References
- K. Habas, C. Nganwuchu, F. Shahzad, R. Gopalan, M. Haque, S. Rahman, A. A. Majumder and T. Nasim, Resolution of coronavirus disease 2019 (COVID-19), Expert Rev. Anti-inf. Ther. 18(12) (2020) 1201–1211; https://doi.org/10.1080/14787210.2020.1797487
- J. Y. Chung, M. N. Thone and Y. J. Kwon, COVID-19 vaccines: The status and perspectives in delivery points of view, Adv. Drug Deliv. Rev. 170 (2021) 1–25; https://doi.org/10.1016/j.addr.2020.12.011
- K. G. Andersen, A. Rambaut, W. I. Lipkin, E. C. Holmes and R. F. Garry, The proximal origin of SARS-CoV-2, Nat. Med. 26 (2020) 450–452; https://doi.org/10.1038/s41591-020-0820-9
- F. Almazán, I. Sola, S. Zuñiga, S. Marquez-Jurado, L. Morales, M. Becares and L. Enjuanes, Corona-virus reverse genetic systems: infectious clones and replicons, Virus Res. 189 (2014) 262–270; https://doi.org/10.1016/j.virusres.2014.05.026
- M. Ciotti, M. Ciccozzi, A. Terrinoni, W. C. Jiang, C. B. Wang and S. Bernardini, The COVID-19 pandemic, Crit. Rev. Clin. Lab. Sci. 57(6) (2020) 365–388; https://doi.org/10.1080/10408363.2020.1783198
- P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, H.-D. Chen, J. Chen, Y. Luo, H. Guo, R.-D. Jiang, M.-Q. Liu, Y. Chen, X.-R. Shen, X. Wang, X.-S. Zheng, K. Zhao, Q.-J. Chen, F. Deng, L.-L. Liu, B. Yan, F.-X. Zhan, Y.-Y. Wang, G.-F. Xiao and Z.-L. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579(7798) (2020) 270–275; https://doi.org/10.1038/s41586-020-2012-7
- F. Li, Structure, function, and evolution of coronavirus spike proteins, Annu. Rev. Virol. 3(1) (2016) 237–261; https://doi.org/10.1146/annurev-virology-110615-042301
- D. Schoeman and B. C. Fielding, Coronavirus envelope protein: current knowledge, Virol. J. 16(1) (2019) Article ID 69 (22 pages); https://doi.org/10.1186/s12985-019-1182-0
- WHO, Coronavirus (COVID-19) Dashboard; https://covid19.who.int; last access date November 16, 2022.
- Y. A. Malik, Properties of coronavirus and SARS-CoV-2, Malays J. Pathol. 42(1) (2020) 3–11.
- A. E. Gorbalenya, S. C. Baker, R. S. Baric, R. J. de Groot, C. Drosten, A. A. Gulyaeva, B. L. Haagmans, C. Lauber, A. M. Leontovich, B. W. Neuman, D. Penzar, S. Perlman, L. L. M. Poon, D. V. Samborskiy, I. A. Sidorov, I. Sola and J. Ziebuhr (Coronaviridae study group of the International committee on taxonomy of viruses), The species Severe Acute Respiratory Syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2, Nature Microbiol. 5(4) (2020) 536–544; https://doi.org/10.1038/s41564-020-0695-z
- A. Sundararaman, M. Ray, P. V. Ravindra and P. M. Halami, Role of probiotics to combat viral infections with emphasis on COVID-19, Appl. Microbiol. Biotechnol. 104(19) (2020) 8089–8104; https://doi.org/10.1007/s00253-020-10832-4
- W.-J. Guan, Z.-Y. Ni, Y. Hu, W.-H. Liang, C.-Q. Ou, J.-X. He, L. Liu, H. Shan, C.-L. Lei, D. S. C. Hui, B. Du, L.-J. Li, G. Zeng, K.-Y. Yuen, R.-C. Chen, C.-L. Tang, T. Wang, P.-Y. Chen, J. Xiang, S.-Y. Li, J.-L. Wang, Z.-J. Liang, Y.-X. Peng, L. Wei, Y. Liu, Y.-H. Hu, P. Peng, J.-M. Wang, J.-Y. Liu, Z. Chen, G. Li, Z.-J. Zheng, S.-Q. Qiu, J. Luo, C.-J. Ye, S.-Y. Zhu and N.-S. Zhong (for the China medical treatment expert group for Covid-19), Clinical characteristics of coronavirus disease 2019 in China, New Engl. J. Med. 382(18) (2020) 1708–1720; https://doi.org/10.1056/NEJMoa2002032
