Have a personal or library account? Click to login
α1-Adrenoceptor agonist methoxamine inhibits base excision repair via inhibition of apurinic/apyrimidinic endonuclease 1 (APE1) Cover

α1-Adrenoceptor agonist methoxamine inhibits base excision repair via inhibition of apurinic/apyrimidinic endonuclease 1 (APE1)

Open Access
|Jun 2023

References

  1. B. Rabinowitz, L. Chuck, M. Kligerman and W. Parmley, Positive inotropic effects of methoxamine: evidence for alpha-adrenergic receptors in ventricular myocardium, Am. J. Physiol.-Leg. Content 229(3) (1975) 582–585; https://doi.org/10.1152/ajplegacy.1975.229.3.582
  2. S. Sun, D. Sun, L. Yang, J. Han, R. Liu and L. Wang, Dose-dependent effects of intravenous methoxamine infusion during hip-joint replacement surgery on postoperative cognitive dysfunction and blood TNF-α level in elderly patients: a randomized controlled trial, BMC Anesthesiol. 17(1) (2017) Article ID 75 (10 pages); https://doi.org/10.1186/s12871-017-0367-6
  3. L. Wang, Effects of continuous intravenous infusion of methoxamine on the intraoperative hemodynamics of elderly patients undergoing total hip arthroplasty, Med. Sci. Monit. 20 (2014) 1969–1976; https://doi.org/10.12659/MSM.890760
  4. J. P. Griffin and P. F. D’Arcy, A Manual of Adverse Drug Interactions, 5th ed., Elsevier Science, New York 1997, pp. 236–275; https://doi.org/10.1016/B978-0-444-82406-6.X5000-X
  5. F. Fu, T. Yu-Wen, C. Hong, C. C. Jiao, N. Ma and X.-Z. Chen, A randomised dose-response study of prophylactic methoxamine infusion for preventing spinal-induced hypotension during cesarean delivery, BMC Anesthesiol. 20(1) (2020) 198–208; https://doi.org/10.1186/s12871-020-01119-2
  6. C. P. Weiner and C. Buhimschi, Drugs for Pregnant and Lactating Women, 2nd ed., W.B. Saunders, Philadelphia 2007, pp. 616–745; https://doi.org/10.1016/B978-1-4160-4013-2.00012-0
  7. J. A. D. Simpson, D. Bush, H. J. Gruss, A. Jacobs, C. Pediconi and J. H. Scholefield, A randomised, controlled, crossover study to investigate the safety and response of 1R,2S-methoxamine hydrochlo-ride (NRL001) on anal function in healthy volunteers, Colorectal Dis. 16(1) (2014) 5–15; https://doi.org/10.1111/codi.12541
  8. M. Krutá, L. Bálek, R. Hejnová, Z. Dobšáková, L. Eiselleová, K. Matulka, T. Bárta, P. Fojtík, J. Fajkus, A. Hampl, P. Dvořák and V. Rotrekl, Decrease in abundance of apurinic/apyrimidinic endonuclease causes failure of base excision repair in culture-adapted human embryonic stem cells, Stem Cells 31(4) (2013) 693–702; https://doi.org/10.1002/stem.1312
  9. M. Krutá, M. Šeneklová, J. Raška, A. Salykin, L. Zerzánková, M. Pešl, E. Bártová, M. Franek, A. Baumeisterová, S. Košková, K. J. Neelsen, A. Hampl, P. Dvořák and V. Rotrekl, Mutation frequency dynamics in HPRT locus in culture-adapted human embryonic stem cells and induced pluripotent stem cells correspond to their differentiated counterparts, Stem Cells Dev. 23(20) (2014) 2443–2454; https://doi.org/10.1089/scd.2013.0611
  10. N. Puebla-Osorio, D. B. Lacey, F. W. Alt and C. Zhu, Early embryonic lethality due to targeted inactivation of DNA ligase III, Mol. Cell. Biol. 26(10) (2006) 3935–3941; https://doi.org/10.1128/MCB.26.10.3935-3941.2006
  11. D. C. Cabelof, J. J. Raffoul, S. Yanamadala, C. Ganir, Z. Guo and A. R. Heydari, Attenuation of DNA polymerase β-dependent base excision repair and increased DMS-induced mutagenicity in aged mice, Mutat. Res. Mol. Mech. Mutagen. 500(1–2) (2002) 135–145; https://doi.org/10.1016/S0027-5107(02)00003-9
  12. G. W. Intano, E. J. Cho, C. A. McMahan and C. A. Walter, Age-related base excision repair activity in mouse brain and liver nuclear extracts, J. Gerontol. A. Biol. Sci. Med. Sci. 58(3) (2003) B205–B211; https://doi.org/10.1093/gerona/58.3.B205
