Have a personal or library account? Click to login
Pharmaceutical approaches for COVID-19: An update on current therapeutic opportunities Cover

Pharmaceutical approaches for COVID-19: An update on current therapeutic opportunities

By: Sijia Fan,  Hongling Wang,  Dean Wu and  Lu Liu  
Open Access
|Jun 2023

References

  1. K. Habas, C. Nganwuchu, F. Shahzad, R. Gopalan, M. Haque, S. Rahman, A. A. Majumder and T. Nasim, Resolution of coronavirus disease 2019 (COVID-19), Expert Rev. Anti-inf. Ther. 18(12) (2020) 1201–1211; https://doi.org/10.1080/14787210.2020.1797487
  2. J. Y. Chung, M. N. Thone and Y. J. Kwon, COVID-19 vaccines: The status and perspectives in delivery points of view, Adv. Drug Deliv. Rev. 170 (2021) 1–25; https://doi.org/10.1016/j.addr.2020.12.011
  3. K. G. Andersen, A. Rambaut, W. I. Lipkin, E. C. Holmes and R. F. Garry, The proximal origin of SARS-CoV-2, Nat. Med. 26 (2020) 450–452; https://doi.org/10.1038/s41591-020-0820-9
  4. F. Almazán, I. Sola, S. Zuñiga, S. Marquez-Jurado, L. Morales, M. Becares and L. Enjuanes, Corona-virus reverse genetic systems: infectious clones and replicons, Virus Res. 189 (2014) 262–270; https://doi.org/10.1016/j.virusres.2014.05.026
  5. M. Ciotti, M. Ciccozzi, A. Terrinoni, W. C. Jiang, C. B. Wang and S. Bernardini, The COVID-19 pandemic, Crit. Rev. Clin. Lab. Sci. 57(6) (2020) 365–388; https://doi.org/10.1080/10408363.2020.1783198
  6. P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, H.-D. Chen, J. Chen, Y. Luo, H. Guo, R.-D. Jiang, M.-Q. Liu, Y. Chen, X.-R. Shen, X. Wang, X.-S. Zheng, K. Zhao, Q.-J. Chen, F. Deng, L.-L. Liu, B. Yan, F.-X. Zhan, Y.-Y. Wang, G.-F. Xiao and Z.-L. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579(7798) (2020) 270–275; https://doi.org/10.1038/s41586-020-2012-7
  7. F. Li, Structure, function, and evolution of coronavirus spike proteins, Annu. Rev. Virol. 3(1) (2016) 237–261; https://doi.org/10.1146/annurev-virology-110615-042301
  8. D. Schoeman and B. C. Fielding, Coronavirus envelope protein: current knowledge, Virol. J. 16(1) (2019) Article ID 69 (22 pages); https://doi.org/10.1186/s12985-019-1182-0