- W. Shah, T. Hillman, E. D. Playford and L. Hishmeh, Managing the long term effects of COVID-19: summary of NICE, SIGN, and RCGP rapid guideline, BMJ 372(136) (2021) Article ID 372 (4 pages); https://doi.org/10.1136/bmj.n136
- C. Huang, L. Huang, Y. Wang, X. Li, L. Ren, X. Gu, L. Kang, L. Guo, M. Liu, X. Zhou, J. Luo, Z. Huang, S. Tu, Y. Zhao, L. Chen, D. Xu, Y. Li, C. Li, L. Peng, Y. Li, W. Xie, D. Cui, L. Shang, G. Fan, J. Xu, G. Wang, Y. Wang, J. Zhong, C. Wang, J. Wang, D. Zhang and Bin Cao, 6-month consequences of COVID- 19 in patients discharged from hospital: a cohort study, Lancet 397(10270) (2021) 220–232; https://doi.org/10.1016/S0140-6736(20)32656-8
- M. Zarei, D. Bose, M. Nouri-Vaskeh, V. Tajiknia, R. Zand and M. Ghasemi, Long-term side effects and lingering symptoms post COVID-19 recovery, Rev. Med. Virol. 32(3) (2022) e2289; https://doi.org/10.1002/rmv.2289
- N. Krüger, T. Herrler, S. Erichsen, T. S. Schiergens, G. Herrler, N.-H. Wu, A. Nitsche, M. A. Müller, C. Drosten and S. Pöhlmann, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181(2) (2020) 271–280; https://doi.org/10.1016/j.cell.2020.02.052
- X. Ou, Y. Liu, X. Lei, P. Li, D. Mi, L. Ren, L. Guo, R. Guo, T. Chen, J. Hu, Z. Xiang, Z. Mu, X. Chen, J. Chen, K. Hu, Q. Jin, J. Wang and Z. Qian, Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nature Commun. 11(1) (2020) Article ID 1620 (12 pages); https://doi.org/10.1038/s41467-020-15562-9
- R. Liu, H. Han, F. Liu, Z. Lv, K. Wu, Y. Liu, Y. Feng and C. Zhu, Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020, Clin. Chim. Acta 505 (2020) 172–175; https://doi.org/10.1016/j.cca.2020.03.009
- P. R. Hsueh, L. M. Huang, P. J. Chen, C. L. Kao and P. C. Yang, Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus, Clin. Microbiol. Infect. 10(12) (2004) 1062–1066; https://doi.org/10.1111/j.1469-0691.2004.01009.x
- Z. Li, Y. Yi, X. Luo, N. Xiong, Y. Liu, R. Sun, Y. Wang, B. Hu, W. Chen, Y. Zhang, J. Wang, B. Huang, Y. Lin, J. Yang, W. Cai, X. Wang, J. Cheng, Z. Chen, K. Sun, W. Pan, Z. Zhan, L. Chen, F. Ye, Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis, J. Med. Virol. 92(9) (2020) 1518–1524; https://doi.org/10.1002/jmv.25727
- D. E. Gordon, G. M. Jang, Bouhaddou, J. Xu, K. Obernier, M. J. O’Meara, J. Z. Guo, D. L. Swaney, T. A. Tummino, R. Hüttenhain, R. M. Kaake, A. L. Richards, B. Tutuncuoglu, H. Foussard, J. Batra, K. Haas, M. Modak, M. Kim, P. Haas, B. J. Polacco, H. Braberg, J. M. Fabius, M. Eckhardt, M. Soucheray, M. J. Bennett, M. Cakir, M. J. McGregor, Q. Li, Z. Z. C. Naing, Y. Zhou, S. Peng, I. T. Kirby, J. E. Melnyk, J. S. Chorba, K. Lou, S. A. Dai, W. Shen, Y. Shi, Z. Zhang, I. Barrio-Hernandez, D. Memon, C. Hernandez-Armenta, C. J. P. Mathy, T. Perica, K. B. Pilla, S. J. Ganesan, D. J. Saltzberg, R. Ramachandran, X. Liu, S. B. Rosenthal, L. Calviello, S. Venkataramanan, Y. Lin, S. A. Wankowicz, M. Bohn, R. Trenker, J. M. Young, D. Cavero, J. Hiatt, T. Roth, U. Rathore, A. Subramanian, J. Noack, M. Hubert, F. Roesch, T. Vallet, B. Meyer, K. M. White, L. Miorin, D. Agard, M. Emerman, D. Ruggero, A. García-Sastre, N. Jura, M. von