References
- H. Sung, J. Ferlay, R. L.Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71(3) (2021) 209–249; https://doi.org/10.3322/caac.21660
- J. Ferlay, M. Colombet, I. Soerjomataram, D. M. Parkin, M. Piñeros, A. Znaor and F. Bray, Cancer statistics for the year 2020: An overview, Int. J. Cancer 149(4) (2021) 778–789; https://doi.org/10.1002/ijc.33588
- Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. Retrieved Mar 13, 2023, from https://www.iarc.who.int/news-events/latest-global-cancer-data-cancer-burden-rises-to-19-3-million-new-cases-and-10-0-million-cancer-deaths-in-2020/
- C. Xia, X. Dong, H. Li, M. Cao, D. Sun, S. He, F. Yang, X. Yan, S. Zhang, N. Li and W. Chen, Cancer statistics in China and United States, 2022: profiles, trends, and determinants, Chin. Med. J. (Engl). 135(5) (2022) 584–590; https://doi.org/10.1097/cm9.0000000000002108
- Y. Jiang, H. Yuan, Z. Li, X. Ji, Q. Shen, J. Tuo, J. Bi, H. Li and Y. Xiang, Global pattern and trends of colorectal cancer survival: a systematic review of population-based registration data, Cancer Biol. Med. 19(2) (2021) 175–186; https://doi.org/10.20892/j.issn.2095-3941.2020.0634
- N. Li, B. Lu, C. Luo, J. Cai, M. Lu, Y. Zhang, H. Chen and M. Dai, Incidence, mortality, survival, risk factor and screening of colorectal cancer: A comparison among China, Europe, and Northern America, Cancer Lett. 522 (2021) 255–268; https://doi.org/10.1016/j.canlet.2021.09.034
- E. Dekker, P. J. Tanis, J. L. A. Vleugels, P. M. Kasi and M. B. Wallace, Colorectal cancer, Lancet 394(10207) (2019) 1467–1480; https://doi.org/10.1016/s0140-6736(19)32319-0
- B. Dariya, S. Aliya, N. Merchant, A. Alam and G. P. Nagaraju, Colorectal cancer biology, diagnosis, and therapeutic approaches, Crit. Rev. Oncog. 25(2) (2020) 71–94; https://doi.org/10.1615/CritRevOncog.2020035067
- I. Mármol, C. Sánchez-de-Diego, A. Pradilla Dieste, E. Cerrada and M. J. Rodriguez Yoldi, Colorectal carcinoma: A general overview and future perspectives in colorectal cancer, Int. J. Mol. Sci. 18(1) (2017) Article ID 197 (40 pages); https://doi.org/10.3390/ijms18010197
- L. H. Biller and D. Schrag, Diagnosis and treatment of metastatic colorectal cancer: A review, JAMA. 325(7) (2021) 669–685; https://doi.org/10.1001/jama.2021.0106
- S. Piawah and A. P. Venook, Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer, Cancer. 125(23) (2019) 4139–4147; https://doi.org/10.1002/cncr.32163
- J. Zhou, Q. Ji and Q. Li, Resistance to anti-EGFR therapies in metastatic colorectal cancer: underlying mechanisms and reversal strategies, J. Exp. Clin. Cancer Res. 40 (2021) Article ID 328 (17 pages); https://doi.org/10.1186/s13046-021-02130-2
- U. Degirmenci, M. Wang and J. Hu, Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy, Cells. 9(1) (2020) Article ID 198 (33 pages); https://doi.org/10.3390/cells9010198
- H. Moon and S. W. Ro, MAPK/ERK signaling pathway in hepatocellular carcinoma, Cancers (Basel) 13(12) (2021) Article ID 3026 (19 pages); https://doi.org/10.3390/cancers13123026
- R. Barbosa, L. A. Acevedo and R. Marmorstein, The MEK/ERK network as a therapeutic target in human cancer, Mol. Cancer Res. 19(3) (2021) 361–374; https://doi.org/10.1158/1541-7786.mcr-20-0687
- Q. Wang, T. Wang, L. Zhu, N. He, C. Duan, W. Deng, H. Zhang and X. Zhang, Sophocarpine inhibits tumorgenesis of colorectal cancer via downregulation of MEK/ERK/VEGF pathway, Biol. Pharm. Bull. 42(11) (2019) 1830–1838; https://doi.org/10.1248/bpb.b19-00353
