Have a personal or library account? Click to login
A novel 4-(1,3,4-thiadiazole-2-ylthio)pyrimidine derivative inhibits cell proliferation by suppressing the MEK/ERK signaling pathway in colorectal cancer Cover

A novel 4-(1,3,4-thiadiazole-2-ylthio)pyrimidine derivative inhibits cell proliferation by suppressing the MEK/ERK signaling pathway in colorectal cancer

Open Access
|Sep 2023

References

  1. H. Sung, J. Ferlay, R. L.Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71(3) (2021) 209–249; https://doi.org/10.3322/caac.21660
  2. J. Ferlay, M. Colombet, I. Soerjomataram, D. M. Parkin, M. Piñeros, A. Znaor and F. Bray, Cancer statistics for the year 2020: An overview, Int. J. Cancer 149(4) (2021) 778–789; https://doi.org/10.1002/ijc.33588
  3. Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. Retrieved Mar 13, 2023, from https://www.iarc.who.int/news-events/latest-global-cancer-data-cancer-burden-rises-to-19-3-million-new-cases-and-10-0-million-cancer-deaths-in-2020/
  4. C. Xia, X. Dong, H. Li, M. Cao, D. Sun, S. He, F. Yang, X. Yan, S. Zhang, N. Li and W. Chen, Cancer statistics in China and United States, 2022: profiles, trends, and determinants, Chin. Med. J. (Engl). 135(5) (2022) 584–590; https://doi.org/10.1097/cm9.0000000000002108
  5. Y. Jiang, H. Yuan, Z. Li, X. Ji, Q. Shen, J. Tuo, J. Bi, H. Li and Y. Xiang, Global pattern and trends of colorectal cancer survival: a systematic review of population-based registration data, Cancer Biol. Med. 19(2) (2021) 175–186; https://doi.org/10.20892/j.issn.2095-3941.2020.0634
  6. N. Li, B. Lu, C. Luo, J. Cai, M. Lu, Y. Zhang, H. Chen and M. Dai, Incidence, mortality, survival, risk factor and screening of colorectal cancer: A comparison among China, Europe, and Northern America, Cancer Lett. 522 (2021) 255–268; https://doi.org/10.1016/j.canlet.2021.09.034
  7. E. Dekker, P. J. Tanis, J. L. A. Vleugels, P. M. Kasi and M. B. Wallace, Colorectal cancer, Lancet 394(10207) (2019) 1467–1480; https://doi.org/10.1016/s0140-6736(19)32319-0
  8. B. Dariya, S. Aliya, N. Merchant, A. Alam and G. P. Nagaraju, Colorectal cancer biology, diagnosis, and therapeutic approaches, Crit. Rev. Oncog. 25(2) (2020) 71–94; https://doi.org/10.1615/CritRevOncog.2020035067
  9. I. Mármol, C. Sánchez-de-Diego, A. Pradilla Dieste, E. Cerrada and M. J. Rodriguez Yoldi, Colorectal carcinoma: A general overview and future perspectives in colorectal cancer, Int. J. Mol. Sci. 18(1) (2017) Article ID 197 (40 pages); https://doi.org/10.3390/ijms18010197
  10. L. H. Biller and D. Schrag, Diagnosis and treatment of metastatic colorectal cancer: A review, JAMA. 325(7) (2021) 669–685; https://doi.org/10.1001/jama.2021.0106
  11. S. Piawah and A. P. Venook, Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer, Cancer. 125(23) (2019) 4139–4147; https://doi.org/10.1002/cncr.32163
  12. J. Zhou, Q. Ji and Q. Li, Resistance to anti-EGFR therapies in metastatic colorectal cancer: underlying mechanisms and reversal strategies, J. Exp. Clin. Cancer Res. 40 (2021) Article ID 328 (17 pages); https://doi.org/10.1186/s13046-021-02130-2
  13. U. Degirmenci, M. Wang and J. Hu, Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy, Cells. 9(1) (2020) Article ID 198 (33 pages); https://doi.org/10.3390/cells9010198
  14. H. Moon and S. W. Ro, MAPK/ERK signaling pathway in hepatocellular carcinoma, Cancers (Basel) 13(12) (2021) Article ID 3026 (19 pages); https://doi.org/10.3390/cancers13123026
  15. R. Barbosa, L. A. Acevedo and R. Marmorstein, The MEK/ERK network as a therapeutic target in human cancer, Mol. Cancer Res. 19(3) (2021) 361–374; https://doi.org/10.1158/1541-7786.mcr-20-0687