Zastrow, J. Taunton, O. Schwartz, M. Vignuzzi, C. d’Enfert, S. Mukherjee, M. Jacobson, H. S. Malik, D. G. Fujimori, T. Ideker, C. S. Craik, S. Floor, J. S. Fraser, J. Gross, A. Sali, T. Kortemme, P. Beltrao, K. Shokat, B. K. Shoichet and N. J. Krogan, A SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing, preprint, bioRxiv 2020, posted March 27, 2020; https://doi.org/10.1101/2020.03.22.002386 [update: D. E. Gordon, G. M. Jang, M. Bouhaddou, J. Xu, K. Obernier, K. M. White, M. J. O’Meara, V. V. Rezelj, J. Z. Guo, D. L. Swaney, T. A. Tummino, R. Hüttenhain, R. M. Kaake, A. L. Richards, B. Tutuncuoglu, H. Foussard, J. Batra, K. Haas, M. Modak, M. Kim, P. Haas, B. J. Polacco, H. Braberg, J. M. Fabius, M. Eckhardt, M. Soucheray, M. J. Bennett., M. Cakir, M. J. McGregor, Q. Li, B. Meyer, F. Roesch, T. Vallet, A. Mac Kain, L. Miorin, E. Moreno, Z. Z. C. Naing, Y. Zhou, S. Peng, Y. Shi, Z. Zhang, W. Shen, I. T. Kirby, J. E. Melnyk, J. S. Chorba, K. Lou, S. A. Dai, I. Barrio-Hernandez, D. Memon, C. Hernandez-Armenta, J. Lyu, C. J. P. Mathy, T. Perica, K. Bharath Pilla, S. J. Ganesan, D. J. Saltzberg, R. Rakesh, X. Liu, S. B. Rosenthal, L. Calviello, S. Venkataramanan, J. Liboy-Lugo, Y. Lin, X.-P. Huan, Y. F. Liu, S. A. Wankowicz, M. Bohn, M. Safari, F. S. Ugur, C. Koh, N. S. Savar, Q. D. Tran, D. Shengjuler, S. J. Fletcher, M. C. O’Neal, Y. Cai, J. C. J. Chang, D. J. Broadhurst, S. Klippsten, P. P. Sharp, N. A. Wenzell, D. Kuzuoglu-Ozturk, H.-Y. Wang, R. Trenker, J. M. Young, D. A. Cavero, J. Hiatt, T. L. Roth, U. Rathore, A. Subramanian, J. Noack, M. Hubert, R. M. Stroud, A. D. Frankel, O. S. Rosenberg, K. A. Verba, D. A. Agard, M. Ott, M. Emerman, N. Jura, M. von Zastrow, E. Verdin, A. Ashworth, O. Schwartz, C. d’Enfert, S. Mukherjee, M. Jacobson, H. S. Malik, D. G. Fujimori, T. Ideker, C. S. Craik, S. N. Floor, J. S. Fraser, J. D. Gross, A. Sali, B. L. Roth, D. Ruggero, J. Taunton, T. Kortemme, P. Beltrao, M. Vignuzzi, A. García-Sastre, K. M. Shokat, B. K. Shoichet and N. J. Krogan, Nature 583(7816) (2020) 459–468 (+ 17 pages), https://doi.org/10.1038/s41586-020-2286-9]
- P. K. Samudrala, P. Kumar, K. Choudhary, N. Thakur, G. S. Wadekar, R. Dayaramani, M. Agrawal and A. Alexander, Virology, pathogenesis, diagnosis and in-line treatment of COVID-19, Eur. J. Pharmacol. 883 (2020) Article ID 173375 (12 pages); https://doi.org/10.1016/j.ejphar.2020.173375
- S. Angeletti, D. Benvenuto, M. Bianchi, M. Giovanetti, S. Pascarella and M. Ciccozzi, COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis, J. Med. Virol. 92(6) (2020) 584–588; https://doi.org/10.1002/jmv.25719
- R. J. G. Hulswit, Y. Lang, M. J. G. Bakkers, W. Li, Z. Li, A. Schouten, B. Ophorst, F. J. M. van Kuppeveld, G.-J. Boons, B.-J. Bosch, E. G. Huizinga and R. J. de Groot, Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A, Proc. Natl. Acad. Sci. USA 116(7) (2019) 2681–2690; https://doi.org/10.1073/pnas.1809667116