- H. Pan, Y. Wang, K. Na, Y. Wang, L. Wang, Z. Li, C. Guo, D. Guo and X. Wang, Autophagic flux disruption contributes to Ganoderma lucidum polysaccharide-induced apoptosis in human colorectal cancer cells via MAPK/ERK activation, Cell Death Dis. 10 (2019) Article ID 456 (18 pages); https://doi.org/10.1038/s41419-019-1653-7
- J. Ros, I. Baraibar, E. Sardo, N. Mulet, F. Salvà, G. Argilés, G. Martini, D. Ciardiello, J. L. Cuadra, J. Tabernero and E. Élez, BRAF, MEK and EGFR inhibition as treatment strategies in BRAF V600E metastatic colorectal cancer, Ther. Adv. Med. Oncol. 13 (2021) Article ID 1758835921992974; https://doi.org/10.1177/1758835921992974
- P. Zhang, H. Kawakami, W. Liu, X. Zeng, K. Strebhardt, K. Tao, S. Huang and F. A. Sinicrope, Targeting CDK1 and MEK/ERK overcomes apoptotic resistance in BRAF-mutant human colorectal cancer, Mol. Cancer Res. 16(3) (2018) 378–389; https://doi.org/10.1158/1541-7786.mcr-17-0404
- H. Tayama, H. Karasawa, A. Yamamura, Y. Okamura, F. Katsuoka, H. Suzuki, T. Kajiwara, M. Kobayashi, Y. Hatsuzawa, M. Shiihara, L. Bin, M. Y. Gazi, M. Sato, K. Kumada, S. Ito, M. Shimada, T. Furukawa, T. Kamei, S. Ohnuma and M. Unno, The association between ERK inhibitor sensitivity and molecular characteristics in colorectal cancer, Biochem. Biophys. Res. Commun. 560 (2021) 59–65; https://doi.org/10.1016/j.bbrc.2021.04.130
- M. Pashirzad, R. Khorasanian, M. M. Fard, M. H. Arjmand, H. Langari, M. Khazaei, S. Soleiman-pour, M. Rezayi, G. A. Ferns, S. M. Hassanian and A. Avan, The therapeutic potential of MAPK/ERK inhibitors in the treatment of colorectal cancer, Curr. Cancer Drug Targets 21(11) (2021) 932–943; https://doi.org/10.2174/1568009621666211103113339
- S. Gong, D. Xu, J. Zhu, F. Zou and R. Peng, Efficacy of the MEK inhibitor cobimetinib and its potential application to colorectal cancer cells. Cellular physiology and biochemistry, Cell Physiol. Biochem. 47 (2018) 680–693; https://doi.org/10.1159/000490022
- N. Abbas, G. S. P. Matada, P. S. Dhiwar, S. Patel and G. Devasahayam, Fused and substituted pyrimidine derivatives as profound anti-cancer agents, Anticancer Agents Med. Chem. 21(7) (2021) 861–893; https://doi.org/10.2174/1871520620666200721104431
- A. Ayati, S. Moghimi, M. Toolabi and A. Foroumadi, Pyrimidine-based EGFR TK inhibitors in targeted cancer therapy, Eur. J. Med. Chem. 221 (2021) Article ID 113523 (19 pages); https://doi.org/10.1016/j.ejmech.2021.113523
- S. Wang, X. H. Yuan, S. Q. Wang, W. Zhao, X. B. Chen and B. Yu, FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application, Eur. J. Med. Chem. 214 (2021) Article ID 113218 (21 pages); https://doi.org/10.1016/j.ejmech.2021.113218
- S. A. El-Metwally, M. M. Abou-El-Regal, I. H. Eissa, A. B. M. Mehany, H. A. Mahdy, H. Elkady, A. Elwan and E. B. Elkaeed, Discovery of thieno(2,3-d)pyrimidine-based derivatives as potent VEGFR-2 kinase inhibitors and anti-cancer agents, Bioorg. Chem. 112 (2021) Article ID 104947 (15 pages); https://doi.org/10.1016/j.bioorg.2021.104947
- W. Li, J. Chu, T. Fan, W. Zhang, M. Yao, Z. Ning, M. Wang, J. Sun, X. Zhao and A. Wen, Design and synthesis of novel 1-phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4-thiadiazol-2-yl)urea derivatives with potent anti-CML activity throughout PI3K/AKT signaling pathway, Bioorg. Med. Chem. Lett. 29(14) (2019) 1831–1835; https://doi.org/10.1016/j.bmcl.2019.05.005
