References
- Y. Zhang, G. Luo, M. Li, P. Guo, Y. Xiao, H. Ji and Y. Hao, Global patterns and trends in ovarian cancer incidence: age, period and birth cohort analysis, BMC Cancer 19(1) (2019) Article ID 984 (14 pages); https://doi.org/10.1186/s12885-019-6139-6
- B. M. Reid, J. B. Permuth and T. A. Sellers, Epidemiology of ovarian cancer: a review, Cancer Biol. Med. 14(1) (2017) 9–32; https://doi.org/10.20892/j.issn.2095-3941.2016.0084
- M. A. Amaya Padilla, M. Binju, G. Wan, Y. S. Rahmanto, P. Kaur and Y. Yu, Relationship between ovarian cancer stem cells, epithelial mesenchymal transition and tumour recurrence, Cancer Drug Resist. 2(4) (2019) 1127–1135; https://doi.org/10.20517/cdr.2019.76
- K. Ushijima, Treatment for recurrent ovarian cancer at first relapse, J. Oncol. 2010 (2010) 1–7; https://doi.org/10.1155/2010/497429
- H. Acloque, M. S. Adams, K. Fishwick, M. Bronner-Fraser and M. A. Nieto, Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease, J. Clin. Invest. 119(6) (2009) 1438–1449; https://doi.org/10.1172/JCI38019
- F. Guo, B. C. Parker Kerrigan, D. Yang, L. Hu, I. Shmulevich, A. K. Sood, F. Xue and W. Zhang, Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions, J. Hematol. Oncol. 7 (2014) Article ID 19 (11 pages); https://doi.org/10.1186/1756-8722-7-19
- M. Zeisbergand, E. G. Neilson, Biomarkers for epithelial-mesenchymal transitions, J. Clin. Invest. 119(6) (2009) 1429–1437; https://doi.org/10.1172/JCI36183
- M. Scimeca, C. Antonacci, D. Colombo, R. Bonfiglio, O. C. Buonomo and E. Bonanno, Emerging prognostic markers related to mesenchymal characteristics of poorly differentiated breast cancers, Tumour Biol. 37(4) (2016) 5427–5435; https://doi.org/10.1007/s13277-015-4361-7
- K. D. Steffensen, A. B. Alvero, Y. Yang, M. Waldstrom, P. Hui, J. C. Holmberg, D. A. Silasi, A. Jakobsen, T. Rutherford and G. Mor, Prevalence of epithelial ovarian cancer stem cells correlates with recurrence in early-stage ovarian cancer, J. Oncol. 2011 (2011) Article ID 620523 (13 pages); https://doi.org/10.1155/2011/620523
- Z. Pieterse, M. A. Amaya-Padilla, T. Singomat, M. Binju, B. D. Madjid, Y. Yu and P. Kaur, Ovarian cancer stem cells and their role in drug resistance, Int. J. Biochem. Cell Biol. 106 (2019) 117–126; https://doi.org/10.1016/j.biocel.2018.11.012
- P. Liu, H. Cheng, T. M. Roberts and J. J. Zhao, Targeting the phosphoinositide 3-kinase pathway in cancer, Nat. Rev. Drug Discov. 8 (2009) 627–44; https://doi.org/10.1038/nrd2926
- C. Gewinner, Z. C. Wang, A. Richardson, J. Teruya-Feldstein, D. Etemadmoghadam, D. Bowtell, J. Barretina, W. M. Lin, L. Rameh, L. Salmena, P. P. Pandolfi and L. C. Cantley, Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling, Cancer Cell 16(2) (2009) 115–125; https://doi.org/10.1016/j.ccr.2009.06.006
- X. Tan, S. Chen, J. Wu, J. Lin, C. Pan, X. Ying, Z. Pan, L. Qiu, R. Liu, R. Geng and W. Huang, PI3K/AKT-mediated upregulation of WDR5 promotes colorectal cancer metastasis by directly targeting ZNF407, Cell Death Dis. 8(3) (2017) Article ID e2686 (12 pages); https://doi.org/10.1038/cddis.2017.111