- Y. J. Park, A. C. Walls, Z. Wang, M. M. Sauer, W. Li, M. A. Tortorici, B. J. Bosch, F. DiMaio and D. Veesler, Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors, Nat. Struct. Mol. Biol. 26(12) (2019) 1151–1157; https://doi.org/10.1038/s41594-019-0334-7
- J. Cui, F. Li and Z.L. Shi, Origin and evolution of pathogenic coronaviruses, Nat. Rev. Microbiol. 17(3) (2019) 181–192; https://doi.org/10.1038/s41579-018-0118-9
- S. Satarker and M. Nampoothiri, Structural proteins in Severe Acute Respiratory Syndrome Coronavirus-2, Arch. Med. Res. 51(6) (2020) 482–491; https://doi.org/10.1016/j.arcmed.2020.05.012
- E. A. J. Alsaadi and I. M. Jones, Membrane binding proteins of coronaviruses, Future Virol. 14(4) (2019) 275–286; https://doi.org/10.2217/fvl-2018-0144
- B. W. Neuman, B. D. Adair, C. Yoshioka, J. D. Quispe, G. Orca, P. Kuhn, R. A. Milligan, M. Yeager, and M. J. Buchmeier, Supramolecular architecture of severe acute respiratory syndrome corona-virus revealed by electron cryomicroscopy, J. Virol. 80(16) (2006) 7918–7928; https://doi.org/10.1128/JVI.00645-06
- Y. T. Tseng, S. M. Wang, K. J. Huang, A. I. Lee, C. C. Chiang and C. T. Wang, Self-assembly of severe acute respiratory syndrome coronavirus membrane protein, J. Biol. Chem. 285(17) (2010) 12862–12872; https://doi.org/10.1074/jbc.M109.030270
- Q. Huang, L. Yu, A. M. Petros, A. Gunasekera, Z. Liu, N. Xu, P. Hajduk, J. Mack, S.W. Fesik and E. T. Olejniczak, Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein, Biochemistry 43(20) (2004) 6059–6063; https://doi.org/10.1021/bi036155b
- P. V’kovski, M. Gerber, J. Kelly, S. Pfaender, N. Ebert, S. Braga Lagache, C. Simillion, J. Portmann, H. Stalder, V. Gaschen, R. Bruggmann, M. H. Stoffel, M. Heller, R. Dijkman and V. Thiel, Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity--labeling, eLife 8 (2019) e42037; https://doi.org/10.7554/eLife.42037
- X. Yan, Q. Hao, Y. Mu, K. A. Timani, L. Ye, Y. Zhu and J. Wu, Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein, Int. J. Biochem. Cell Biol. 38(8) (2006) 1417–1428; https://doi.org/10.1016/j.biocel.2006.02.003
- Y. Zeng, L. Ye, S. Zhu, H. Zheng, P. Zhao, W. Cai, L. Su, Y. She and Z. Wu, The nucleocapsid protein of SARS-associated coronavirus inhibits B23 phosphorylation, Biochem. Biophys. Res. Commun. 369(2) (2008) 287–291; https://doi.org/10.1016/j.bbrc.2008.01.096
- X. Lu, J. Pan, J. Tao and D. Guo, SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism, Virus Genes 42(1) (2011) 37–45; https://doi.org/10.1007/s11262-010-0544-x
- Q. Wang, C. Li, Q. Zhang, T. Wang, J. Li, W. Guan, J. Yu, M. Liang and D. Li, Interactions of SARS coronavirus nucleocapsid protein with the host cell proteasome subunit p42, Virol. J. 7 (2010) Article ID 99 (8 pages); https://doi.org/10.1186/1743-422X-7-99
- M. Surjit, B. Liu, V. T. Chow and S. K. Lal, The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells, J. Biol. Chem. 281(16) (2006) 10669–10681; https://doi.org/10.1074/jbc.M509233200
- B. Zhou, J. Liu, Q. Wang, X. Liu, X. Li, P. Li, Q. Ma and C. Cao, The nucleocapsid protein of severe acute respiratory syndrome coronavirus inhibits cell cytokinesis and proliferation by interacting with translation elongation factor 1alpha, J. Virol. 82(14) (2008) 6962–6971; https://doi.org/10.1128/JVI.00133-08