  9. WHO, Coronavirus (COVID-19) Dashboard; https://covid19.who.int; last access date November 16, 2022.
  10. Y. A. Malik, Properties of coronavirus and SARS-CoV-2, Malays J. Pathol. 42(1) (2020) 3–11.
  11. A. E. Gorbalenya, S. C. Baker, R. S. Baric, R. J. de Groot, C. Drosten, A. A. Gulyaeva, B. L. Haagmans, C. Lauber, A. M. Leontovich, B. W. Neuman, D. Penzar, S. Perlman, L. L. M. Poon, D. V. Samborskiy, I. A. Sidorov, I. Sola and J. Ziebuhr (Coronaviridae study group of the International committee on taxonomy of viruses), The species Severe Acute Respiratory Syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2, Nature Microbiol. 5(4) (2020) 536–544; https://doi.org/10.1038/s41564-020-0695-z
  12. A. Sundararaman, M. Ray, P. V. Ravindra and P. M. Halami, Role of probiotics to combat viral infections with emphasis on COVID-19, Appl. Microbiol. Biotechnol. 104(19) (2020) 8089–8104; https://doi.org/10.1007/s00253-020-10832-4
  13. W.-J. Guan, Z.-Y. Ni, Y. Hu, W.-H. Liang, C.-Q. Ou, J.-X. He, L. Liu, H. Shan, C.-L. Lei, D. S. C. Hui, B. Du, L.-J. Li, G. Zeng, K.-Y. Yuen, R.-C. Chen, C.-L. Tang, T. Wang, P.-Y. Chen, J. Xiang, S.-Y. Li, J.-L. Wang, Z.-J. Liang, Y.-X. Peng, L. Wei, Y. Liu, Y.-H. Hu, P. Peng, J.-M. Wang, J.-Y. Liu, Z. Chen, G. Li, Z.-J. Zheng, S.-Q. Qiu, J. Luo, C.-J. Ye, S.-Y. Zhu and N.-S. Zhong (for the China medical treatment expert group for Covid-19), Clinical characteristics of coronavirus disease 2019 in China, New Engl. J. Med. 382(18) (2020) 1708–1720; https://doi.org/10.1056/NEJMoa2002032
  14. W. Shah, T. Hillman, E. D. Playford and L. Hishmeh, Managing the long term effects of COVID-19: summary of NICE, SIGN, and RCGP rapid guideline, BMJ 372(136) (2021) Article ID 372 (4 pages); https://doi.org/10.1136/bmj.n136
  15. C. Huang, L. Huang, Y. Wang, X. Li, L. Ren, X. Gu, L. Kang, L. Guo, M. Liu, X. Zhou, J. Luo, Z. Huang, S. Tu, Y. Zhao, L. Chen, D. Xu, Y. Li, C. Li, L. Peng, Y. Li, W. Xie, D. Cui, L. Shang, G. Fan, J. Xu, G. Wang, Y. Wang, J. Zhong, C. Wang, J. Wang, D. Zhang and Bin Cao, 6-month consequences of COVID- 19 in patients discharged from hospital: a cohort study, Lancet 397(10270) (2021) 220–232; https://doi.org/10.1016/S0140-6736(20)32656-8
  16. M. Zarei, D. Bose, M. Nouri-Vaskeh, V. Tajiknia, R. Zand and M. Ghasemi, Long-term side effects and lingering symptoms post COVID-19 recovery, Rev. Med. Virol. 32(3) (2022) e2289; https://doi.org/10.1002/rmv.2289
  17. N. Krüger, T. Herrler, S. Erichsen, T. S. Schiergens, G. Herrler, N.-H. Wu, A. Nitsche, M. A. Müller, C. Drosten and S. Pöhlmann, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181(2) (2020) 271–280; https://doi.org/10.1016/j.cell.2020.02.052
  18. X. Ou, Y. Liu, X. Lei, P. Li, D. Mi, L. Ren, L. Guo, R. Guo, T. Chen, J. Hu, Z. Xiang, Z. Mu, X. Chen, J. Chen, K. Hu, Q. Jin, J. Wang and Z. Qian, Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nature Commun. 11(1) (2020) Article ID 1620 (12 pages); https://doi.org/10.1038/s41467-020-15562-9
  19. R. Liu, H. Han, F. Liu, Z. Lv, K. Wu, Y. Liu, Y. Feng and C. Zhu, Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020, Clin. Chim. Acta 505 (2020) 172–175; https://doi.org/10.1016/j.cca.2020.03.009
  20. P. R. Hsueh, L. M. Huang, P. J. Chen, C. L. Kao and P. C. Yang, Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus, Clin. Microbiol. Infect. 10(12) (2004) 1062–1066; https://doi.org/10.1111/j.1469-0691.2004.01009.x
  21. Z. Li, Y. Yi, X. Luo, N. Xiong, Y. Liu, R. Sun, Y. Wang, B. Hu, W. Chen, Y. Zhang, J. Wang, B. Huang, Y. Lin, J. Yang, W. Cai, X. Wang, J. Cheng, Z. Chen, K. Sun, W. Pan, Z. Zhan, L. Chen, F. Ye, Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis, J. Med. Virol. 92(9) (2020) 1518–1524; https://doi.org/10.1002/jmv.25727
