References
- P. Rawla, T. Sunkara and V. Gaduputi, Epidemiology of pancreatic cancer: Global trends, etiology and risk factors, World J. Oncol. 10(1) (2019) 10–27; https://doi.org/10.14740/wjon1166
- W. Wu, X. He, L. Yang, Q. Wang, X. Bian, J. Ye, Y. Li and L. Li, Rising trends in pancreatic cancer incidence and mortality in 2000-2014, Clin Epidemiol. 10 (2018) 789–797; https://doi.org/10.2147/CLEP.S160018
- M. Ilic and I. Ilic, Epidemiology of pancreatic cancer, World J. Gastroenterol. 22(44) (2016) 9694–9705; https://doi.org/10.3748/wjg.v22.i44.9694
- J. P. Neoptolemos, J. Kleeff, P. Michl, E. Costello, W. Greenhalf and D. H. Palmer, Therapeutic developments in pancreatic cancer: current and future perspectives, Nat. Rev. Gastroenterol. Hepatol. 15(6) (2018) 333–348; https://doi.org/10.1038/s41575-018-0005-x
- H. L. Kindler, A glimmer of hope for pancreatic cancer, N. Engl. J. Med. 379(25) (2018) 2463–2464; https://doi.org/10.1056/NEJMe1813684
- N. Wang and Y. Feng, Elaborating the role of natural products-induced autophagy in cancer treatment: achievements and artifacts in the state of the art, Biomed. Res. Int. 2015 (2015) Article ID 934207 (15 pages); https://doi.org/10.1155/2015/934207
- S. K. Saha and A. R. Khuda-Bukhsh, Molecular approaches towards development of purified natural products and their structurally known derivatives as efficient anti-cancer drugs: current trends, Eur. J. Pharmacol. 714(1-3) (2013) 239–248; https://doi.org/10.1016/j.ejphar.2013.06.009
- I. Lohse, E. Wildermuth and S. P. Brothers, Naturally occurring compounds as pancreatic cancer therapeutics, Oncotarget 9(83) (2018) 35448–35457; https://doi.org/10.18632/oncotarget.26234
- E. Kupeli Akkol, Y. Genc, B. Karpuz, E. Sobarzo-Sanchez and R. Capasso, Coumarins and coumarin-related compounds in pharmacotherapy of cancer, Cancers (Basel) 12(7) (2020) Article ID 1959; https://doi.org/10.3390/cancers12071959
- A. Rasul, M. Khan, B. Yu, T. Ma and H. Yang, Xanthoxyletin, a coumarin induces S phase arrest and apoptosis in human gastric adenocarcinoma SGC-7901 cells, Asian Pac. J. Cancer Prev. 12(5) (2011) 1219–1223.
- N. Renema, B. Navet, M. F. Heymann, F. Lezot and D. Heymann, RANK-RANKL signaling in cancer, Biosci. Rep. (2016) 36(4) Article ID e00366 (17 pages); https://doi.org/10.1042/BSR20160150
- A. F. de Groot, N. M. Appelman-Dijkstra, S. H. van der Burg and J. R. Kroep, The antitumor effect of RANKL inhibition in malignant solid tumors – A systematic review, Cancer Treat. Rev. (2018) 62 18–28; https://doi.org/10.1016/j.ctrv.2017.10.010
- M. Palafox, I. Ferrer, P. Pellegrini, S. Vila, S. Hernadez-Ortega, A. Urricoechea, F. Climent, M. T. Soler, P. Munoz, F. Vinals, M. Tometsko, D. Branstetter, W. C. Dougall and E. Gonzalez-Suarez, RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis, Cancer Res. (2012) 72(11) 2678–2688; https://doi.org/10.1158/0008-5472.CAN-12-0044
- P. Pellegrini, A. Cordero, M. I. Gallego, W. C. Dougall, P. Munoz, M. A. Pujana and E. Gonzalez-Suarez, Constitutive activation of RANK disrupts mammary cell fate leading to tumorigenesis, Stem Cells (2013) 31(9) 1954–1965; https://doi.org/10.1002/stem.1454