- S. D. Westfalland, M. K. Skinner, Inhibition of phosphatidylinositol 3-kinase sensitizes ovarian cancer cells to carboplatin and allows adjunct chemotherapy treatment, Mol. Cancer Ther. 4(11) (2005) 1764–177; https://doi.org/10.1158/1535-7163.mct-05-0192
- H. J. Choi, J. H. Heo, J. Y. Park, J. Y. Jeong, H. J. Cho, K. S. Park, S. H. Kim, Y. W. Moon, J. S. Kim and H. J. An, A novel PI3K/mTOR dual inhibitor, CMG002, overcomes the chemoresistance in ovarian cancer, Gynecol. Oncol. 153(1) (2019) 135–148; https://doi.org/10.1016/j.ygyno.2019.01.012
- D. K. Armstrong, B. Bundy, L. Wenzel, H. Q. Huang, R. Baergen, S. Lele, L. J. Copeland, J. L. Walker and R. A. Burger, Intraperitoneal cisplatin and paclitaxel in ovarian cancer, N. Engl. J. Med. 354(1) (2006) 34–43; https://doi.org/10.1056/NEJMoa052985
- M. Cristea, E. Han, L. Salmon and R. J. Morgan, Review: Practical considerations in ovarian cancer chemotherapy, Ther. Adv. Med. Oncol. 2(3) (2010) 175–187; https://doi.org/10.1177/1758834010361333
- D. Jelovac and D. K. Armstrong, Recent progress in the diagnosis and treatment of ovarian cancer, CA Cancer J. Clin. 61(3) (2011) 183–203; https://doi.org/10.3322/caac.20113
- D. Cella, A. Peterman, S. Hudgens, K. Webster and M. A. Socinski, Measuring the side effects of taxane therapy in oncology: the functional assesment of cancer therapy-taxane (FACT-taxane), Cancer 98(4) (2003) 822–831; https://doi.org/10.1002/cncr.11578
- F. Steger, M. G. Hautmann and O. Kolbl, 5-FU-induced cardiac toxicity--an underestimated problem in radiooncology?, Radiat. Oncol. 7 (2012) Article ID 212 (4 pages); https://doi.org/10.1186/1748-717X-7-212
- J. H. Schrittwieser, V. Resch, S. Wallner, W. D. Lienhart, J. H. Sattler, J. Resch, P. Macheroux and W. Kroutil, Biocatalytic organic synthesis of optically pure (S)-scoulerine and berbine and benzylisoquinoline alkaloids, J. Org. Chem. 76(16) (2011) 6703–6714; https://doi.org/10.1021/jo201056f
- K. Habartova, R. Havelek, M. Seifrtova, K. Kralovec, L. Cahlikova, J. Chlebek, E. Cermakova, N. Mazankova, J. Marikova, J. Kunes, L. Novakova and M. Rezacova, Scoulerine affects microtubule structure, inhibits proliferation, arrests cell cycle and thus culminates in the apoptotic death of cancer cells, Sci. Rep. 8(1) (2018) Article ID 4829 (14 pages); https://doi.org/10.1038/s41598-018-22862-0
- J. Tian, J. Mo, L. Xu, R. Zhang, Y. Qiao, B. Liu, L. Jiang, S. Ma and G. Shi, Scoulerine promotes cell viability reduction and apoptosis by activating ROS-dependent endoplasmic reticulum stress in colorectal cancer cells, Chem. Biol. Interact. 327 (2020) Article ID 109184; https://doi.org/10.1016/j.cbi.2020.109184
- J. Roche, The epithelial-to-mesenchymal transition in cancer, Cancers (Basel) 10(2) (2018) Article ID 52 (4 pages); https://doi.org/10.3390/cancers10020052
- D. Ribatti, R. Tamma and T. Annese, Epithelial-mesenchymal transition in cancer: A historical overview, Transl. Oncol. 13(6) (2020) Article ID 100773 (9 pages); https://doi.org/10.1016/j.tranon.2020.100773
- Z. Yu, T. G. Pestell, M. P. Lisanti and R. G. Pestell, Cancer stem cells, Int. J. Biochem. Cell Biol. 44(2) (2012) 2144–2151; https://doi.org/10.1016/j.biocel.2012.08.022