  22. D. E. Gordon, G. M. Jang, Bouhaddou, J. Xu, K. Obernier, M. J. O’Meara, J. Z. Guo, D. L. Swaney, T. A. Tummino, R. Hüttenhain, R. M. Kaake, A. L. Richards, B. Tutuncuoglu, H. Foussard, J. Batra, K. Haas, M. Modak, M. Kim, P. Haas, B. J. Polacco, H. Braberg, J. M. Fabius, M. Eckhardt, M. Soucheray, M. J. Bennett, M. Cakir, M. J. McGregor, Q. Li, Z. Z. C. Naing, Y. Zhou, S. Peng, I. T. Kirby, J. E. Melnyk, J. S. Chorba, K. Lou, S. A. Dai, W. Shen, Y. Shi, Z. Zhang, I. Barrio-Hernandez, D. Memon, C. Hernandez-Armenta, C. J. P. Mathy, T. Perica, K. B. Pilla, S. J. Ganesan, D. J. Saltzberg, R. Ramachandran, X. Liu, S. B. Rosenthal, L. Calviello, S. Venkataramanan, Y. Lin, S. A. Wankowicz, M. Bohn, R. Trenker, J. M. Young, D. Cavero, J. Hiatt, T. Roth, U. Rathore, A. Subramanian, J. Noack, M. Hubert, F. Roesch, T. Vallet, B. Meyer, K. M. White, L. Miorin, D. Agard, M. Emerman, D. Ruggero, A. García-Sastre, N. Jura, M. von Zastrow, J. Taunton, O. Schwartz, M. Vignuzzi, C. d’Enfert, S. Mukherjee, M. Jacobson, H. S. Malik, D. G. Fujimori, T. Ideker, C. S. Craik, S. Floor, J. S. Fraser, J. Gross, A. Sali, T. Kortemme, P. Beltrao, K. Shokat, B. K. Shoichet and N. J. Krogan, A SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing, preprint, bioRxiv 2020, posted March 27, 2020; https://doi.org/10.1101/2020.03.22.002386 [update: D. E. Gordon, G. M. Jang, M. Bouhaddou, J. Xu, K. Obernier, K. M. White, M. J. O’Meara, V. V. Rezelj, J. Z. Guo, D. L. Swaney, T. A. Tummino, R. Hüttenhain, R. M. Kaake, A. L. Richards, B. Tutuncuoglu, H. Foussard, J. Batra, K. Haas, M. Modak, M. Kim, P. Haas, B. J. Polacco, H. Braberg, J. M. Fabius, M. Eckhardt, M. Soucheray, M. J. Bennett., M. Cakir, M. J. McGregor, Q. Li, B. Meyer, F. Roesch, T. Vallet, A. Mac Kain, L. Miorin, E. Moreno, Z. Z. C. Naing, Y. Zhou, S. Peng, Y. Shi, Z. Zhang, W. Shen, I. T. Kirby, J. E. Melnyk, J. S. Chorba, K. Lou, S. A. Dai, I. Barrio-Hernandez, D. Memon, C. Hernandez-Armenta, J. Lyu, C. J. P. Mathy, T. Perica, K. Bharath Pilla, S. J. Ganesan, D. J. Saltzberg, R. Rakesh, X. Liu, S. B. Rosenthal, L. Calviello, S. Venkataramanan, J. Liboy-Lugo, Y. Lin, X.-P. Huan, Y. F. Liu, S. A. Wankowicz, M. Bohn, M. Safari, F. S. Ugur, C. Koh, N. S. Savar, Q. D. Tran, D. Shengjuler, S. J. Fletcher, M. C. O’Neal, Y. Cai, J. C. J. Chang, D. J. Broadhurst, S. Klippsten, P. P. Sharp, N. A. Wenzell, D. Kuzuoglu-Ozturk, H.-Y. Wang, R. Trenker, J. M. Young, D. A. Cavero, J. Hiatt, T. L. Roth, U. Rathore, A. Subramanian, J. Noack, M. Hubert, R. M. Stroud, A. D. Frankel, O. S. Rosenberg, K. A. Verba, D. A. Agard, M. Ott, M. Emerman, N. Jura, M. von Zastrow, E. Verdin, A. Ashworth, O. Schwartz, C. d’Enfert, S. Mukherjee, M. Jacobson, H. S. Malik, D. G. Fujimori, T. Ideker, C. S. Craik, S. N. Floor, J. S. Fraser, J. D. Gross, A. Sali, B. L. Roth, D. Ruggero, J. Taunton, T. Kortemme, P. Beltrao, M. Vignuzzi, A. García-Sastre, K. M. Shokat, B. K. Shoichet and N. J. Krogan, Nature 583(7816) (2020) 459–468 (+ 17 pages), https://doi.org/10.1038/s41586-020-2286-9]
  23. P. K. Samudrala, P. Kumar, K. Choudhary, N. Thakur, G. S. Wadekar, R. Dayaramani, M. Agrawal and A. Alexander, Virology, pathogenesis, diagnosis and in-line treatment of COVID-19, Eur. J. Pharmacol. 883 (2020) Article ID 173375 (12 pages); https://doi.org/10.1016/j.ejphar.2020.173375
  24. S. Angeletti, D. Benvenuto, M. Bianchi, M. Giovanetti, S. Pascarella and M. Ciccozzi, COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis, J. Med. Virol. 92(6) (2020) 584–588; https://doi.org/10.1002/jmv.25719
