and U. P. Singh, Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating epidermal growth factor receptor tyrosine kinase, Sci. Rep. 7 (2017) Article ID 5851 (17 pages); https://doi.org/10.1038/s41598-017-05934-5
  20. J. K. Srivastava, N. T. Awatade, H. R. Bhat, A. Kmit, K. Mendes, M. Ramos, M. D. Amaral and U. P. Singh, Pharmacological evaluation of hybrid thiazolidin-4-one-1,3,5-triazines for NF-κB, biofilm and CFTR activity, RSC Adv. 5(108) (2015) 88710–88718; https://doi.org/10.1039/c5ra09250g
  21. A. Masih, A. K. Agnihotri, J. K. Srivastava, N. Pandey, H. R. Bhat and U. P. Singh, Discovery of novel pyrazole derivatives as a potent anti-inflammatory agent in RAW264.7 cells via inhibition of NF-ĸB for possible benefit against SARS-CoV-2, J. Biochem. Mol. Toxicol. 35 (2021) e22656; https://doi.org/10.1002/jbt.22656
  22. Organisation for Economic Co-operation and Development, OECD Guidelines, OECD 423. Acute Oral Toxicity, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris 2002; https://www.oecd-ilibrary.org/environment/test-no-423-acute-oral-toxicity-acute-toxic-class-method_9789264071001-en
  23. L. Dejager, I. Pinheiro, E. Dejonckheere and C. Libert, Cecal ligation and puncture: The gold standard model for polymicrobial sepsis?, Trends Microbiol. 19(4) (2011) 198–208; https://doi.org/10.1016/j.tim.2011.01.001
  24. L. A. Huppert, M. A. Matthay and L. B. Ware, Pathogenesis of acute respiratory distress syndrome, Semin. Respir. Crit. Care Med. 40 (2019) 31–39; https://doi.org/10.1055/s-0039-1683996
  25. A. J. Walkey, R. Summer, V. Ho and P. Alkana, Acute respiratory distress syndrome: Epidemiology and management approaches, Clin. Epidemiol. 4(1) (2012) 159–169; https://doi.org/10.2147/CLEP.S28800
  26. Q. Kong, X. Wu, Z. Qiu, Q. Huang, Z. Xia and X. Song, Protective effect of dexmedetomidine on acute lung injury via the upregulation of tumour necrosis factor-α-induced protein-8-like 2 in septic mice, Inflammation 43 (2020) 833–846; https://doi.org/10.1007/s10753-019-01169-w
  27. M. T. P. de Oliveira, D. de S. Coutinho, É. T. de Souza, S. S. Guterres, A. R. Pohlmann, P. M. R. Silva, M. A. Martins and A. Bernardi, Orally delivered resveratrol-loaded lipid-core nanocapsules ameliorate LPS-induced acute lung injury via the ERK and PI3K/Akt pathways, Int. J. Nanomed. 14 (2019) 5215–5228; https://doi.org/10.2147/IJN.S200666
  28. B. B. Davis, Y.-H. Shen, D. J. Tancredi, V. Flores, R. P. Davis and K. E. Pinkerton, Leukocytes are recruited through the bronchial circulation to the lung in a spontaneously hypertensive rat model of COPD, PLoS ONE 7(3) (2012) e33304; https://doi.org/10.1371/journal.pone.0033304
  29. J. Rebetz, J. W. Semple and R. Kapur, The pathogenic involvement of neutrophils in acute respiratory distress syndrome and transfusion-related acute lung injury, Transfus. Med. Hemother. 45(5) (2018) 290–298; https://doi.org/10.1159/000492950
  30. C. W. Chow, M. T. H. Abreu, T. Suzuki and G. P. Downey, Oxidative stress and acute lung injury, Am. J. Respir. Cell Mol. Biol. 29(4) (2003) 427–431; https://doi.org/10.1165/rcmb.F278
  31. H. S. Park, S. R. Kim and Y. C. Lee, Impact of oxidative stress on lung diseases, Respirology 14(1) (2009) 27–38; https://doi.org/10.1111/j.1440-1843.2008.01447.x