- S. Floor, W. C. van Staveren, D. Larsimont, J. E. Dumont and C. Maenhaut, Cancer cells in epithelial--to-mesenchymal transition and tumor-propagating-cancer stem cells: distinct, overlapping or same populations, Oncogene 30(46) (2011) 4609–4621; https://doi.org/10.1038/onc.2011.184
- P. Wangchuk, T. Sastraruji, M. Taweechotipatr, P. A. Keller and S. G. Pyne, Anti-inflammatory, antibacterial and anti-acetylcholinesterase activities of two isoquinoline alkaloids-scoulerine and cheilanthifoline, Nat. Prod. Commun. 11(12) (2016) 1801–1804; https://doi.org/10.1177/1934578X1601101207
- P. Wangchuk, P. A. Keller, S. G. Pyne, A. C. Willis and S. Kamchonwongpaisan, Antimalarial alkaloids from a Bhutanese traditional medicinal plant Corydalis dubia, J. Ethnopharmacol. 143(1) (2012) 310–313; https://doi.org/10.1016/j.jep.2012.06.037
- X. Cheng, D. Wang, L. Jiang and D. Yang, DNA topoisomerase I inhibitory alkaloids from Corydalis saxicola, Chem. Biodivers. 5(7) (2008) 1335–1344; https://doi.org/10.1002/cbdv.200890121
- A. Das, A. Bhattacharya, S. Chakrabarty, A. Ganguli and G. Chakrabarti, Smokeless tobacco extract (STE)-induced toxicity in mammalian cells is mediated by the disruption of cellular microtubule network: a key mechanism of cytotoxicity, PLoS One 8(7) (2013) Article ID e68224 (12 pages); https://doi.org/10.1371/journal.pone.0068224
- N. A. Franken, H. M. Rodermond, J. Stap, J. Haveman and C. van Bree, Clonogenic assay of cells in vitro, Nat. Protoc. 1(5) (2006) 2315–2319; https://doi.org/10.1038/nprot.2006.339
- J. Pijuan, C. Barcelo, D. F. Moreno, O. Maiques, P. Siso, R. M. Marti, A. Macia and A. Panosa. In vitro cell migration, invasion and adhesion assays: From cell imaging to data analysis, Front. Cell Dev. Biol. 7 (2019) Article ID 107 (16 pages); https://doi.org/10.3389/fcell.2019.00107
- I. Haque, A. Ghosh, S. Acup, S. Banerjee, K. Dhar, A. Ray, S. Sarkar, S. Kambhampati and S. K. Banerjee, Leptin-induced ER-alpha-positive breast cancer cell viability and migration is mediated by suppressing CCN5-signaling via activating JAK/AKT/STAT-pathway, BMC Cancer 18(1) (2018) Article ID 99 (14 6
- A. Das, S. Chakrabarty, D. Choudhury and G. Chakrabarti, 1,4-Benzoquinone (PBQ) induced toxicity in lung epithelial cells is mediated by the disruption of the microtubule network and activation of caspase-3, Chem. Res. Toxicol. 23(6) (2010) 1054–1066; https://doi.org/10.1021/tx1000442
- L. R. Menezes, C. O. Costa, A. C. Rodrigues, F. R. Santo, A. Nepel, L. M. Dutra, F. M. Silva, M. B. Soares, A. Barison, E. V. Costa and D. P. Bezerra, Cytotoxic alkaloids from the stem of Xylopia laevigata, Molecules 21(7) 2016 Article ID 890 (10 pages); https://doi.org/10.3390/molecules21070890
- R. Y. Huang, P. Guilford and J. P. Thiery, Early events in cell adhesion and polarity during epithelialmesenchymal transition, J. Cell Sci. 125(Pt 19) (2012) 4417–4422; https://doi.org/10.1242/jcs.099697
- H. Xu, Y. Tian, X. Yuan, H. Wu, Q. Liu, R. G. Pestell and K. Wu, The role of CD44 in epithelial-mesenchymal transition and cancer development, Onco Targets Ther. 8 (2015) 3783–3792; https://doi.org/10.2147/OTT.S95470
- Z. Zou, T. Tao, H. Li and X. Zhou, mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges, Cell Biosci. 10 (2020) Article ID 31 (11 pages); https://doi.org/10.1186/s13578-020-00396-1