Have a personal or library account? Click to login
Germline variants of the genes involved in NF-kB activation are associated with the risk of COPD and lung cancer development Cover

Germline variants of the genes involved in NF-kB activation are associated with the risk of COPD and lung cancer development

Open Access
|Jun 2023

References

  1. P. J. Barnes, S. D. Shapiro and R. A. Pauwels, Chronic obstructive pulmonary disease: Molecular and cellular mechanisms, Eur. Respir. J. 22 (2003) 672–688; https://doi.org/10.1183/09031936.03.00040703
  2. M. R. Spitz, J. E. Muscat, G. Rennert and K. K. Aben, Risk of lung cancer in family history 48 (2013) 1957–1968; https://doi.org/10.1016/j.ejca.2012.01.038
  3. R. Pauwels, S. Buist, P. Calverley, C. Jenkins and S. Hurd, Global strategy for the diagnosis, management and prevention of Chronic Obstructive Pulmonary Disease. NHBLI/WHO global initiative for Chronic Obstructive Lung Disease (GOLD) workshop summary, Rev. Port. Pneumol. 7 (2001) 398–400; https://doi.org/10.1016/S0873-2159(15)30846-1
  4. P. J. Barnes, Cellular and molecular mechanisms of chronic obstructive pulmonary disease, Clin. Chest Med. 35 (2014) 71–86; https://doi.org/10.1016/j.ccm.2013.10.004
  5. K. M. Beeh, O. Kornmann, R. Buhl, S. V. Culpitt, M. A. Giembycz and P. J. Barnes, Neutrophil chemotactic activity of sputum from patients with COPD, Chest 123 (2003) 1240–1247; https://doi.org/10.1378/chest.123.4.1240
  6. Y. Qiu, J. Zhu, V. Bandi, R. L. Atmar, K. Hattotuwa, K. K. Guntupalli and P. K. Jeffery, Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease, Am. J. Respir. Crit. Care Med. 168 (2003) 968–975; https://doi.org/10.1164/rccm.200208-794OC
  7. R. E. K. Russell, A. Thorley, S. V. Culpitt, S. Dodd, L. E. Donnelly, C. Demattos, M. Fitzgerald and P. J. Barnes, Alveolar macrophage-mediated elastolysis: Roles of matrix metalloproteinases, cysteine, and serine proteases, Am. J. Physiol. - Lung Cell. Mol. Physiol. 283 (2002) 867–873; https://doi.org/10.1152/ajplung.00020.2002
  8. G. Caramori, M. Romagnoli, P. Casolari, C. Bellettato, G. Casoni, P. Boschetto, K. Fan Chung, P. J. Barnes, I. M. Adcock, A. Ciaccia, L. M. Fabbri and A. Papi, Nuclear localisation of p65 in sputum macrophages but not in sputum neutrophils during COPD exacerbations, Thorax 58 (2003) 348–351; https://doi.org/10.1136/thorax.58.4.348
  9. J. Wang, R. A. Urbanowicz, P. J. Tighe, I. Todd, J. M. Corne and L. C. Fairclough, Differential activation of killer cells in the circulation and the lung: a study of current smoking status and chronic obstructive pulmonary disease (COPD), PLoS One 8 (2013) 1–9; https://doi.org/10.1371/journal.pone.0058556
  10. K. F. Chung and I. M. Adcock, Multifaceted mechanisms in COPD: Inflammation, immunity, and tissue repair and destruction, Eur. Respir. J. 31 (2008) 1334–1356; https://doi.org/10.1183/09031936.00018908
  11. M. Williams, I. Todd and L. C. Fairclough, The role of CD8 + T lymphocytes in chronic obstructive pulmonary disease: a systematic review, Inflamm. Res. 70 (2021) 11–18; https://doi.org/10.1007/s00011-020-01408-z
  12. C. M. Freeman, J. L. Curtis and S. W. Chensue, CC chemokine receptor 5 and CXC chemokine receptor 6 expression by lung CD8+ cells correlates with chronic obstructive pulmonary disease severity, Am. J. Pathol. 171 (2007) 767–776; https://doi.org/10.2353/ajpath.2007.061177