  13. G. W. Intano, C. A. McMahan, J. R. McCarrey, R. B. Walter, A. E. McKenna, Y. Matsumoto, M. A. MacInnes, D. J. Chen and C. A. Walter, Base excision repair is limited by different proteins in male germ cell nuclear extracts prepared from young and old mice, Mol. Cell. Biol. 22(7) (2002) 2410–2418; https://doi.org/10.1128/MCB.22.7.2410-2418.2002
  14. J. R. Sanchez, T. L. Reddick, M. Perez, V. E. Centonze, S. Mitra, T. Izumi, C. A. McMahan and C. A. Walter, Increased human AP endonuclease 1 level confers protection against the paternal age effect in mice, Mutat. Res. Mol. Mech. Mutagen. 779 (2015) 124–133; https://doi.org/10.1016/j.mrfmmm.2015.06.008
  15. A. Kohutova, J. Raška, M. Kruta, M. Seneklova, T. Barta, P. Fojtik, T. Jurakova, C. A. Walter, A. Hampl, P. Dvorak and V. Rotrekl, Ligase 3-mediated end-joining maintains genome stability of human embryonic stem cells, FASEB J. 33(6) (2019) 6778–6788; https://doi.org/10.1096/fj.201801877RR
  16. L. Haracska, Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites, Genes Dev. 15(8) (2001) 945–954; https://doi.org/10.1101/gad.882301
  17. L. Haracska, M. T. Washington, S. Prakash and L. Prakash, Inefficient bypass of an abasic site by DNA polymerase η, J. Biol. Chem. 276(9) (2001) 6861–6866; https://doi.org/10.1074/jbc.M008021200
  18. K. Sugasawa, J. M. Y. Ng, C. Masutani, S. Iwai, P. J. van der Spek, A. P. M. Eker, F. Hanaoka, D. Bootsma and J. H. J. Hoeijmakers, Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair, Mol. Cell 2(2) (1998) 223–232; https://doi.org/10.1016/S1097-2765(00)80132-X
  19. S. Kumar, S. Talluri, J. Pal, X. Yuan, R. Lu, P. Nanjappa, M. K. Samur, N. C. Munshi and M. A. Shammas, Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance, Blood Cancer J. 8(10) (2018) 92–102; https://doi.org/10.1038/s41408-018-0129-9
  20. M. Liuzzi and M. Talpaert-Borlé, A new approach to the study of the base-excision repair pathway using methoxyamine, J. Biol. Chem. 260(9) (1985) 5252–5258; https://doi.org/10.1016/S0021-9258(18) 89014-7
  21. C. A. Schneider, W. S. Rasband and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods 9(7) (2012) 671–675; https://doi.org/10.1038/nmeth.2089
  22. B. M. Brenerman, J. L. Illuzzi and D. M. Wilson, Base excision repair capacity in informing healthspan, Carcinogenesis 35(12) (2014) 2643–2652; https://doi.org/10.1093/carcin/bgu225
  23. D. M. Wilson and L. H. Thompson, Life without DNA repair, Proc. Natl. Acad. Sci. 94(24) (1997) 12754–12757; https://doi.org/10.1073/pnas.94.24.12754
  24. M. Li, X. Yang, X. Lu, N. Dai, S. Zhang, Y. Cheng, L. Zhang, Y. Yang, Y. Liu, Z. Yang, D. Wang and D. M. Wilson, APE1 deficiency promotes cellular senescence and premature aging features, Nucleic Acids Res. 46(11) (2018) 5664–5677; https://doi.org/10.1093/nar/gky326
  25. K. L. Limpose, K. S. Trego, Z. Li, S. W. Leung, A. H. Sarker, J. A. Shah, S. S. Ramalingam, E. M. Werner, W. S. Dynan, P. K. Cooper, A. H. Corbett and P. W. Doetsch, Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer, Nucleic Acids Res. 46(9) (2018) 4515–4532. https://doi.org/10.1093/nar/gky162
  26. S. Vlahopoulos, M. Adamaki, N. Khoury, V. Zoumpourlis and I. Boldogh, Roles of DNA repair enzyme OGG1 in innate immunity and its significance for lung cancer, Pharmacol. Ther. 194 (2019) 59–72; https://doi.org/10.1016/j.pharmthera.2018.09.004
  27. M. Goto, K. Shinmura, H. Igarashi, M. Kobayashi, H. Konno, H. Yamada, M. Iwaizumi, S. Kageyama, T. Tsuneyoshi, S. Tsugane and H. Sugimura, Altered expression of the human base excision repair gene NTH1 in gastric cancer, Carcinogenesis 30(8) (2009) 1345–1352; https://doi.org/10.1093/carcin/bgp108