- T. R. Ruch and C. E. Machamer, The hydrophobic domain of infectious bronchitis virus E protein alters the host secretory pathway and is important for release of infectious virus, J. Virol. 85(2) (2011) 675–685; https://doi.org/10.1128/JVI.01570-10
- D. X. Liu, Q. Yuan and Y. Liao. Coronavirus envelope protein: a small membrane protein with multiple functions, Cell. Mol. Life Sci. 64(16) (2007) 2043–2048; https://doi.org/10.1007/s00018-007-7103-1
- T. S. Fung and D. X. Liu, Post-translational modifications of coronavirus proteins: roles and function, Future Virol. 13(6) (2018) 405–430; https://doi.org/10.2217/fvl-2018-0008
- M. Prajapat, P. Sarma, N. Shekhar, P. Avti, S. Sinha, H. Kaur, S. Kumar, A. Bhattacharyya, H. Kumar, S. Bansal and B. Medhi, Drug targets for corona virus: A systematic review, Indian J. Pharmacol. 52(1) (2020) 56–65; https://doi.org/10.4103/ijp.IJP_115_20
- C. C. Posthuma, D. D. Nedialkova, J. C. Zevenhoven-Dobbe, J. H. Blokhuis, A. E. Gorbalenya and E. J. Snijder, Site-directed mutagenesis of the Nidovirus replicative endoribonuclease NendoU exerts pleiotropic effects on the arterivirus life cycle, J. Virol. 80(4) (2006) 1653–1661; https://doi.org/10.1128/JVI.80.4.1653-1661.2006
- X. Deng, M. Hackbart, R. C. Mettelman, A. O’Brien, A. M. Mielech, G. Yi, C. C. Kao and S. C. Baker, Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages, Proc. Natl. Acad. Sci. USA 114(21) (2017) E4251–E4260; https://doi.org/10.1073/pnas.1618310114
- Y. Kim, R. Jedrzejczak, N. I. Maltseva, M. Wilamowski, M. Endres, A. Godzik, K. Michalska and A Joachimiak, Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2, Protein Sci. 29(7) (2020) 1596–1605; https://doi.org/10.1002/pro.3873
- C. C. Stobart, N. R. Sexton, H. Munjal, X. Lu, K. L. Molland, S. Tomar, A. D. Mesecar and M. R. Denison, Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity, J. Virol. 87(23) (2013) 12611–12618; https://doi.org/10.1128/JVI.02050-13
- H. Wang, S. Xue, H. Yang and C. Chen, Recent progress in the discovery of inhibitors targeting coronavirus proteases, Virol. Sin. 31(1) (2016) 24–30; https://doi.org/10.1007/s12250-015-3711-3
- A. J. te Velthuis, S. H. van den Worm and E. J. Snijder, The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension, Nucleic Acids Res. 40(4) (2012) 1737–1747; https://doi.org/10.1093/nar/gkr893
- M. P. Egloff, F. Ferron, V. Campanacci, S. Longhi, C. Rancurel, H. Dutartre, E. J. Snijder, A. E. Gorbalenya, C. Cambillau and B. Canard, The severe acute respiratory syndrome-coronavirus replica-tive protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world, Proc. Natl. Acad. Sci. USA 101(11) (2004) 3792–3796; https://doi.org/10.1073/pnas.0307877101
- M. Bouvet, A. Lugari, C. C. Posthuma, J. C. Zevenhoven, S. Bernard, S. Betzi, I. Imbert, B. Canard, J.-C. Guillemot, P. Lécine, S. Pfefferle, C. Drosten, E. J. Snijder, E. Decroly and X. Morelli, Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes, J. Biol. Chem. 289(37) (2014) 25783–25796; https://doi.org/10.1074/jbc.M114.577353
- T. Rodrigues, D. Reker, P. Schneider and G. Schneider, Counting on natural products for drug design, Nat. Chem. 8(6) (2016) 531–541; https://doi.org/10.1038/nchem.2479