  13. G. Chrysofakis, N. Tzanakis, D. Kyriakoy, M. Tsoumakidou, I. Tsiligianni, M. Klimathianaki and N. M. Siafakas, Perforin expression and cytotoxic activity of sputum CD8+ lymphocytes in patients with COPD, Chest 125 (2004) 71–76; https://doi.org/10.1378/chest.125.1.71
  14. W. C. S. Cho, C. K. Kwan, S. Yau, P. P. F. So, P. C. M. Poon and J. S. K. Au, The role of inflammation in the pathogenesis of lung cancer, Expert Opin. Ther. Targets 15 (2011) 1127–1137; https://doi.org/10.1517/14728222.2011.599801
  15. S. Zienolddiny, D. Campa, H. Lind, D. Ryberg, V. Skaug, L. Stangeland, D. H. Phillips, F. Canzian and A. Haugen, Polymorphisms of DNA repair genes and risk of non-small cell lung cancer, Carcinogenesis 27 (2006) 560–567; https://doi.org/10.1093/carcin/bgi232
  16. W. Zhou, G. Liu, D. P. Miller, S. W. Thurston, L. L. Xu, J. C. Wain, T. J. Lynch, L. Su and D. C. Chris-tiani, Polymorphisms in the DNA repair genes XRCC1 and ERCC2, smoking, and lung cancer risk, Cancer Epidemiol. Biomarkers Prev. 12 (2003) 359–365.
  17. P. J. Barnes, The cytokine network in chronic obstructive pulmonary disease, Am. J. Respir. Cell Mol. Biol. 41 (2009) 631–638; https://doi.org/10.1165/rcmb.2009-0220TR
  18. B. S. A. Silva, F. S. Lira, D. Ramos, J. S. Uzeloto, F. E. Rossi, A. P. C. F. Freire, R. N. Silva, I. B. Trevisan, L. A. Gobbo and E. M. C. Ramos, Severity of COPD and its relationship with IL-10, Cytokine 106 (2018) 95–100; https://doi.org/10.1016/j.cyto.2017.10.018
  19. B. R. Celli, N. Locantore, J. Yates, R. Tal-Singer, B. E. Miller, P. Bakke, P. Calverley, H. Coxson, C. Crim, L. D. Edwards, D. A. Lomas, A. Duvoix, W. MacNee, S. Rennard, E. Silverman, J. Vestbo, E. Wouters and A. Agustí, Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease, Am. J. Respir. Crit. Care Med. 185 (2012) 1065–1072; https://doi.org/10.1164/rccm.201110-1792OC
  20. Y. Wu and B. P. Zhou, TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion, Br. J. Cancer 102 (2010) 639–644; https://doi.org/10.1038/sj.bjc.6605530
  21. K. Gong, G. Guo, N. Beckley, Y. Zhang, X. Yang, M. Sharma and A. A. Habib, Tumor necrosis factor in lung cancer: Complex roles in biology and resistance to treatment, Neoplasia 23 (2021) 189–196; https://doi.org/10.1016/j.neo.2020.12.006
  22. M. H. Wang, H. J. Cordell and K. Van Steen, Statistical methods for genome-wide association studies, Semin. Cancer Biol. 55 (2019) 53–60; https://doi.org/10.1016/j.semcancer.2018.04.008
  23. J. N. Hirschhorn and M. J. Daly, Genome-wide association studies for common diseases and complex traits, Nat. Rev. Genet. 6 (2005) 95–108; https://doi.org/10.1038/nrg1521
  24. A. Sud, B. Kinnersley and R. S. Houlston, Genome-wide association studies of cancer: Current insights and future perspectives, Nat. Rev. Cancer 17 (2017) 692–704; https://doi.org/10.1038/nrc.2017.82
  25. Y. Bossé and C. I. Amos, A decade of GWAS results in lung cancer, Cancer Epidemiol. Biomarkers Prev. 27 (2018) 363–379; https://doi.org/10.1158/1055-9965.EPI-16-0794
  26. M. S. Shiels, E. A. Engels, J. Shi, M. T. Landi, D. Albanes, N. Chatterjee, S. J. Chanock, N. E. Caporaso and A. K. Chaturvedi, Genetic variation in innate immunity and inflammation pathways associated with lung cancer risk, Cancer 118 (2012) 5630–5636; https://doi.org/10.1002/cncr.27605