  25. R. J. G. Hulswit, Y. Lang, M. J. G. Bakkers, W. Li, Z. Li, A. Schouten, B. Ophorst, F. J. M. van Kuppeveld, G.-J. Boons, B.-J. Bosch, E. G. Huizinga and R. J. de Groot, Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A, Proc. Natl. Acad. Sci. USA 116(7) (2019) 2681–2690; https://doi.org/10.1073/pnas.1809667116
  26. Y. J. Park, A. C. Walls, Z. Wang, M. M. Sauer, W. Li, M. A. Tortorici, B. J. Bosch, F. DiMaio and D. Veesler, Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors, Nat. Struct. Mol. Biol. 26(12) (2019) 1151–1157; https://doi.org/10.1038/s41594-019-0334-7
  27. J. Cui, F. Li and Z.L. Shi, Origin and evolution of pathogenic coronaviruses, Nat. Rev. Microbiol. 17(3) (2019) 181–192; https://doi.org/10.1038/s41579-018-0118-9
  28. S. Satarker and M. Nampoothiri, Structural proteins in Severe Acute Respiratory Syndrome Coronavirus-2, Arch. Med. Res. 51(6) (2020) 482–491; https://doi.org/10.1016/j.arcmed.2020.05.012
  29. E. A. J. Alsaadi and I. M. Jones, Membrane binding proteins of coronaviruses, Future Virol. 14(4) (2019) 275–286; https://doi.org/10.2217/fvl-2018-0144
  30. B. W. Neuman, B. D. Adair, C. Yoshioka, J. D. Quispe, G. Orca, P. Kuhn, R. A. Milligan, M. Yeager, and M. J. Buchmeier, Supramolecular architecture of severe acute respiratory syndrome corona-virus revealed by electron cryomicroscopy, J. Virol. 80(16) (2006) 7918–7928; https://doi.org/10.1128/JVI.00645-06
  31. Y. T. Tseng, S. M. Wang, K. J. Huang, A. I. Lee, C. C. Chiang and C. T. Wang, Self-assembly of severe acute respiratory syndrome coronavirus membrane protein, J. Biol. Chem. 285(17) (2010) 12862–12872; https://doi.org/10.1074/jbc.M109.030270
  32. Q. Huang, L. Yu, A. M. Petros, A. Gunasekera, Z. Liu, N. Xu, P. Hajduk, J. Mack, S.W. Fesik and E. T. Olejniczak, Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein, Biochemistry 43(20) (2004) 6059–6063; https://doi.org/10.1021/bi036155b
  33. P. V’kovski, M. Gerber, J. Kelly, S. Pfaender, N. Ebert, S. Braga Lagache, C. Simillion, J. Portmann, H. Stalder, V. Gaschen, R. Bruggmann, M. H. Stoffel, M. Heller, R. Dijkman and V. Thiel, Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity--labeling, eLife 8 (2019) e42037; https://doi.org/10.7554/eLife.42037
  34. X. Yan, Q. Hao, Y. Mu, K. A. Timani, L. Ye, Y. Zhu and J. Wu, Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein, Int. J. Biochem. Cell Biol. 38(8) (2006) 1417–1428; https://doi.org/10.1016/j.biocel.2006.02.003
  35. Y. Zeng, L. Ye, S. Zhu, H. Zheng, P. Zhao, W. Cai, L. Su, Y. She and Z. Wu, The nucleocapsid protein of SARS-associated coronavirus inhibits B23 phosphorylation, Biochem. Biophys. Res. Commun. 369(2) (2008) 287–291; https://doi.org/10.1016/j.bbrc.2008.01.096
  36. X. Lu, J. Pan, J. Tao and D. Guo, SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism, Virus Genes 42(1) (2011) 37–45; https://doi.org/10.1007/s11262-010-0544-x
  37. Q. Wang, C. Li, Q. Zhang, T. Wang, J. Li, W. Guan, J. Yu, M. Liang and D. Li, Interactions of SARS coronavirus nucleocapsid protein with the host cell proteasome subunit p42, Virol. J. 7 (2010) Article ID 99 (8 pages); https://doi.org/10.1186/1743-422X-7-99
  38. M. Surjit, B. Liu, V. T. Chow and S. K. Lal, The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells, J. Biol. Chem. 281(16) (2006) 10669–10681; https://doi.org/10.1074/jbc.M509233200
  39. B. Zhou, J. Liu, Q. Wang, X. Liu, X. Li, P. Li, Q. Ma and C. Cao, The nucleocapsid protein of severe acute respiratory syndrome coronavirus inhibits cell cytokinesis and proliferation by interacting with translation elongation factor 1alpha, J. Virol. 82(14) (2008) 6962–6971; https://doi.org/10.1128/JVI.00133-08