  16. Q. Wang, T. Wang, L. Zhu, N. He, C. Duan, W. Deng, H. Zhang and X. Zhang, Sophocarpine inhibits tumorgenesis of colorectal cancer via downregulation of MEK/ERK/VEGF pathway, Biol. Pharm. Bull. 42(11) (2019) 1830–1838; https://doi.org/10.1248/bpb.b19-00353
  17. H. Pan, Y. Wang, K. Na, Y. Wang, L. Wang, Z. Li, C. Guo, D. Guo and X. Wang, Autophagic flux disruption contributes to Ganoderma lucidum polysaccharide-induced apoptosis in human colorectal cancer cells via MAPK/ERK activation, Cell Death Dis. 10 (2019) Article ID 456 (18 pages); https://doi.org/10.1038/s41419-019-1653-7
  18. J. Ros, I. Baraibar, E. Sardo, N. Mulet, F. Salvà, G. Argilés, G. Martini, D. Ciardiello, J. L. Cuadra, J. Tabernero and E. Élez, BRAF, MEK and EGFR inhibition as treatment strategies in BRAF V600E metastatic colorectal cancer, Ther. Adv. Med. Oncol. 13 (2021) Article ID 1758835921992974; https://doi.org/10.1177/1758835921992974
  19. P. Zhang, H. Kawakami, W. Liu, X. Zeng, K. Strebhardt, K. Tao, S. Huang and F. A. Sinicrope, Targeting CDK1 and MEK/ERK overcomes apoptotic resistance in BRAF-mutant human colorectal cancer, Mol. Cancer Res. 16(3) (2018) 378–389; https://doi.org/10.1158/1541-7786.mcr-17-0404
  20. H. Tayama, H. Karasawa, A. Yamamura, Y. Okamura, F. Katsuoka, H. Suzuki, T. Kajiwara, M. Kobayashi, Y. Hatsuzawa, M. Shiihara, L. Bin, M. Y. Gazi, M. Sato, K. Kumada, S. Ito, M. Shimada, T. Furukawa, T. Kamei, S. Ohnuma and M. Unno, The association between ERK inhibitor sensitivity and molecular characteristics in colorectal cancer, Biochem. Biophys. Res. Commun. 560 (2021) 59–65; https://doi.org/10.1016/j.bbrc.2021.04.130
  21. M. Pashirzad, R. Khorasanian, M. M. Fard, M. H. Arjmand, H. Langari, M. Khazaei, S. Soleiman-pour, M. Rezayi, G. A. Ferns, S. M. Hassanian and A. Avan, The therapeutic potential of MAPK/ERK inhibitors in the treatment of colorectal cancer, Curr. Cancer Drug Targets 21(11) (2021) 932–943; https://doi.org/10.2174/1568009621666211103113339
  22. S. Gong, D. Xu, J. Zhu, F. Zou and R. Peng, Efficacy of the MEK inhibitor cobimetinib and its potential application to colorectal cancer cells. Cellular physiology and biochemistry, Cell Physiol. Biochem. 47 (2018) 680–693; https://doi.org/10.1159/000490022
  23. N. Abbas, G. S. P. Matada, P. S. Dhiwar, S. Patel and G. Devasahayam, Fused and substituted pyrimidine derivatives as profound anti-cancer agents, Anticancer Agents Med. Chem. 21(7) (2021) 861–893; https://doi.org/10.2174/1871520620666200721104431
  24. A. Ayati, S. Moghimi, M. Toolabi and A. Foroumadi, Pyrimidine-based EGFR TK inhibitors in targeted cancer therapy, Eur. J. Med. Chem. 221 (2021) Article ID 113523 (19 pages); https://doi.org/10.1016/j.ejmech.2021.113523
  25. S. Wang, X. H. Yuan, S. Q. Wang, W. Zhao, X. B. Chen and B. Yu, FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application, Eur. J. Med. Chem. 214 (2021) Article ID 113218 (21 pages); https://doi.org/10.1016/j.ejmech.2021.113218
  26. S. A. El-Metwally, M. M. Abou-El-Regal, I. H. Eissa, A. B. M. Mehany, H. A. Mahdy, H. Elkady, A. Elwan and E. B. Elkaeed, Discovery of thieno(2,3-d)pyrimidine-based derivatives as potent VEGFR-2 kinase inhibitors and anti-cancer agents, Bioorg. Chem. 112 (2021) Article ID 104947 (15 pages); https://doi.org/10.1016/j.bioorg.2021.104947
  27. W. Li, J. Chu, T. Fan, W. Zhang, M. Yao, Z. Ning, M. Wang, J. Sun, X. Zhao and A. Wen, Design and synthesis of novel 1-phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4-thiadiazol-2-yl)urea derivatives with potent anti-CML activity throughout PI3K/AKT signaling pathway, Bioorg. Med. Chem. Lett. 29(14) (2019) 1831–1835; https://doi.org/10.1016/j.bmcl.2019.05.005