  27. Q. Wang, J. Gu, L. Wang, D. W. Chang, Y. Ye, M. Huang, J. A. Roth and X. Wu, Genetic associations of T cell cancer immune response-related genes with T cell phenotypes and clinical outcomes of early-stage lung cancer, J. Immunother. Cancer 8 (2020) Article ID e000336; (13 pages); https://doi.org/10.1136/jitc-2019-000336
  28. D. Watza, C. M. Lusk, G. Dyson, K. S. Purrington, A. S. Wenzlaff, C. Neslund-Dudas, A. O. Soubani, S. M. Gadgeel and A. G. Schwartz, COPD-dependent effects of genetic variation in key inflammation pathway genes on lung cancer risk, Int. J. Cancer 147 (2020) 747–756; https://doi.org/10.1002/ijc.32780
  29. J. Chen, R. Y. Liu, L. Yang, J. Zhao, X. Zhao, D. Lu, N. Yi, B. Han, X. F. Chen, K. Zhang, J. He, Z. Lei, Y. Zhou, B. Pasche, X. Li and H. T. Zhang, A two-SNP IL-6 promoter haplotype is associated with increased lung cancer risk, J. Cancer Res. Clin. Oncol. 139 (2013) 231–242; https://doi.org/10.1007/s00432-012-1314-z
  30. I. A. Yang, J. W. Holloway and K. M. Fong, Genetic susceptibility to lung cancer and co-morbidities, J. Thorac. Dis. 5(Supl. 5) (2013) S454–S462; https://doi.org/10.3978/j.issn.2072-1439.2013.08.06
  31. C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott, J. Green, M. Landray, B. Liu, P. Matthews, G. Ong, J. Pell, A. Silman, A. Young, T. Sprosen, T. Peakman and R. Collins, UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age, PLoS Med. 12 (2015) 1–10; https://doi.org/10.1371/journal.pmed.1001779
  32. S. A. Miller, D. D. Dykes and H. F. Polesky, A simple salting out procedure for extracting DNA from human nucleated cells, Nucleic Acids Res. 16(3) (1988) Article ID 1215 (1 page); https://doi.org/10.1093/nar/16.3.1215
  33. D. C. Rio, M. Ares, G. J. Hannon and T. W. Nilsen, Purification of RNA using TRIzol (TRI Reagent), Cold Spring Harb. Protoc. 5 (2010) 1–4; https://doi.org/10.1101/pdb.prot5439
  34. K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method, Methods 25 (2001) 402–408; https://doi.org/10.1006/meth.2001.1262
  35. H. Arora, S. M. Wilcox, L. A. Johnson, L. Munro, B. A. Eyford, C. G. Pfeifer, I. Welch and W. A. Jefferies, The ATP-binding cassette gene ABCF1 functions as an E2 ubiquitin-conjugating enzyme controlling macrophage polarization to dampen lethal septic shock, Immunity 50(2) (2019) Article ID e6, 418–431; https://doi.org/10.1016/j.immuni.2019.01.014
  36. Q. T. Cao, J. A. Aguiar, B. J. M. Tremblay, N. Abbas, N. Tiessen, S. Revill, N. Makhdami, A. Ayoub, G. Cox, K. Ask, A. C. Doxey and J. A. Hirota, ABCF1 regulates dsDNA-induced immune responses in human airway epithelial cells, Front. Cell. Infect. Microbiol. 10 (2020) 1–17; https://doi.org/10.3389/fcimb.2020.00487
  37. V. Zachariou, R. S. Duman and E. J. Nestler, G proteins, Basic Neurochem. (2012) 411–422; https://doi.org/10.1016/B978-0-12-374947-5.00021-3
  38. C. C. Fraser, G protein-coupled receptor connectivity to NF-κB in inflammation and cancer, Int. Rev. Immunol. 27 (2008) 320–350; https://doi.org/10.1080/08830180802262765
  39. F. Bazzoni and B. Beutler, The tumor necrosis factor ligand and receptor families, N. Engl. J. Med. 334 (1996) 1717–1725.