  40. T. R. Ruch and C. E. Machamer, The hydrophobic domain of infectious bronchitis virus E protein alters the host secretory pathway and is important for release of infectious virus, J. Virol. 85(2) (2011) 675–685; https://doi.org/10.1128/JVI.01570-10
  41. D. X. Liu, Q. Yuan and Y. Liao. Coronavirus envelope protein: a small membrane protein with multiple functions, Cell. Mol. Life Sci. 64(16) (2007) 2043–2048; https://doi.org/10.1007/s00018-007-7103-1
  42. T. S. Fung and D. X. Liu, Post-translational modifications of coronavirus proteins: roles and function, Future Virol. 13(6) (2018) 405–430; https://doi.org/10.2217/fvl-2018-0008
  43. M. Prajapat, P. Sarma, N. Shekhar, P. Avti, S. Sinha, H. Kaur, S. Kumar, A. Bhattacharyya, H. Kumar, S. Bansal and B. Medhi, Drug targets for corona virus: A systematic review, Indian J. Pharmacol. 52(1) (2020) 56–65; https://doi.org/10.4103/ijp.IJP_115_20
  44. C. C. Posthuma, D. D. Nedialkova, J. C. Zevenhoven-Dobbe, J. H. Blokhuis, A. E. Gorbalenya and E. J. Snijder, Site-directed mutagenesis of the Nidovirus replicative endoribonuclease NendoU exerts pleiotropic effects on the arterivirus life cycle, J. Virol. 80(4) (2006) 1653–1661; https://doi.org/10.1128/JVI.80.4.1653-1661.2006
  45. X. Deng, M. Hackbart, R. C. Mettelman, A. O’Brien, A. M. Mielech, G. Yi, C. C. Kao and S. C. Baker, Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages, Proc. Natl. Acad. Sci. USA 114(21) (2017) E4251–E4260; https://doi.org/10.1073/pnas.1618310114
  46. Y. Kim, R. Jedrzejczak, N. I. Maltseva, M. Wilamowski, M. Endres, A. Godzik, K. Michalska and A Joachimiak, Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2, Protein Sci. 29(7) (2020) 1596–1605; https://doi.org/10.1002/pro.3873
  47. C. C. Stobart, N. R. Sexton, H. Munjal, X. Lu, K. L. Molland, S. Tomar, A. D. Mesecar and M. R. Denison, Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity, J. Virol. 87(23) (2013) 12611–12618; https://doi.org/10.1128/JVI.02050-13
  48. H. Wang, S. Xue, H. Yang and C. Chen, Recent progress in the discovery of inhibitors targeting coronavirus proteases, Virol. Sin. 31(1) (2016) 24–30; https://doi.org/10.1007/s12250-015-3711-3
  49. A. J. te Velthuis, S. H. van den Worm and E. J. Snijder, The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension, Nucleic Acids Res. 40(4) (2012) 1737–1747; https://doi.org/10.1093/nar/gkr893
  50. M. P. Egloff, F. Ferron, V. Campanacci, S. Longhi, C. Rancurel, H. Dutartre, E. J. Snijder, A. E. Gorbalenya, C. Cambillau and B. Canard, The severe acute respiratory syndrome-coronavirus replica-tive protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world, Proc. Natl. Acad. Sci. USA 101(11) (2004) 3792–3796; https://doi.org/10.1073/pnas.0307877101
  51. M. Bouvet, A. Lugari, C. C. Posthuma, J. C. Zevenhoven, S. Bernard, S. Betzi, I. Imbert, B. Canard, J.-C. Guillemot, P. Lécine, S. Pfefferle, C. Drosten, E. J. Snijder, E. Decroly and X. Morelli, Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes, J. Biol. Chem. 289(37) (2014) 25783–25796; https://doi.org/10.1074/jbc.M114.577353
  52. T. Rodrigues, D. Reker, P. Schneider and G. Schneider, Counting on natural products for drug design, Nat. Chem. 8(6) (2016) 531–541; https://doi.org/10.1038/nchem.2479
  53. R. R. Pamuru, N. Ponneri, A. G. Damu and R. Vadde, Targeting natural products for the treatment of COVID-19 – An updated review, Curr. Pharm. Des. 26(41) (2020) 5278–5285; https://doi.org/10.2174/1381612826666200903122536
  54. M. Boozari and H. Hosseinzadeh, Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies, Phytother. Res. 35(2) (2021) 864–876; https://doi.org/10.1002/ptr.6873