- R. R. Pamuru, N. Ponneri, A. G. Damu and R. Vadde, Targeting natural products for the treatment of COVID-19 – An updated review, Curr. Pharm. Des. 26(41) (2020) 5278–5285; https://doi.org/10.2174/1381612826666200903122536
- M. Boozari and H. Hosseinzadeh, Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies, Phytother. Res. 35(2) (2021) 864–876; https://doi.org/10.1002/ptr.6873
- D. Silveira, J. M. Prieto-Garcia, F. Boylan, O. Estrada, Y. M. Fonseca-Bazzo, C. M. Jamal, P. O. Magalhães, E. O. Pereira, M. Tomczyk and M. Heinrich, COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy?, Front. Pharmacol. 11 (2020) Article ID 581840 (44 pages); https://doi.org/10.3389/fphar.2020.581840
- L. Ang, H. W. Lee, A. Kim and M. S. Lee, Herbal medicine for the management of COVID-19 during the medical observation period: A review of guidelines, Integr. Med. Res. 9(3) (2020) Article ID 100465 (5 pages); https://doi.org/10.1016/j.imr.2020.100465
- A. Y. Fan, S. Gu and S. F. Alemi (Research group for evidence-based Chinese medicine), Chinese herbal medicine for COVID-19: Current evidence with systematic review and meta-analysis, J. Integr. Med. 18(5) (2020) 385–394; https://doi.org/10.1016/j.joim.2020.07.008
- A. D. Fuzimoto and C. Isidoro, The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - Additional weapons in the fight against the COVID-19 pandemic?, Trad. Complement. Med. 10(4) (2020) 405–419; https://doi.org/10.1016/j.jtcme.2020.05.003
- D. H. Zhang, K. L. Wu, X. Zhang, S. Q. Deng and B. Peng, In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus, J. Integr. Med. 18(2) (2020) 152–158; https://doi.org/10.1016/j.joim.2020.02.005
- S. Kumar, P. Kashyap, S. Chowdhury, S. Kumar, A. Panwar and A. Kumar, Identification of phyto-chemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARSCoV-2) that are capable of inhibiting virus replication, Phytomedicine 85 (2021) Article ID 153317 (10 pages); https://doi.org/10.1016/j.phymed.2020.153317
- A. Khan, M. Khan, S. Saleem, Z. Babar, A. Ali, A. A. Khan, Z. Sardar, F. Hamayun, S. S. Ali and D.-Q. Wei, Phylogenetic analysis and structural perspectives of RNA-dependent RNA-polymerase inhibition from SARs-CoV-2 with natural products, Interdiscip. Sci. 12(3) (2020) 335–348; https://doi.org/10.1007/s12539-020-00381-9
- M. T. Islam, C. Sarkar, D. M. El-Kersh, S. Jamaddar, S. J. Uddin, J. A. Shilpi and M. S. Mubarak, Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data, Phytother. Res. 34(10) (2020) 2471–2492; https://doi.org/10.1002/ptr.6700
- A. Shah, V. Patel and B. Parmar, Discovery of some antiviral natural products to fight against novel coronavirus (SARS-CoV-2) using an in silico approach, Comb. Chem. High Throughput Screen. 24(8) (2021) 1271–1280; https://doi.org/10.2174/1386207323666200902135928
- M. Kandeel and M. Al-Nazawi, Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease, Life Sci. 251 (2020) Article ID 117627 (5 pages); https://doi.org/10.1016/j.lfs.2020.117627
- S. Vardhan and S. K. Sahoo, In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19, Comput. Biol. Med. 124 (2020) Article ID 103936 (12 pages); https://doi.org/10.1016/j.compbiomed.2020.103936