  40. M. M. Stankovic, A. R. Nestrovic, A. M. Tomovic, N. D. Petrovic-Stanojevic, M. S. Andjelic-Jelic, V. B. Dopudja-Pantic, L. M. Nagorni-Obradovic, M. M. Mitic-Milikic and D. P. Radojkovic, TNF-α-308 promotor polymorphism in patients with chronic obstructive pulmonary disease and lung cancer, Neoplasma 56 (2009) 348–352; https://doi.org/10.4149/neo_2009_04_348
  41. C. M. Shih, Y. L. Lee, H. L. Chiou, W. Chen, G. C. Chang, M. C. Chou and L. Y. Lin, Association of TNF-α polymorphism with susceptibility to and severity of non-small cell lung cancer, Lung Cancer 52 (2006) 15–20; https://doi.org/10.1016/j.lungcan.2005.11.011
  42. C. A. van der Weyden, S. A. Pileri, A. L. Feldman, J. Whisstock and H. M. Prince, Understanding CD30 biology and therapeutic targeting: a historical perspective providing insight into future directions, Blood Cancer J. 7 (2017) Article ID e603 (10 pages); https://doi.org/10.1038/bcj.2017.85
  43. J. S. Brody and A. Spira, Chronic obstructive pulmonary disease, inflammation, and lung cancer, Proc. Am. Thorac. Soc. 3 (2006) 535–537; https://doi.org/10.1513/pats.200603-089MS
  44. T. Liu, L. Zhang, D. Joo and S. C. Sun, NF-κB signaling in inflammation, Signal Transduct. Target. Ther. 2 (2017) Article ID 17023 (9 pages); https://doi.org/10.1038/sigtrans.2017.23
  45. J. Wang, R. Ferreira, W. Lu, S. Farrow, K. Downes, L. Jermutus, R. Minter, R. S. Al-Lamki, J. S. Pober and J. R. Bradley, TNFR2 ligation in human T regulatory cells enhances IL2-induced cell proliferation through the non-canonical NF-κB pathway, Sci. Rep. 8 (2018) 1–11; https://doi.org/10.1038/s41598-018-30621-4
  46. T. C. Cheung, M. W. Steinberg, L. M. Oborne, M. G. Macauley, S. Fukuyama, H. Sanjo, C. D’Souza, P. S. Norris, K. Pfeffer, K. M. Murphy, M. Kronenberg, P. G. Spear and C. F. Ware, Unconventional ligand activation of herpesvirus entry mediator signals cell survival, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 6244–6249; https://doi.org/10.1073/pnas.0902115106
  47. D. S. Vinay and B. S. Kwon, 4-1BB signaling beyond T cells, Cell. Mol. Immunol. 8 (2011) 281–284; https://doi.org/10.1038/cmi.2010.82
  48. C. Z. Ni, K. Welsh, E. Leo, C. K. Chiou, H. Wu, J. C. Reed and K. R. Ely, Molecular basis for CD40 signaling mediated by TRAF3, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 10395–10399; https://doi.org/10.1073/pnas.97.19.10395
  49. P. Bista, W. Zeng, S. Ryan, V. Bailly, J. L. Browning and M. E. Lukashev, TRAF3 controls activation of the canonical and alternative NFκB by the lymphotoxin beta receptor, J. Biol. Chem. 285 (2010) 12971–12978; https://doi.org/10.1074/jbc.M109.076091
  50. A. Oeckinghaus and S. Ghosh, The NF-kappaB family of transcription factors and its regulation., Cold Spring Harb. Perspect. Biol. 1 (2009) 1–14; https://doi.org/10.1101/cshperspect.a000034