  55. D. Silveira, J. M. Prieto-Garcia, F. Boylan, O. Estrada, Y. M. Fonseca-Bazzo, C. M. Jamal, P. O. Magalhães, E. O. Pereira, M. Tomczyk and M. Heinrich, COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy?, Front. Pharmacol. 11 (2020) Article ID 581840 (44 pages); https://doi.org/10.3389/fphar.2020.581840
  56. L. Ang, H. W. Lee, A. Kim and M. S. Lee, Herbal medicine for the management of COVID-19 during the medical observation period: A review of guidelines, Integr. Med. Res. 9(3) (2020) Article ID 100465 (5 pages); https://doi.org/10.1016/j.imr.2020.100465
  57. A. Y. Fan, S. Gu and S. F. Alemi (Research group for evidence-based Chinese medicine), Chinese herbal medicine for COVID-19: Current evidence with systematic review and meta-analysis, J. Integr. Med. 18(5) (2020) 385–394; https://doi.org/10.1016/j.joim.2020.07.008
  58. A. D. Fuzimoto and C. Isidoro, The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - Additional weapons in the fight against the COVID-19 pandemic?, Trad. Complement. Med. 10(4) (2020) 405–419; https://doi.org/10.1016/j.jtcme.2020.05.003
  59. D. H. Zhang, K. L. Wu, X. Zhang, S. Q. Deng and B. Peng, In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus, J. Integr. Med. 18(2) (2020) 152–158; https://doi.org/10.1016/j.joim.2020.02.005
  60. S. Kumar, P. Kashyap, S. Chowdhury, S. Kumar, A. Panwar and A. Kumar, Identification of phyto-chemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARSCoV-2) that are capable of inhibiting virus replication, Phytomedicine 85 (2021) Article ID 153317 (10 pages); https://doi.org/10.1016/j.phymed.2020.153317
  61. A. Khan, M. Khan, S. Saleem, Z. Babar, A. Ali, A. A. Khan, Z. Sardar, F. Hamayun, S. S. Ali and D.-Q. Wei, Phylogenetic analysis and structural perspectives of RNA-dependent RNA-polymerase inhibition from SARs-CoV-2 with natural products, Interdiscip. Sci. 12(3) (2020) 335–348; https://doi.org/10.1007/s12539-020-00381-9
  62. M. T. Islam, C. Sarkar, D. M. El-Kersh, S. Jamaddar, S. J. Uddin, J. A. Shilpi and M. S. Mubarak, Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data, Phytother. Res. 34(10) (2020) 2471–2492; https://doi.org/10.1002/ptr.6700
  63. A. Shah, V. Patel and B. Parmar, Discovery of some antiviral natural products to fight against novel coronavirus (SARS-CoV-2) using an in silico approach, Comb. Chem. High Throughput Screen. 24(8) (2021) 1271–1280; https://doi.org/10.2174/1386207323666200902135928
  64. M. Kandeel and M. Al-Nazawi, Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease, Life Sci. 251 (2020) Article ID 117627 (5 pages); https://doi.org/10.1016/j.lfs.2020.117627
  65. S. Vardhan and S. K. Sahoo, In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19, Comput. Biol. Med. 124 (2020) Article ID 103936 (12 pages); https://doi.org/10.1016/j.compbiomed.2020.103936
  66. R. Yu, L. Chen, R. Lan, R. Shen and P. Li, Computational screening of antagonists against the SARSCoV-2 (COVID-19) coronavirus by molecular docking, Int. J. Antimicrob. Agents 56(2) (2020) Article ID 106012 (6 pages); https://doi.org/10.1016/j.ijantimicag.2020.106012
  67. T. Joshi, T. Joshi, P. Sharma, S. Mathpal, H. Pundir, V. Bhatt and S. Chandra, In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking, Eur. Rev. Med. Pharmacol. Sci. 24(8) (2020) 4529–4536; https://doi.org/10.26355/eurrev_202004_21036
  68. H. M. Wahedi, S. Ahmad and S. W. Abbasi, Stilbene-based natural compounds as promising drug candidates against COVID-19, J. Biomol. Struct. Dyn. 39(9) (2021) 3225–3234; https://doi.org/10.1080/07391102.2020.1762743
  69. S. Kumar, K. Thakur, B. Sharma, T. R. Bhardwaj, D. N. Prasad and R. K. Singh, Recent advances in vaccine development for the treatment of emerging infectious diseases, Indian J. Pharm. Ed. Res. 53(3) (2019) 343–354.