  28. S. Elmore, Apoptosis: a review of programmed cell death, Toxicol. Pathol. 35(4) (2007) 495–516; https://doi.org/10.1080/01926230701320337
  29. T. L. Lochmann, Y. M. Bouck and A. C. Faber, BCL-2 inhibition is a promising therapeutic strategy for small cell lung cancer, Oncoscience 5(7-8) (2018) 218–219; https://doi.org/10.18632/oncoscience.455
  30. J. Bennouna, M. Deslandres, H. Senellart, C. de Labareyre, R. Ruiz-Soto, C. Wixon, J. Botbyl, A. B. Suttle and J. P. Delord, A phase I open-label study of the safety, tolerability, and pharmacokinetics of pazopanib in combination with irinotecan and cetuximab for relapsed or refractory metastatic colorectal cancer, Invest. New Drugs. 33 (2015) 138–147; https://doi.org/10.1007/s10637-014-0142-1
  31. M. Javle, S. Roychowdhury, R. K. Kelley, S. Sadeghi, T. Macarulla, K. H. Weiss, D. T. Waldschmidt, L. Goyal, I. Borbath, A. El-Khoueiry, M. J. Borad, W. P. Yong, P. A. Philip, M. Bitzer, S. Tanasanvimon, A. Li, A. Pande, H. S. Soifer, S. P. Shepherd, S. Moran, A. X. Zhu, T. S. Bekaii-Saab and G. K. Abou-Alfa, Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study, Lancet Gastroenterol. Hepatol. 6(10) (2021) 803–815; https://doi.org/10.1016/s2468-1253(21)00196-5
  32. J. Xu, L. Shen, Z. Zhou, J. Li, C. Bai, Y. Chi, Z. Li, N. Xu, E. Li, T. Liu, Y. Bai, Y. Yuan, X. Li, X. Wang, J. Chen, J. Ying, X. Yu, S. Qin, X. Yuan, T. Zhang, Y. Deng, D. Xiu, Y. Cheng, M. Tao, R. Jia, W. Wang, J. Li, S. Fan, M. Peng and W. Su, Surufatinib in advanced extrapancreatic neuroendocrine tumours (SANET-ep): a randomised, double-blind, placebo-controlled, phase 3 study, Lancet Oncol. 21(11) (2021) 1500–1512; https://doi.org/10.1016/s1470-2045(20)30496-4
  33. T. Otto and P. Sicinski, Cell cycle proteins as promising targets in cancer therapy, Nat. Rev. Cancer. 17 (2017) 93–115; https://doi.org/10.1038/nrc.2016.138
  34. B. A. Carneiro and W. S. El-Deiry, Targeting apoptosis in cancer therapy, Nat. Rev. Clin. Oncol. 17 (2020) 395–417; https://doi.org/10.1038/s41571-020-0341-y
  35. S. Kaczanowski, Apoptosis: its origin, history, maintenance and the medical implications for cancer and aging, Phys. Biol. 13(3) (2016) Article ID 031001 (15 pages); https://doi.org/10.1088/1478-3975/13/3/031001
  36. Y. Luo, J. Ma and W. Lu, The significance of mitochondrial dysfunction in cancer, Int. J. Mol. Sci. 21(16) (2020) Article ID 5598 (24 pages); https://doi.org/10.3390/ijms21165598
  37. Q. G. Ren, T. Huang, S. L. Yang and J. L. Hu, Colon cancer metastasis to the mandibular gingiva with partial occult squamous differentiation: A case report and literature review, Mol. Clin. Oncol. 6(2) (2017) 189–192; https://doi.org/10.3892/mco.2016.1102
  38. R. Ullah, Q. Yin, A. H. Snell and L. Wan, RAF-MEK-ERK pathway in cancer evolution and treatment, Semin. Cancer Biol. 85 (2022) 123–154; https://doi.org/10.1016/j.semcancer.2021.05.010
  39. P. K. Wu, A. Becker and J. I. Park, Growth inhibitory signaling of the Raf/MEK/ERK pathway, Int. J. Mol. Sci. 21(15) (2020) Article ID 5436 (12 pages); https://doi.org/10.3390/ijms21155436
  40. S. M. Akula, S. L. Abrams, L. S. Steelman, M. R. Emma, G. Augello, A. Cusimano, A. Azzolina, G. Montalto, M. Cervello and J. A. McCubrey, RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma, Expert Opin. Ther. Targets 23(11) (2019) 915–929; https://doi.org/10.1080/14728222.2019.1685501
DOI: https://doi.org/10.2478/acph-2023-0025 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 489 - 502
Accepted on: Apr 18, 2023
|
Published on: Sep 14, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2023 Weiwei Li, Zhifu Yang, Likun Ding, Ying Wang, Xian Zhao, Jian Jie Chu, Qing Ji, Minna Yao, Jingwen Wang, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.