References
- Y. Wang, S. Zou, Z. Zhao, P. Liu, C. Ke and S. Xu, New insights into small-cell lung cancer development and therapy, Cell Biol. Int. 44(8) (2020) 1564–1576; https://doi.org/10.1002/cbin.11359
- A. Pavan, I. Attili, G. Pasello, V. Guarneri, P. F. Conte and L. Bonanno, Immunotherapy in small-cell lung cancer: from molecular promises to clinical challenges, J. Immunother. Cancer 7(1) (2019) Article ID 205 (13 pages); https://doi.org/10.1186/s40425-019-0690-1
- F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre and A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, C. A. Cancer J. Clin. 68(6) (2018) 394–424; https://doi.org/10.3322/caac.21492
- H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray, Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, C. A. Cancer J. Clin. 71(3) (2021) 209–249; https://doi.org/10.3322/caac.21660
- P. Goldstraw, Updated staging system for lung cancer, Surg. Oncol. Clin. N. Am. 20(4) (2011) 655–666; https://doi.org/10.1016/j.soc.2011.07.005
- G. P. Kalemkerian, Small cell lung cancer, Semin. Respir. Crit. Care Med. 37(5) (2016) 783–796; https://doi.org/10.1055/s-0036-1592116
- E. B. Bernhardt and S. I. Jalal, Small cell lung cancer, Cancer Treat. Res. 170 (2016) 301–322; https://doi.org/10.1007/978-3-319-40389-2_14
- G. P. Kalemkerian and B. J. Schneider, Advances in small cell lung cancer, Hematol. Oncol. Clin. North Am. 31(1) (2017) 143–156; https://doi.org/10.1016/j.hoc.2016.08.005
- S. Sundstrom, R. M. Bremnes, S. Kaasa, U. Aasebo, R. Hatlevoll, R. Dahle, N. Boye, M. Wang, T. Vigander, J. Vilsvik, E. Skovlund, E. Hannisdal, S. Aamdal and G. Norwegian, Lung cancer study: Cisplatin and etoposide regimen is superior to cyclophosphamide, epirubicin, and vincristine regimen in small-cell lung cancer: results from a randomized phase III trial with 5 years’ follow-up, J. Clin. Oncol. 20(24) (2002) 4665–4672; https://doi.org/10.1200/JCO.2002.12.111
- M. Takada, M. Fukuoka, M. Kawahara, T. Sugiura, A. Yokoyama, S. Yokota, Y. Nishiwaki, K. Watanabe, K. Noda, T. Tamura, H. Fukuda and N. Saijo, Phase III study of concurrent versus sequential thoracic radiotherapy in combination with cisplatin and etoposide for limited-stage small-cell lung cancer: results of the Japan Clinical Oncology Group Study 9104, J. Clin. Oncol. 20(14) (2002) 3054–3060; https://doi.org/10.1200/JCO.2002.12.071
- R. L. Siegel, K. D. Miller, H. E. Fuchs and A. Jemal, Cancer statistics, 2021, C. A. Cancer J. Clin. 71(1) (2021) 7–33; https://doi.org/10.3322/caac.21654
- T. F. Mott, Lung cancer: Management, F. P. Essent. 464 (2018) 27–30.
- G. S. Jones and D. R. Baldwin, Recent advances in the management of lung cancer, Clin. Med. (Lond). 18(Suppl 2) (2018) s41-s46; https://doi.org/10.7861/clinmedicine.18-2-s41
- C. Ma, J. Tang, H. Wang, G. Tao, X. Gu and L. Hu, Preparative purification of salidroside from Rhodiola rosea by two-step adsorption chromatography on resins, J. Sep. Sci. 32(2) (2009) 185–191; https://doi.org/10.1002/jssc.200800438
- A. Kucinskaite, V. Briedis and A. Savickas, Experimental analysis of therapeutic properties of Rhodiola rosea L. and its possible application in medicine, Medicina (Kaunas) 40(7) (2004) 614–619.
- Y. Li, J. Wu, R. Shi, N. Li, Z. Xu and M. Sun, Antioxidative effects of Rhodiola genus: Phytochemistry and pharmacological mechanisms against the diseases, Curr. Top. Med. Chem. 17(15) (2017) 1692–1708; https://doi.org/10.2174/1568026617666161116141334
- S. N. Udintsev and V. P. Shakhov, Decrease in the growth rate of Ehrlich’s tumor and Pliss’ lymphosarcoma with partial hepatectomy, Vopr. Onkol. 35(9) (1989) 1072–1075.