  70. D. V. Mehrotra, H. E. Janes, T. R. Fleming, P. W. Annunziato, K. M. Neuzil, L. N. Carpp, D. Benkeser, E. R. Brown, M. Carone, I. Cho, D. Donnell, M. P. Fay, Y. Fong, S. Han, I. Hirsch, Y. Huang, Y. Huang, O. Hyrien, M. Juraska, A. Luedtke, M. Nason, A. Vandebosch, H. Zhou, M. S. Cohen, L. Corey, J. Hartzel, D. Follmann and P. B. Gilbert, Clinical endpoints for evaluating efficacy in COVID-19 vaccine trials, Ann. Intern. Med. 174(2) (2021) 221–228; https://doi.org/10.7326/M20-6169
  71. A. J. Marian, Current state of vaccine development and targeted therapies for COVID-19: impact of basic science discoveries, Cardiovasc. Pathol. 50 (2021) Article ID 107278 (11 pages); https://doi.org/10.1016/j.carpath.2020.107278
  72. University of Oxford, Vaccine knowledge project, Authoritative information for all, COVID-19 vaccines, https://vk.ovg.ox.ac.uk/vk/covid-19-vaccines; last access date November 5, 2022
  73. WHO, The Moderna COVID-19 (mRNA-1273) Vaccine: What you Need to Know; https://www.who.int/news-room/feature-stories/detail/the-moderna-covid-19-mrna-1273-vaccine-what-you-need-to-know; last access date November 17, 2022
  74. L. A. Jackson, E. J. Anderson, N. G. Rouphael, P. C. Roberts, M. Makhene, R. N. Coler, M. P. Mc-Cullough, J. D. Chappell, M. R. Denison, L. J. Stevens, A. J. Pruijssers, A. McDermott, B. Flach, N. A. Doria-Rose, K. S. Corbett, K. M. Morabito, S. O’Dell, S. D. Schmidt, P. A. Swanson, II, M. Padilla, J. R. Mascola, K. M. Neuzil, H. Bennett, W. Sun, E. Peters, M. Makowski, J. Albert, K. Cross, W. Buchanan, R. Pikaart-Tautges, J. E. Ledgerwood, B. S. Graham and J. H. Beigel (for the mRNA-1273 study group), An mRNA Vaccine against SARS-CoV-2 - Preliminary report, N. Engl. J. Med. 383(20) (2020) 1920–1931; https://doi.org/10.1056/NEJMoa2022483
  75. S. Roest, R. A. S Hoek and O. C. Manintveld, BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting, N. Engl. J. Med. 384(20) (2021) 1968–1970; https://doi.org/10.1056/NEJMc2104281
  76. E. Callaway, Russia announces positive COVID-vaccine results from controversial trial, Nature -News 11 Nov 2020; https://doi.org/10.1038/d41586-020-03209-0
  77. K. Rajarshi, R. Khan, M. K. Singh, T. Ranjan, S. Ray and S. Ray, Essential functional molecules associated with SARS-CoV-2 infection: Potential therapeutic targets for COVID-19, Gene 768 (2021) Article ID 145313 (9 pages); https://doi.org/10.1016/j.gene.2020.145313
  78. L. Dong, S. Hu and J. Gao, Discovering drugs to treat coronavirus disease 2019 (COVID-19), Drug Discov. Ther. 14(1) (2020) 58–60; https://doi.org/10.5582/ddt.2020.01012
  79. R. K. Guy, R. S. Di Paola, F. Romanelli and R. E. Dutch, Rapid repurposing of drugs for COVID-19, Science 368(6493) (2020) 829–830; https://doi.org/10.1126/science.abb9332