  51. R. Zaynagetdinov, T. P. Sherrill, L. A. Gleaves, P. Hunt, W. Han, A. G. McLoed, J. A. Saxon, H. Tanjore, P. M. Gulleman, L. R. Young and T. S. Blackwell, Chronic NF-κB activation links COPD and lung cancer through generation of an immunosuppressive microenvironment in the lungs, Onco-target 7 (2016) 5470–5482; https://doi.org/10.18632/oncotarget.6562
  52. T. R. Malek and I. Castro, Interleukin-2 receptor signaling: At the interface between tolerance and immunity, Immunity 33 (2010) 153–165; https://doi.org/10.1016/j.immuni.2010.08.004
  53. M. Permanyer, B. Bošnjak, S. Glage, M. Friedrichsen, S. Floess, J. Huehn, G. E. Patzer, I. Odak, N. Eckert, R. Zargari, L. Ospina-Quintero, H. Georgiev and R. Förster, Efficient IL-2R signaling differentially affects the stability, function, and composition of the regulatory T-cell pool, Cell. Mol. Immunol. 18 (2021) 398–414; https://doi.org/10.1038/s41423-020-00599-z
  54. F. Herr, R. Lemoine, F. Gouilleux, D. Meley, I. Kazma, A. Heraud, F. Velge-Roussel, C. Baron and Y. Lebranchu, IL-2 phosphorylates STAT5 to drive IFN-γ production and activation of human dendritic cells, J. Immunol. 192 (2014) 5660–5670; https://doi.org/10.4049/jimmunol.1300422
  55. A. L. McDoniels-Silvers, G. D. Stoner, R. A. Lubet and M. You, Differential expression of critical cellular genes in human lung adenocarcinomas and squamous cell carcinomas in comparison to normal lung tissues, Neoplasia 4 (2002) 141–150; https://doi.org/10.1038/sj/neo/7900217
  56. Z. Jia, Z. Zhang, Q. Yang, C. Deng, D. Li and L. Ren, Effect of IL2RA and IL2RB gene polymorphisms on lung cancer risk, Int. Immunopharmacol. 74 (2019) Article ID 105716; https://doi.org/10.1016/j.intimp.2019.105716
  57. Q. Guan, Y. Tian, Z. Zhang, L. Zhang, P. Zhao and J. Li, Identification of potential key genes in the pathogenesis of chronic obstructive pulmonary disease through bioinformatics analysis, Front. Genet. 12 (2021) Article ID 754569 (11 pages); https://doi.org/10.3389/fgene.2021.754569
  58. H. Kato and A. Perl, Double-edged sword: Interleukin-2 promotes T regulatory cell differentiation but also expands interleukin-13- and interferon-γ-producing CD8+ T cells via STAT6-GATA-3 axis in systemic lupus erythematosus, Front. Immunol. 12 (2021) Article ID 635531 (9 pages); https://doi.org/10.3389/fimmu.2021.635531
  59. Y. Zhang, L. Ren, J. Sun, F. Han and X. Guo, Increased serum soluble interleukin-2 receptor associated with severity of acute exacerbation of chronic obstructive pulmonary disease, Int. J. Chron. Obstruct. Pulmon. Dis. 16 (2021) 2561–2573; https://doi.org/10.2147/COPD.S321904
DOI: https://doi.org/10.2478/acph-2023-0019 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 243 - 256
Accepted on: Jan 9, 2023
Published on: Jun 12, 2023
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2023 Jurica Baranasic, Yasmeen Niazi, Subhayan Chattopadhyay, Lada Rumora, Lorna Ćorak, Andrea Vukić Dugac, Marko Jakopović, Miroslav Samaržija, Asta Försti, Jelena Knežević, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.