  28. X. Xiao, Y. Yang, Y. Ren, D. Zou, K. Zhang and Y. Wu, rs1760944 polymorphism in the APE1 region is associated with risk and prognosis of osteosarcoma in the chinese han population, Sci. Rep. 7(1) (2017) 9331–9341; https://doi.org/10.1038/s41598-017-09750-9
  29. M. Li, D. Wang, S. Zhang, L. He and N. Dai, Identification of APE1 as a chemotherapeutic prognostic marker for non-small cell lung cancer patients, J. Clin. Oncol. 34(15) (2016) Article ID e23065; https://doi.org/10.1200/JCO.2016.34.15_suppl.e23065
  30. J. J. Raffoul, A. R. Heydari and G. G. Hillman, DNA repair and cancer therapy: Targeting APE1/Ref-1 using dietary agents, J. Oncol. 2012 (2012) 1–11; https://doi.org/10.1155/2012/370481
  31. V. Singh-Gupta, H. Zhang, S. Banerjee, D. Kong, J. J. Raffoul, F. H. Sarkar and G. G. Hillman, Radiation-induced HIF-1α cell survival pathway is inhibited by soy isoflavones in prostate cancer cells, Int. J. Cancer 124(7) (2009) 1675–1684; https://doi.org/10.1002/ijc.24015
  32. Z. Wang, W. Xu, Z. Lin, C. Li, Y. Wang, L. Yang, G. Liu, Reduced apurinic/apyrimidinic endonuclease activity enhances the antitumor activity of oxymatrine in lung cancer cells, Int. J. Oncol. 49(6) (2016) 2331–2340; https://doi.org/10.3892/ijo.2016.3734
  33. K. A. Ziel, C. C. Campbell, G. L. Wilson and M. N. Gillespie, Ref-1/Ape is critical for formation of the hypoxia-inducible transcriptional complex on the hypoxic response element of the rat pulmonary artery endothelial cell VEGF gene, FASEB J. 18(9) (2004) 986–988; https://doi.org/10.1096/fj.03-1160fje
  34. X. Gu, Y. Cun, M. Li, Y. Qing, F. Jin, Z. Zhong, N. Dai, C. Qian, J. Sui and D. Wang, Human apurinic/apyrimidinic endonuclease siRNA inhibits the angiogenesis induced by X-ray irradiation in lung cancer cells, Int. J. Med. Sci. 10(7) (2013) 870–882; https://doi.org/10.7150/ijms.5727
  35. P. Sawides, Y. Xu, L. Liu, J. A. Bokar, P. Silverman, A. Dowlati and S. L. Gerson, Pharmacokinetic profile of the base-excision repair inhibitor methoxyamine-HCl (TRC102; MX) given as an one-hour intravenous infusion with temozolomide (TMZ) in the first-in-human phase I clinical trial, J. Clin. Oncol. 28(15) (2010) Article ID e13662; https://doi.org/10.1200/jco.2010.28.15_suppl.e13662
  36. S. Madlener, T. Strobel, S. Vose, O. Saydam, B. D. Price, B. Demple and N. Saydam, Essential role for mammalian apurinic/apyrimidinic (AP) endonuclease Ape1/Ref-1 in telomere maintenance, Proc. Natl. Acad. Sci. 110(44) (2013) 17844–17849; https://doi.org/10.1073/pnas.1304784110
  37. E. Huang, D. Qu, Y. Zhang, K. Venderova, M. E. Haque, M. W. C. Rousseaux, R. S. Slack, J. M. Woulfe and D. S. Park, The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death, Nat. Cell Biol. 12(6) (2010) 563–571; https://doi.org/10.1038/ncb2058
  38. V. Davydov, L. A. Hansen and D. A. Shackelford, Is DNA repair compromised in Alzheimer’s disease?, Neurobiol. Aging 24(7) (2003) 953–968; https://doi.org/10.1016/S0197-4580(02)00229-4
  39. A. K. Mantha, M. Dhiman, G. Taglialatela, R. J. Perez-Polo and S. Mitra, Proteomic study of amyloid beta (25–35) peptide exposure to neuronal cells: Impact on APE1/Ref-1’s protein-protein interaction, J. Neurosci. Res. 90(6) (2012) 1230–1239; https://doi.org/10.1002/jnr.23018
  40. Z. Tan, L. Shi and S. S. Schreiber, Differential expression of redox factor-1 associated with beta-amyloid-mediated neurotoxicity, Open Neurosci. J. 3 (2009) 26–34; https://doi.org/10.2174/1874082000903010026
  41. A. Y. Shaikh and L. J. Martin, DNA base-excision repair enzyme apurinic/apyrimidinic endonuclease/redox factor-1 is increased and competent in the brain and spinal cord of individuals with amyotrophic lateral sclerosis, NeuroMolecular Med. 2(1) (2002) 47–60; https://doi.org/10.1007/s12017-002-0038-7