  80. D. Calina, A. O. Docea, D. Petrakis, A. M. Egorov, A. A. Ishmukhametov, A. G. Gabibov, M. I. Shtilman, R. Kostoff, F. Carvalho, M. Vinceti, D. A. Spandidos and A. Tsatsakis, Towards effective COVID-19 vaccines: Updates, perspectives and challenges (Review), Int. J. Mol. Med. 46(1) (2020) 3–16; https://doi.org/10.3892/ijmm.2020.4596
  81. Y.-F. Tu, C.-S. Chien, A. A. Yarmishyn, Y.-Y. Lin, Y.-H. Luo, Y.-T. Lin, W.-Y. Lai, D.-M. Yang, S.-J. Chou, Y.-P. Yang, M.-L. Wang and S.-H. Chiou, A review of SARS-CoV-2 and the ongoing clinical trials, Int. J. Mol. Sci. 21(7) (2020) Article ID 2657 (19 pages); https://doi.org/10.3390/ijms21072657
  82. S. Mulangu, L. E. Dodd, R. T. Davey, Jr., O. T. Mbaya, M. Proschan, D. Mukadi, M. L. Manzo, D. Nzolo, A. T. Oloma, A. Ibanda, R. Ali, S. Coulibaly, A. C. Levine, R. Grais, J. Diaz, H. C. Lane, J.-J. Muyembe-Tamfum (and the PALM writing group for the PALM consortium study team), A randomized, controlled trial of Ebola virus disease therapeutics, N. Engl. J. Med. 381(24) (2019) 2293–2303; https://doi.org/10.1056/NEJMoa1910993
  83. U. S. Food and Drug Administration, FDA Approves First Treatment for COVID-19, October 22, 2020; https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19; last access date November 17, 2022.
  84. P. K. Samudrala, P. Kumar, K. Choudhary N. Thakur, G. S. Wadekar, R. Dayaramani, M. Agrawal and A. Alexander, Virology, pathogenesis, diagnosis and in-line treatment of COVID-19, Eur. J. Pharmacol. 883 (2020) Article ID 173375 (12 pages); https://doi.org/10.1016/j.ejphar.2020.173375
  85. S. Kumar, A. Sil and A. Das, Hydroxychloroquine for COVID-19: Myths vs facts, Dermatol. Ther. 33(6) (2020) e13857; https://doi.org/10.1111/dth.13857
  86. H. Pertinez, R. K. R. Rajoli, S. H. Khoo and A. Owen, Pharmacokinetic modelling to estimate intracellular favipiravir ribofuranosyl-5’-triphosphate exposure to support posology for SARS-CoV-2, J. Antimicrob. Chemother. 76(8) (2021) 2121–2128; https://doi.org/10.1093/jac/dkab135
  87. M.-Y. Liu, S. Wang, W.-F. Yao, H.-z. Wu, S.-N. Meng and M.-J. Wei, Pharmacokinetic properties and bioequivalence of two formulations of arbidol: an open-label, single-dose, randomized-sequence, two-period crossover study in healthy Chinese male volunteers, Clin. Ther. 31(4) (2009) 784–792; https://doi.org/10.1016/j.clinthera.2009.04.016
  88. F. M. Shirazi, R. Mirzaei, S. Nakhaee, A. Nejatian, S. Ghafari and O. Mehrpour, Repurposing the drug, ivermectin, in COVID-19: toxicological points of view, Eur. J. Med. Res. 27(1) (2022) Article ID 21 (11 pages); https://doi.org/10.1186/s40001-022-00645-8
DOI: https://doi.org/10.2478/acph-2023-0014 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 157 - 173
Accepted on: Nov 18, 2022
Published on: Jun 12, 2023
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2023 Sijia Fan, Hongling Wang, Dean Wu, Lu Liu, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.