  32. V. M. Victor, M. Rocha and M. De La Fuente, Immune cells: Free radicals and antioxidants in sepsis, Int. Immunopharmacol. 4(3) (2004) 327–347; https://doi.org/10.1016/j.intimp.2004.01.020
  33. D. Bin Yim, D. E. Lee, Y. So, C. Choi, W. Son, K. Jang, C. S. Yang and J. H. Kim, Sustainable nanosheet antioxidants for sepsis therapy via scavenging intracellular reactive oxygen and nitrogen species, ACS Nano 14 (2020) 10324–10336; https://doi.org/10.1021/acsnano.0c03807
  34. H. F. Galley, Bench-to-bedside review: Targeting antioxidants to mitochondria in sepsis, Crit. Care 14(4) (2010) Article ID 230 (9 pages); https://doi.org/10.1186/cc9098
  35. M. Rocha, R. Herance, S. Rovira, A. Hernández-Mijares and V. M. Victor, Mitochondrial dysfunction and antioxidant therapy in sepsis, Infect. Disord. - Drug Targets 12(2) (2012) 161–178; https://doi.org/10.2174/187152612800100189
  36. A. Strzepa, K. A. Pritchard and B. N. Dittel, Myeloperoxidase: A new player in autoimmunity, Cell. Immunol. 317 (2017) 1–8; https://doi.org/10.1016/j.cellimm.2017.05.002
  37. D. R. Janeiro, Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury, Free Radic. Biol. Med. 9(6) (1990) 515–540; https://doi.org/10.1016/0891-5849(90)90131-2
  38. J. Sha, B. Sui, X. Su, Q. Meng and C. Zhang, Alteration of oxidative stress and inflammatory cytokines induces apoptosis in diabetic nephropathy, Mol. Med. Rep. 16 (2017) 7715–7723; https://doi.org/10.3892/mmr.2017.7522
  39. D. K. Gupta, J. M. Palma and F. J. Corpas (Eds.), Reactive Oxygen Species and Oxidative Damage in Plants Under Stress, Springer, Cham 2015.
  40. R. B. Goodman, J. Pugin, J. S. Lee and M. A. Matthay, Cytokine-mediated inflammation in acute lung injury, Cytokine Growth Factor Rev. 14(6) (2003) 523–535; https://doi.org/10.1016/S1359-6101(03)00059-5
  41. U. P. Singh, J. K. Srivastava and H. R. Bhat, Discovery of novel 1,3,5-triazine-thiourea based dual PI3K/mTOR inhibitor against non-small cell lung cancer (NSCLC), Ann. Oncol. 27(Suppl. 9) (2016) 161P - Abstracts ix50; https://doi.org/10.1016/S0923-7534(21)00319-7
  42. Q, Kong, X. Wu, Z. Qiu, Q. Huang, Z. Xia and X. Song, Protective effect of dexmedetomidine on acute lung injury via the upregulation of tumour necrosis factor-α-induced protein-8-like 2 in septic mice, Inflammation 43 (2020) 833–846; https://doi.org/10.1007/s10753-019-01169-w
  43. Y. Chen, H. Tong, Z. Pan, D. Jiang, X. Zhang, J. Qiu, L. Su and M. Zhang, Xuebijing injection attenuates pulmonary injury by reducing oxidative stress and pro-inflammatory damage in rats with heat stroke, Exp. Ther. Med. 13 (2017) 3408–3416; https://doi.org/10.3892/etm.2017.4444
  44. D. Jiang, J. Liang, J. Fan, S. Yu, S. Chen, Y. Luo, G. D. Prestwich, M. M. Mascarenhas, H. G. Garg, D. A. Quinn, R. J. Homer, D. R. Goldstein, R. Bucala, P. J. Lee, R. Medzhitov and P. W. Noble, Regulation of lung injury and repair by toll-like receptors and hyaluronan, Nat. Med. 11 (2005) 1173–1179; https://doi.org/10.1038/nm1315
DOI: https://doi.org/10.2478/acph-2023-0031 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 341 - 362
Accepted on: Jun 14, 2023
Published on: Sep 14, 2023
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2023 Binbin Zang, Lihui Wang, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.