- S. J. Chanock, The paradox of mutations and cancer, Science 362(6417) (2018) 893–894; https://doi.org/10.1126/science.aav5697
- F. Sanchez-Vega, M. Mina, J. Armenia, W. K. Chatila, A. Luna, K. C. La, S. Dimitriadoy, D. L. Liu, H. S. Kantheti, S. Saghafinia, D. Chakravarty, F. Daian, Q. Gao, M. H. Bailey, W. W. Liang, S.M. Foltz, I. Shmulevich, L. Ding, Z. Heins, A. Ochoa, B. Gross, J. Gao, H. Zhang, R. Kundra, C. Kandoth, I. Bahceci, L. Dervishi, U. Dogrusoz, W. Zhou, H. Shen, P.W. Laird, G. P. Way, C.S. Greene, H. Liang, Y. Xiao, C. Wang, A. Iavarone, A. H. Berger, T. G. Bivona, A. J. Lazar, G.D. Hammer, T. Giordano, L. N. Kwong, G. McArthur, C. Huang, A. D. Tward, M. J. Frederick, F. McCormick, M. Meyerson, E. M. Van Allen, A. D. Cherniack, G. Ciriello, C. Sander and N. Schultz, Oncogenic signaling pathways in the cancer genome atlas, Cell 173(2) (2018) 321–337; https://doi.org/10.1016/j.cell.2018.03.035
- N. Renema, B. Navet, M. F. Heymann, F. Lezot and D. Heymann, RANK-RANKL signalling in cancer, Biosci. Rep. 36(4) (2016) Article ID e00366 (17 pages); https://doi.org/10.1042/BSR20160150
- S. Rao, S. J. F. Cronin, V. Sigl and J. M. Penninger, RANKL and RANK: From mammalian physiology to cancer treatment, Trends Cell Biol. 28(3) (2018) 213–223; https://doi.org/10.1016/j.tcb.2017.11.001
- S. Peters, P. Clezardin, I. Marquez-Rodas, D. Niepel and C. Gedye, The RANK-RANKL axis: an opportunity for drug repurposing in cancer? Clin. Transl. Oncol. 21(8) (2019) 977–991; https://doi.org/10.1007/s12094-018-02023-5
- P. A. van Dam, Y. Verhoeven, X. B. Trinh, A. Wouters, F. Lardon, H. Prenen, E. Smits, M. Baldewijns and M. Lammens, RANK/RANKL signaling inhibition may improve the effectiveness of checkpoint blockade in cancer treatment, Crit. Rev. Oncol. Hematol. 133 (2019) 85–91; https://doi.org/10.1016/j.critrevonc.2018.10.011
- Q. Wen, K. Luo, H. Huang, W. Liao and H. Yang, Xanthoxyletin inhibits proliferation of human oral squamous carcinoma cells and induces apoptosis, autophagy, and cell cycle arrest by modulation of the MEK/ERK signaling pathway, Med. Sci. Monit. 25 (2019) 8025–8033; https://doi.org/10.12659/MSM.911697
- A. Rasul, M. Khan, B. Yu, T. Ma and H. Yang, Xanthoxyletin, a coumarin induces S phase arrest and apoptosis in human gastric adenocarcinoma SGC-7901 cells, Asian Pac. J. Cancer Prev. (2011) 12(5)1219–1223.
- E. Gonzalez-Suarez and A. Sanz-Moreno, RANK as a therapeutic target in cancer, FEBS J 283(11) (2016) 2018–2033; https://doi.org/10.1111/febs.13645
- A. von dem Knesebeck, J. Felsberg, A. Waha, W. Hartmann, B. Scheffler, M. Glas, J. Hammes, T. Mikeska, P. S. Yan, E. Endl and M. Simon, RANK (TNFRSF11A) is epigenetically inactivated and induces apoptosis in gliomas, Neoplasia (2012) 14(6) 526–534; https://doi.org/10.1596/neo.12360
- M. Sisay, G. Mengistu and D. Edessa, The RANK/RANKL/OPG system in tumorigenesis and metastasis of cancer stem cell: potential targets for anticancer therapy, OncoTargets Ther. (2017) 10 3801–3810; https://doi.org/10.2147/OTT.S135867