Have a personal or library account? Click to login
Sodium butyrate attenuate hyperglycemia-induced inflammatory response and renal injury in diabetic mice Cover

Sodium butyrate attenuate hyperglycemia-induced inflammatory response and renal injury in diabetic mice

Open Access
|Jan 2023

References

  1. 1. O. Ojo, Dietary intake and type 2 diabetes, Nutrients 11(9) (2019) Article ID 2177; https://doi.org/10.3390/nu11092177676966431514301
  2. 2. R. E. Perez-Morales, M. D. Del Pino, J. M. Valdivielso, A. Ortiz, C. Mora-Fernandez and J. F. Navarro-Gonzalez, Inflammation in diabetic kidney disease, Nephron 143(1) (2019) 12–16; https://doi.org/10.1159/00049327830273931
  3. 3. E. Rendra, V. Riabov, D. M. Mossel, T. Sevastyanova, M. C. Harmsen and J. Kzhyshkowska, Reactive oxygen species (ROS) in macrophage activation and function in diabetes, Immunobiology 224(2) (2019) 242–253; https://doi:10.1016/j.imbio.2018.11.01010.1016/j.imbio.2018.11.01030739804
  4. 4. T. V. Rohm, D. T. Meier, J. M. Olefsky and M. Y. Donath, Inflammation in obesity, diabetes, and related disorders, Immunity 55(1) (2022) 31–55; https://doi.org/10.1016/j.immuni.2021.12.013877345735021057
  5. 5. J. James, Dying well with diabetes, Ann. Palliat. Med. 8(2) (2019) 178–189; https://doi.org/10.21037/apm.2018.12.1030691282
  6. 6. E. Niccolai, S. Baldi, F. Ricci, E. Russo, G. Nannini, M. Menicatti, G. Poli, A. Taddei, G. Bartolucci, A. S. Calabro, F. C. Stingo and A. Amedei, Evaluation and comparison of short chain fatty acids composition in gut diseases, World J. Gastroenterol. 25(36) (2019) 5543–5558; https://doi.org/10.3748/wjg.v25.i36.5543676798331576099
  7. 7. P. Markowiak-Kopec and K. Slizewska, The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome, Nutrients 12(4) (2020) Article ID 1107; https://doi.org/10.3390/nu12041107723097332316181
  8. 8. J. Frampton, K. G. Murphy, G. Frost and E. S. Chambers, Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function, Nat. Metab. 2 (2020) 840–848; https://doi.org/10.1038/s42255-020-0188-732694821
  9. 9. F. Wang, H. Wu, M. Fan, R. Yu, Y. Zhang, J. Liu, X. Zhou, Y. Cai, S. Huang, Z. Hu and X. Jin, Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells, FASEB J. 34(3) (2020) 4266–4282; https://doi.org/10.1096/fj.201902626R31957111
  10. 10. W. Ratajczak, A. Ryl, A. Mizerski, K. Walczakiewicz, O. Sipak and M. Laszczynska, Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs), Acta Biochim. Pol. 66(1) (2019) 1–12; https://doi.org/10.18388/abp.2018_264830831575
  11. 11. W. Xia, X. Dai, L. K. Ding, Y. Xi, M. Yan, C. X. Yi and H. X. Xu, Three main short-chain fatty acids inhibit the activation of THP-1 cells by Mycoplasma pneumoniae, Biosci. Biotechnol. Biochem. 85(4) (2021) 923–930; https://doi.org/10.1093/bbb/zbaa11033590852
  12. 12. M. Wang, L. Song, C. Strange, X. Dong and H. Wang, Therapeutic effects of adipose stem cells from diabetic mice for the treatment of type 2 diabetes, Mol. Ther. 26(8) (2018) 1921–1930; https://doi.org/10.1016/j.ymthe.2018.06.013609439130005867
  13. 13. W. Huang, Y. Man, C. Gao, L. Zhou, J. Gu, H. Xu, Q. Wan, Y. Long, L.Chai, Y. Xu and Y. Xu, Short-chain fatty acids ameliorate diabetic nephropathy via GPR43-mediated inhibition of oxidative stress and NF-κB signaling, Oxid. Med. Cell. Longev. 2020 (2020) Article ID 4074832 (21 pages); https://doi.org/10.1155/2020/4074832742206832831998
  14. 14. L. Yuan, Y. Zhu, S. Huang, L. Lin, X. Jiang and S. Chen, NF-kappaB/ROS and ERK pathways regulate NLRP3 inflammasome activation in Listeria monocytogenes infected BV2 microglia cells, J. Microbiol. 59 (2021) 771–781; https://doi.org/10.1007/s12275-021-0692-934061343