  42. P. J. Nisar, H.-J. Gruss, D. Bush, N. Barras, A. G. Acheson and J. H. Scholefield, Intra-anal and rectal application of L-erythro methoxamine gel increases anal resting pressure in healthy volunteers, Br. J. Surg. 92(12) (2005) 1539–1545; https://doi.org/10.1002/bjs.5171
  43. P. J. Nisar, H.-J. Gruss, D. Bush, A. G. Acheson and J. H. Scholefield, Intra-anal application of l-erythro methoxamine gel increases anal resting pressure in patients with incontinence, Br. J. Surg. 94(9) (2007) 1155–1161; https://doi.org/10.1002/bjs.5821
  44. S. Rayment, T. Eames, J. Simpson, M. Dashwood, Y. Henry, H. Gruss, A. Acheson, J. Scholefield and V. Wilson, Investigation of the distribution and function of α-adrenoceptors in the sheep isolated internal anal sphincter: α-Adrenoceptor function in sheep anal sphincter, Br. J. Pharmacol. 160(7) (2010) 1727–1740; https://doi.org/10.1111/j.1476-5381.2010.00842.x
  45. L. Siproudhis, W. Graf, A. Emmanuel, D. Walker, R. N. K. Shing, C. Pediconi, J. Pilot, S. Wexner and J. Scholefield, Libertas: a phase II placebo-controlled study of NRL001 in patients with faecal incontinence showed an unexpected and sustained placebo response, Int. J. Colorectal Dis. 31(6) (2016) 1205–1216; https://doi.org/10.1007/s00384-016-2585-7
  46. R. Lamboy-Caraballo, C. Ortiz-Sanchez, A. Acevedo-Santiago, J. Matta, A. N. A. Monteiro and G. N. Armaiz-Pena, Norepinephrine-induced DNA damage in ovarian cancer cells, Int. J. Mol. Sci. 21(6) (2020) 2250–2264; https://doi.org/10.3390/ijms21062250
  47. D. Topalović, D. Dekanski, B. Spremo-Potparević, N. Djelić, V. Bajić and L. Živković, Assessment of adrenaline-induced DNA damage in whole blood cells with the comet assay, Arch. Ind. Hyg. Toxicol. 69(4) (2018) 304–308; https://doi.org/10.2478/aiht-2018-69-3154
  48. F. Sun, X.-P. Ding, S.-M. An, Y.-B. Tang, X.-J. Yang, L. Teng, C. Zhang, Y. Shen, H.-Z. Chen and L. Zhu, Adrenergic DNA damage of embryonic pluripotent cells via β2 receptor signalling, Sci. Rep. 5 (2015) 15950–15962; https://doi.org/10.1038/srep15950
  49. M. R. Hara, J. J. Kovacs, E. J. Whalen, S. Rajagopal, R. T. Strachan, W. Grant, A. J. Towers, B. Williams, C. M. Lam, K. Xiao, S. K. Shenoy, S. G. Gregory, S. Ahn, D. R. Duckett and R. J. Lefkowitz, A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1, Nature 477(7364) (2011) 349–353; https://doi.org/10.1038/nature10368
  50. P. Fortini, S. Rosa, A. Zijno, A. Calcagnile, M. Bignami and E. Dogliotti, Methoxyamine modification of abasic sites protects CHO cells from the cytotoxic and mutagenic effects of oxygen alkylation, Carcinogenesis 13(1) (1992) 87–93; https://doi.org/10.1093/carcin/13.1.87
  51. S. Rosa, P. Fortini, P. Karran, M. Bignami and E. Dogliotti, Processing in vitro of an abasic site reacted with methoxyamine: a new assay for the detection of abasic sites formed in vivo, Nucleic Acids Res. 19(20) (1991) 5569–5574; https://doi.org/10.1093/nar/19.20.5569
  52. M. Talpaert-Borle and M. Liuzzi, Reaction of apurinic/apyrimidinic sites with [14C]methoxyamine, Biochim. Biophys. Acta BBA – Gene Struct. Expr. 740(4) (1983) 410–416; https://doi.org/10.1016/0167-4781(83)90089-1
  53. R. J. Lewis, Sax’s Dangerous Properties of Industrial Materials, 10th ed., Wiley-Interscience, New York 2000, pp. 4770–4770; https://doi.org/10.1002/0471701343
DOI: https://doi.org/10.2478/acph-2023-0012 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 281 - 291
Accepted on: Oct 25, 2022
Published on: Jun 12, 2023
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2023 Aneta Kohutova, Dita Münzova, Martin Pešl, Vladimir Rotrekl, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.