- S. Elmore, Apoptosis: a review of programmed cell death, Toxicol. Pathol. 35(4) (2007) 495–516; https://doi.org/10.1080/01926230701320337
- T. L. Lochmann, Y. M. Bouck and A. C. Faber, BCL-2 inhibition is a promising therapeutic strategy for small cell lung cancer, Oncoscience 5(7-8) (2018) 218–219; https://doi.org/10.18632/oncoscience.455
- J. Bennouna, M. Deslandres, H. Senellart, C. de Labareyre, R. Ruiz-Soto, C. Wixon, J. Botbyl, A. B. Suttle and J. P. Delord, A phase I open-label study of the safety, tolerability, and pharmacokinetics of pazopanib in combination with irinotecan and cetuximab for relapsed or refractory metastatic colorectal cancer, Invest. New Drugs. 33 (2015) 138–147; https://doi.org/10.1007/s10637-014-0142-1
- M. Javle, S. Roychowdhury, R. K. Kelley, S. Sadeghi, T. Macarulla, K. H. Weiss, D. T. Waldschmidt, L. Goyal, I. Borbath, A. El-Khoueiry, M. J. Borad, W. P. Yong, P. A. Philip, M. Bitzer, S. Tanasanvimon, A. Li, A. Pande, H. S. Soifer, S. P. Shepherd, S. Moran, A. X. Zhu, T. S. Bekaii-Saab and G. K. Abou-Alfa, Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study, Lancet Gastroenterol. Hepatol. 6(10) (2021) 803–815; https://doi.org/10.1016/s2468-1253(21)00196-5
- J. Xu, L. Shen, Z. Zhou, J. Li, C. Bai, Y. Chi, Z. Li, N. Xu, E. Li, T. Liu, Y. Bai, Y. Yuan, X. Li, X. Wang, J. Chen, J. Ying, X. Yu, S. Qin, X. Yuan, T. Zhang, Y. Deng, D. Xiu, Y. Cheng, M. Tao, R. Jia, W. Wang, J. Li, S. Fan, M. Peng and W. Su, Surufatinib in advanced extrapancreatic neuroendocrine tumours (SANET-ep): a randomised, double-blind, placebo-controlled, phase 3 study, Lancet Oncol. 21(11) (2021) 1500–1512; https://doi.org/10.1016/s1470-2045(20)30496-4
- T. Otto and P. Sicinski, Cell cycle proteins as promising targets in cancer therapy, Nat. Rev. Cancer. 17 (2017) 93–115; https://doi.org/10.1038/nrc.2016.138
- B. A. Carneiro and W. S. El-Deiry, Targeting apoptosis in cancer therapy, Nat. Rev. Clin. Oncol. 17 (2020) 395–417; https://doi.org/10.1038/s41571-020-0341-y
- S. Kaczanowski, Apoptosis: its origin, history, maintenance and the medical implications for cancer and aging, Phys. Biol. 13(3) (2016) Article ID 031001 (15 pages); https://doi.org/10.1088/1478-3975/13/3/031001
- Y. Luo, J. Ma and W. Lu, The significance of mitochondrial dysfunction in cancer, Int. J. Mol. Sci. 21(16) (2020) Article ID 5598 (24 pages); https://doi.org/10.3390/ijms21165598
- Q. G. Ren, T. Huang, S. L. Yang and J. L. Hu, Colon cancer metastasis to the mandibular gingiva with partial occult squamous differentiation: A case report and literature review, Mol. Clin. Oncol. 6(2) (2017) 189–192; https://doi.org/10.3892/mco.2016.1102
- R. Ullah, Q. Yin, A. H. Snell and L. Wan, RAF-MEK-ERK pathway in cancer evolution and treatment, Semin. Cancer Biol. 85 (2022) 123–154; https://doi.org/10.1016/j.semcancer.2021.05.010
- P. K. Wu, A. Becker and J. I. Park, Growth inhibitory signaling of the Raf/MEK/ERK pathway, Int. J. Mol. Sci. 21(15) (2020) Article ID 5436 (12 pages); https://doi.org/10.3390/ijms21155436
- S. M. Akula, S. L. Abrams, L. S. Steelman, M. R. Emma, G. Augello, A. Cusimano, A. Azzolina, G. Montalto, M. Cervello and J. A. McCubrey, RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma, Expert Opin. Ther. Targets 23(11) (2019) 915–929; https://doi.org/10.1080/14728222.2019.1685501