  15. 15. J. Zou, Y. Zhang, J. Sun, X. Wang, H. Tu, S. Geng, R. Liu, Y. Chen and Z. Bi, Deoxyelephantopin induces reactive oxygen species-mediated apoptosis and autophagy in human osteosarcoma cells, Cell. Physiol. Biochem. 42(5) (2017) 1812–1821; https://doi.org/10.1159/00047953728750364
  16. 16. X. Shen, X. Jiang, L. Qian, A. Zhang, F. Zuo and D. Zhang, Polyphenol extracts from germinated mung beans can improve Type 2 diabetes in mice by regulating intestinal microflora and inhibiting inflammation, Front. Nutr. 9 (2022) Article ID 846409 (13 pages); https://doi.org/10.3389/fnut.2022.846409898868135399678
  17. 17. X. Cui, D. W. Qian, S. Jiang, E. X. Shang, Z. H. Zhu and J. A. Duan, Scutellariae radix and Coptidis rhizoma improve glucose and lipid metabolism in T2DM rats via regulation of the metabolic profiling and MAPK/PI3K/Akt signaling pathway, Int. J. Mol. Sci. 19(11) (2018) Article ID 3634 (22 pages); https://doi.org/10.3390/ijms19113634627495030453687
  18. 18. S. Ding, S. Xu, Y. Ma, G. Liu, H. Jang and J. Fang, Modulatory mechanisms of the NLRP3 inflammasomes in diabetes, Biomolecules 9(12) (2019) Article ID 850 (15 pages); https://doi:10.3390/biom912085010.3390/biom9120850699552331835423
  19. 19. F. Yang, Y. Qin, Y. Wang, S. Meng, H. Xian, H. Che, J. Lv, Y. Li, Y. Yu, Y. Bai and L. Wang, Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy, Int. J. Biol. Sci. 15(5) (2019) 1010–1019; https://doi:10.7150/ijbs.2968010.7150/ijbs.29680653578131182921
  20. 20. X. Chen, D. Zhang, Y. Li, W. Wang, W. Bei and J. Guo, NLRP3 inflammasome and IL-1β pathway in type 2 diabetes and atherosclerosis: Friend or foe?, Pharmacol. Res. 173 (2021) Article ID 105885; https://doi:10.1016/j.phrs.2021.10588510.1016/j.phrs.2021.10588534536551
  21. 21. X. Wang, G. He, Y. Peng, W. Zhong, Y. Wang and B. Zhang, Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway, Sci. Rep. 5 (2015) Article ID 12676 (10 pages); https://doi:10.1038/srep1267610.1038/srep12676452265426234821
  22. 22. C. D. Gonzalez, M. S. Lee, P. Marchetti, M. Pietropaolo, R. Towns, M. I. Vaccaro, H. Watada and J. W. Wiley, The emerging role of autophagy in the pathophysiology of diabetes mellitus, Autophagy 7(1) (2011) 2–11; https://doi.org/10.4161/auto.7.1.13044335948120935516
  23. 23. T. Tao and H. Xu, Autophagy and obesity and diabetes, Adv. Exp. Med. Biol. 1 (2020) 445–461; https://doi.org/10.1007/978-981-15-4272-5_3232671767
  24. 24. B. Cui, H. Lin, J. Yu, J. Yu and Z. Hu, Autophagy and the immune response, Adv. Exp. Med. Biol. 1206 (2019) 595–634; https://doi.org/10.1007/978-981-15-0602-4_27712036331777004
  25. 25. Y. Yuan, Y. Chen, T. Peng, L. Li, W. Zhu, F. Liu, S. Liu, X. An, R. Luo, J. Cheng, J. Lu, Mitochondrial ROS-induced lysosomal dysfunction impairs autophagic flux and contributes to M1 macrophage polarization in a diabetic condition, Clin. Sci. (Lond). 133(15) (2019) 1759–1777; https://doi.org/10.1042/CS2019067231383716
  26. 26. R. Wu, X. Liu, J. Yin, H. Wu, X. Cai, N. Wang, Y. Qian and F. Wang, IL-6 receptor blockade ameliorates diabetic nephropathy via inhibiting inflammasome in mice, Metabolism 83 (2018) 18–24; https://doi.org/10.1016/j.metabol.2018.01.00229336982
  27. 27. W. Ying, W. Fu, Y. S. Lee, J. M. Olefsky, The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities, Nat. Rev. Endocrinol. 16(2) (2020) 81–90; https://doi:10.1038/s41574-019-0286-310.1038/s41574-019-0286-3831527331836875
DOI: https://doi.org/10.2478/acph-2023-0008 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 121 - 132
Accepted on: Jul 19, 2022
Published on: Jan 24, 2023
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2023 Man Yan, Yan-Yan Zhang, Yue Xi, Long-Kun Ding, Chang Sun, Li-Juan Qu, Xin Qian, Jing-Wen Xu, Wen Sun, Liang Wu, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.