- R. Yu, L. Chen, R. Lan, R. Shen and P. Li, Computational screening of antagonists against the SARSCoV-2 (COVID-19) coronavirus by molecular docking, Int. J. Antimicrob. Agents 56(2) (2020) Article ID 106012 (6 pages); https://doi.org/10.1016/j.ijantimicag.2020.106012
- T. Joshi, T. Joshi, P. Sharma, S. Mathpal, H. Pundir, V. Bhatt and S. Chandra, In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking, Eur. Rev. Med. Pharmacol. Sci. 24(8) (2020) 4529–4536; https://doi.org/10.26355/eurrev_202004_21036
- H. M. Wahedi, S. Ahmad and S. W. Abbasi, Stilbene-based natural compounds as promising drug candidates against COVID-19, J. Biomol. Struct. Dyn. 39(9) (2021) 3225–3234; https://doi.org/10.1080/07391102.2020.1762743
- S. Kumar, K. Thakur, B. Sharma, T. R. Bhardwaj, D. N. Prasad and R. K. Singh, Recent advances in vaccine development for the treatment of emerging infectious diseases, Indian J. Pharm. Ed. Res. 53(3) (2019) 343–354.
- D. V. Mehrotra, H. E. Janes, T. R. Fleming, P. W. Annunziato, K. M. Neuzil, L. N. Carpp, D. Benkeser, E. R. Brown, M. Carone, I. Cho, D. Donnell, M. P. Fay, Y. Fong, S. Han, I. Hirsch, Y. Huang, Y. Huang, O. Hyrien, M. Juraska, A. Luedtke, M. Nason, A. Vandebosch, H. Zhou, M. S. Cohen, L. Corey, J. Hartzel, D. Follmann and P. B. Gilbert, Clinical endpoints for evaluating efficacy in COVID-19 vaccine trials, Ann. Intern. Med. 174(2) (2021) 221–228; https://doi.org/10.7326/M20-6169
- A. J. Marian, Current state of vaccine development and targeted therapies for COVID-19: impact of basic science discoveries, Cardiovasc. Pathol. 50 (2021) Article ID 107278 (11 pages); https://doi.org/10.1016/j.carpath.2020.107278
- University of Oxford, Vaccine knowledge project, Authoritative information for all, COVID-19 vaccines, https://vk.ovg.ox.ac.uk/vk/covid-19-vaccines; last access date November 5, 2022
- WHO, The Moderna COVID-19 (mRNA-1273) Vaccine: What you Need to Know; https://www.who.int/news-room/feature-stories/detail/the-moderna-covid-19-mrna-1273-vaccine-what-you-need-to-know; last access date November 17, 2022
- L. A. Jackson, E. J. Anderson, N. G. Rouphael, P. C. Roberts, M. Makhene, R. N. Coler, M. P. Mc-Cullough, J. D. Chappell, M. R. Denison, L. J. Stevens, A. J. Pruijssers, A. McDermott, B. Flach, N. A. Doria-Rose, K. S. Corbett, K. M. Morabito, S. O’Dell, S. D. Schmidt, P. A. Swanson, II, M. Padilla, J. R. Mascola, K. M. Neuzil, H. Bennett, W. Sun, E. Peters, M. Makowski, J. Albert, K. Cross, W. Buchanan, R. Pikaart-Tautges, J. E. Ledgerwood, B. S. Graham and J. H. Beigel (for the mRNA-1273 study group), An mRNA Vaccine against SARS-CoV-2 - Preliminary report, N. Engl. J. Med. 383(20) (2020) 1920–1931; https://doi.org/10.1056/NEJMoa2022483
- S. Roest, R. A. S Hoek and O. C. Manintveld, BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting, N. Engl. J. Med. 384(20) (2021) 1968–1970; https://doi.org/10.1056/NEJMc2104281
- E. Callaway, Russia announces positive COVID-vaccine results from controversial trial, Nature -News 11 Nov 2020; https://doi.org/10.1038/d41586-020-03209-0