- H. Zhang, C. Ding, Y. Li, C. Xing, S. Wang, Z. Yu, L. Chen, P. Li and M. Dai, Data mining-based study of collagen type III alpha 1 (COL3A1) prognostic value and immune exploration in pan-cancer, Bioengineered 12(1) (2021) 3634–3646; https://doi.org/10.1080/21655979.2021.1949838
- X. Xin, D. Yao, K. Zhang, S. Han, D. Liu, H. Wang, X. Liu, G. Li, J. Huang and J. Wang, Protective effects of rosavin on bleomycin-induced pulmonary fibrosis via suppressing fibrotic and inflammatory signaling pathways in mice, Biomed. Pharmacother. 115 (2019) Article ID 108870 (8 pages); https://doi.org/10.1016/j.biopha.2019.108870
- W. X. Peng, J. G. Huang, L. Yang, A. H. Gong and Y. Y. Mo, Linc-RoR promotes MAPK/ERK signaling and confers estrogen-independent growth of breast cancer, Mol. Cancer 16(1) (2017) Article ID 161 (11 pages); https://doi.org/10.1186/s12943-017-0727-3
- M. Pashirzad, R. Khorasanian, M. M. Fard, M. H. Arjmand, H. Langari, M. Khazaei, S. Soleiman-pour, M. Rezayi, G. A. Ferns, S. M. Hassanian and A. Avan, The therapeutic potential of MAPK/ERK inhibitors in the treatment of colorectal cancer, Curr. Cancer Drug Targets 21(11) (2021) 932–943; https://doi.org/10.2174/1568009621666211103113339
- B. Wang, X. X. Zhu, L. Y. Pan, H. F. Chen and X. Y. Shen, PP4C facilitates lung cancer proliferation and inhibits apoptosis via activating MAPK/ERK pathway, Pathol. Res. Pract. 216(5) (2020) Article ID 152910; https://doi.org/10.1016/j.prp.2020.152910
- Z. Wang, G. Kan, C. Sheng, C. Yao, Y. Mao and S. Chen, ARHGEF19 regulates MAPK/ERK signaling and promotes the progression of small cell lung cancer, Biochem. Biophys. Res. Commun. 533(4) (2020) 792–799; https://doi.org/10.1016/j.bbrc.2020.09.085
- Y. Liu, Z. Zhang, T. Song, F. Liang, M. Xie and H. Sheng, Resistance to BH3 mimetic S1 in SCLC cells that up-regulate and phosphorylate Bcl-2 through ERK1/2, Br. J. Pharmacol. 169(7) (2013) 1612–1623; https://doi.org/10.1111/bph.12243
- S. Cristea and J. Sage, Is the canonical RAF/MEK/ERK signaling pathway a therapeutic target in SCLC?, J. Thorac. Oncol. 11(8) (2016) 1233–1241; https://doi.org/10.1016/j.jtho.2016.04.018
- A. S. Marchev, P. Dimitrova, I. K. Koycheva and M. I. Georgiev, Altered expression of TRAIL on mouse T cells via ERK phosphorylation by Rhodiola rosea L. and its marker compounds, Food Chem. Toxicol. 108(Pt B) (2017) 419–428; https://doi.org/10.1016/j.fct.2017.02.009
- R. Ruiz-Cordero and W. P. Devine, Targeted therapy and checkpoint immunotherapy in lung cancer, Surg. Pathol. Clin. 13(1) (2020) 17–33; https://doi.org/10.1016/j.path.2019.11.002
- E. C. Naylor, J. K. Desani and P. K. Chung, Targeted therapy and immunotherapy for lung cancer, Surg. Oncol. Clin. N. Am. 25(3) (2016) 601–609; https://doi.org/10.1016/j.soc.2016.02.011
- R. M. Montiel-Ruiz, M. E. Gonzalez-Trujano and M. Deciga-Campos, Synergistic interactions between the antinociceptive effect of Rhodiola rosea extract and B vitamins in the mouse formalin test, Phytomedicine 20(14) (2013) 1280–1287; https://doi.org/10.1016/j.phymed.2013.07.006
- M. Deciga-Campos, M. E. Gonzalez-Trujano, R. Ventura-Martinez, R. M. Montiel-Ruiz, G. E. Angeles-Lopez and F. Brindis, Antihyperalgesic activity of Rhodiola rosea in a diabetic rat model, Drug Dev. Res. 77(1) (2016) 29–36; https://doi.org/10.1002/ddr.21289
- Z. Liu, X. Li, A. R. Simoneau, M. Jafari and X. Zi, Rhodiola rosea extracts and salidroside decrease the growth of bladder cancer cell lines via inhibition of the mTOR pathway and induction of auto-phagy, Mol. Carcinog. 51(3) (2012) 257–267; https://doi.org/10.1002/mc.20780
- A. Majewska, G. Hoser, M. Furmanowa, N. Urbanska, A. Pietrosiuk, A. Zobel and M. Kuras, Anti-proliferative and antimitotic effect, S phase accumulation and induction of apoptosis and necrosis after treatment of extract from Rhodiola rosea rhizomes on HL-60 cells, J. Ethnopharmacol. 103(1) (2006) 43–52; https://doi.org/10.1016/j.jep.2005.05.051
- X. Hu, S. Lin, D. Yu, S. Qiu, X. Zhang and R. Mei, A preliminary study: the anti-proliferation effect of salidroside on different human cancer cell lines, Cell Biol. Toxicol. 26(6) (2010) 499–507; https://doi.org/10.1007/s10565-010-9159-1
- W. Zhang, W. Zhang, L. Huo, Y. Chai, Z. Liu, Z. Ren and C. Yu, Rosavin suppresses osteoclasto-genesis in vivo and in vitro by blocking the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) and mitogen-activated protein kinase (MAPK) signaling pathways, Ann. Transl. Med. 9(5) (2021) Article ID 383 (14 pages); https://doi.org/10.21037/atm-20-4255