- K. Rajarshi, R. Khan, M. K. Singh, T. Ranjan, S. Ray and S. Ray, Essential functional molecules associated with SARS-CoV-2 infection: Potential therapeutic targets for COVID-19, Gene 768 (2021) Article ID 145313 (9 pages); https://doi.org/10.1016/j.gene.2020.145313
- L. Dong, S. Hu and J. Gao, Discovering drugs to treat coronavirus disease 2019 (COVID-19), Drug Discov. Ther. 14(1) (2020) 58–60; https://doi.org/10.5582/ddt.2020.01012
- R. K. Guy, R. S. Di Paola, F. Romanelli and R. E. Dutch, Rapid repurposing of drugs for COVID-19, Science 368(6493) (2020) 829–830; https://doi.org/10.1126/science.abb9332
- D. Calina, A. O. Docea, D. Petrakis, A. M. Egorov, A. A. Ishmukhametov, A. G. Gabibov, M. I. Shtilman, R. Kostoff, F. Carvalho, M. Vinceti, D. A. Spandidos and A. Tsatsakis, Towards effective COVID-19 vaccines: Updates, perspectives and challenges (Review), Int. J. Mol. Med. 46(1) (2020) 3–16; https://doi.org/10.3892/ijmm.2020.4596
- Y.-F. Tu, C.-S. Chien, A. A. Yarmishyn, Y.-Y. Lin, Y.-H. Luo, Y.-T. Lin, W.-Y. Lai, D.-M. Yang, S.-J. Chou, Y.-P. Yang, M.-L. Wang and S.-H. Chiou, A review of SARS-CoV-2 and the ongoing clinical trials, Int. J. Mol. Sci. 21(7) (2020) Article ID 2657 (19 pages); https://doi.org/10.3390/ijms21072657
- S. Mulangu, L. E. Dodd, R. T. Davey, Jr., O. T. Mbaya, M. Proschan, D. Mukadi, M. L. Manzo, D. Nzolo, A. T. Oloma, A. Ibanda, R. Ali, S. Coulibaly, A. C. Levine, R. Grais, J. Diaz, H. C. Lane, J.-J. Muyembe-Tamfum (and the PALM writing group for the PALM consortium study team), A randomized, controlled trial of Ebola virus disease therapeutics, N. Engl. J. Med. 381(24) (2019) 2293–2303; https://doi.org/10.1056/NEJMoa1910993
- U. S. Food and Drug Administration, FDA Approves First Treatment for COVID-19, October 22, 2020; https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19; last access date November 17, 2022.
- P. K. Samudrala, P. Kumar, K. Choudhary N. Thakur, G. S. Wadekar, R. Dayaramani, M. Agrawal and A. Alexander, Virology, pathogenesis, diagnosis and in-line treatment of COVID-19, Eur. J. Pharmacol. 883 (2020) Article ID 173375 (12 pages); https://doi.org/10.1016/j.ejphar.2020.173375
- S. Kumar, A. Sil and A. Das, Hydroxychloroquine for COVID-19: Myths vs facts, Dermatol. Ther. 33(6) (2020) e13857; https://doi.org/10.1111/dth.13857
- H. Pertinez, R. K. R. Rajoli, S. H. Khoo and A. Owen, Pharmacokinetic modelling to estimate intracellular favipiravir ribofuranosyl-5’-triphosphate exposure to support posology for SARS-CoV-2, J. Antimicrob. Chemother. 76(8) (2021) 2121–2128; https://doi.org/10.1093/jac/dkab135
- M.-Y. Liu, S. Wang, W.-F. Yao, H.-z. Wu, S.-N. Meng and M.-J. Wei, Pharmacokinetic properties and bioequivalence of two formulations of arbidol: an open-label, single-dose, randomized-sequence, two-period crossover study in healthy Chinese male volunteers, Clin. Ther. 31(4) (2009) 784–792; https://doi.org/10.1016/j.clinthera.2009.04.016
- F. M. Shirazi, R. Mirzaei, S. Nakhaee, A. Nejatian, S. Ghafari and O. Mehrpour, Repurposing the drug, ivermectin, in COVID-19: toxicological points of view, Eur. J. Med. Res. 27(1) (2022) Article ID 21 (11 pages); https://doi.org/10.1186/s40001-022-00645-8